Safety
Experimental Study on Dynamic Response Performance of Hydrogen Sensor in Confined Space under Ceiling
Oct 2024
Publication
With the advancement of Fuel Cell Vehicles (FCVs) detecting hydrogen leaks is critically important in facilities such as hydrogen refilling stations. Despite its significance the dynamic response performance of hydrogen sensors in confined spaces particularly under ceilings has not been comprehensively assessed. This study utilizes a catalytic combustion hydrogen sensor to monitor hydrogen leaks in a confined area. It examines the effects of leak size and placement height on the distribution of hydrogen concentrations beneath the ceiling. Results indicate that hydrogen concentration rapidly decreases within a 0.5–1.0 m range below the ceiling and declines more gradually from 1.0 to 2.0 m. The study further explores the attenuation pattern of hydrogen concentration radially from the hydrogen jet under the ceiling. By normalizing the radius and concentration it was determined that the distribution conforms to a Gaussian model akin to that observed in open space jet flows. Utilizing this Gaussian assumption the model is refined by incorporating an impact reflux term thereby enhancing the accuracy of the predictive formula.
Influence of Safety Culture on Safety Outcomes of a Hydrogen–CCS Plant
Jan 2025
Publication
: This article investigates how safety culture impacts the safety performance of blue hydrogen projects. Blue hydrogen refers to decarbonized hydrogen produced through natural gas reforming with carbon capture and storage (CCS) technology. It is crucial to decide on a suitable safety policy to avoid potential injuries financial losses and loss of public goodwill. The system dynamics approach is a suitable tool for studying the impact of factors controlling safety culture. This study examines the interactions between influencing factors and implications of various strategies using what-if analyses. The conventional risk and safety assessments fail to consider the interconnectedness between the technical system and its social envelope. After identifying the key factors influencing safety culture a system dynamics model will be developed to evaluate the impact of those factors on the safety performance of the facility. The emphasis on safety culture is directed by the necessity to prevent major disasters that could threaten a company’s survival as well as to prevent minor yet disruptive incidents that may occur during day-to-day operations. Enhanced focus on safety culture is essential for maintaining an organization’s long-term viability. H2-CCS is a complex socio-technical system comprising interconnected subsystems and sub-subsystems. This study focuses on the safety culture sub-subsystem illustrating how human factors within the system contribute to the occurrence of incidents. The findings from this research study can assist in creating effective strategies to improve the sustainability of the operation. By doing so strategies can be formulated that not only enhance the integrity and reliability of an installation as well as its availability within the energy networks but also contribute to earning a good reputation in the community that it serves.
Simulation of Hydrogen Deflagration on Battery-Powered Ship
Sep 2025
Publication
Lead–acid batteries are widely used in modern battery-powered ships. During the charging process of lead–acid batteries hydrogen gas is released which poses a potential hazard to ship safety. To address this this paper first establishes a turbulent flow model for hydrogen deflagration. Then using FDS6.7.9 software simulations of hydrogen deflagration are conducted and a simulation model of the ship’s cabin is constructed. The changes in temperature and pressure during the hydrogen deflagration process in the ship’s cabin are analyzed and the evolution process of hydrogen deflagration in the ship’s cabin is derived. Hydrogen deflagration poses a significant threat to the fire safety of battery-powered ships. Additionally a comparative analysis of hydrogen deflagration under different hydrogen concentrations is performed. It is concluded that battery-powered ships using lead–acid batteries should pay attention to controlling the hydrogen concentration below 4%.
Modelling the Non-adiabatic Blowdown of Pressurised Cryogenic Hydrogen Storage Tank
Sep 2023
Publication
This paper describes a model of hydrogen blowdown dynamics for storage tanks needed for hydrogen safety engineering to accurately represent incident scenarios. Heat transfer through a tank wall affects the temperature and pressure dynamics inside the storage vessel and therefore the characteristics of the resulting hydrogen jet in case of loss of containment. Available non-adiabatic blowdown models are validated only against experiments on hydrogen storages at ambient temperature. Effect of heat transfer for cryo-compressed hydrogen can be more significant due to a larger temperature difference between the stored hydrogen and surrounding atmosphere especially in case of failure of equipment insulation. Previous work by the authors demonstrated that the heat transfer through a discharge pipe wall can significantly affect the mass flow rate of cryogenic hydrogen releases. To the authors’ knowledge thoroughly validated models of non-adiabatic blowdown dynamics for cryo-compressed hydrogen are currently missing. The present work further develops the non-adiabatic blowdown model at ambient temperature using the under-expanded jet theory developed at Ulster University to expand it to cryo-compressed hydrogen storages. The non-ideal behaviour of cryo-compressed hydrogen is accounted through the high-accuracy Helmholtz energy formulations. The developed model includes effect of heat transfer at both the tank and discharge pipe wall. The model is thoroughly validated against sixteen tests performed by Pro-Science on blowdown of hydrogen storage tanks with initial pressure 0.5-20 MPa and temperature 80-310 K through release nozzle of diameter 0.5-4.0 mm. The model well reproduces the experimental pressure and temperature dynamics during the entire blowdown duration.
Numerical Simulation of Underexpanded Cryogenic Hydrogen Jets
Sep 2023
Publication
As a clean and renewable energy carrier hydrogen is one of the most promising alternative fuels. Cryogenic compressed hydrogen can achieve high storage density without liquefying hydrogen which has good application prospects. Investigation of the safety problems of cryogenic compressed hydrogen is necessary before massive commercialization. The present study modeled the instantaneous flow field using the Large Eddy Simulation (LES) for cryogenic (50 and 100 K) underexpanded hydrogen jets released from a round nozzle of 1.5 mm diameter at pressures of 0.5-5.0 MPa. The simulation results were compared with the experimental data for validation. The axial and radial concentration and velocity distributions were normalized to show the self-similar characteristics of underexpanded cryogenic jets. The shock structures near the nozzle were quantified to correlate the shock structure sizes to the source pressure and nozzle diameter. The present study on the concentration and velocity distributions of underexpanded cryogenic hydrogen jets is useful for developing safety codes and standards.
The Effect of Natural Ventilation through Roof Vents Following Hydrogen Leaks in Confined Spaces
Sep 2023
Publication
Hydrogen energy is gaining global popularity as a green energy source and its use is increasing. However hydrogen has a rapid diffusion rate and a broad combustion range; thus it is vital to take safety precautions during its storage. In this study we examined the change of hydrogen concentration in a confined space exposed to a hydrogen leak according to the size of the leakage hole and the leakage flow rate assuming an extreme situation. In addition we investigated rectangular vents (that serve as explosion panels in the event of an explosion) to assess their ventilation performance according to the area of the vent when used for emergency natural ventilation. The vent areas tested represented 12% 24% and 36% of the floor area and they were installed in the ceiling of the test enclosure. When exposed to a simulated hydrogen leak the enclosure acquired a hydrogen concentration of 1% which is 25% of the lower flammability limit (LFL) in less than 6 s across all test cases. The time to LFL varied from approximately 4–81 s. In an assessment of the emergency ventilation duration the ventilation time required to reach safe hydrogen concentrations decreased and showed less deviation as the vent size was increased. For the largest vent size tested the LFL was reached in <1 min; it took 145.6 s to acquire a 1 vol% of hydrogen which is relatively fast. However there were no significant differences between the performance of large and medium-sized vent areas. Therefore through the results we found that it is reasonable to apply the area Kv = 3.31 (24% of the floor area) or less when considering the design of a roof vent that can serve as both an emergency ventilation and an explosion vent. This suggests that it is difficult to expect an improvement in ventilation performance by simply increasing the area of the vent beyond a certain area. Through these results this study proposes a practical and novel method for future design and parameters of safety functions that protect areas where hydrogen is present.
A Computational Analysis of Cryogenic Hydrogen Release Under Various Conditions
Dec 2023
Publication
Cryogenic liquid hydrogen offers a promising solution for achieving high-density hydrogen storage and efficient on-site distribution. However the potential hazards associated with hydrogen leakages necessitate thorough investigations. This research aims to model cryogenic hydrogen release from circular and high aspect ratio (HAR) nozzles tested by Sandia. The test conditions cover reservoir pressures and temperatures corresponding to cryogenic hydrogen storage. The study conducts computational simulations using OpenFOAM to examine hydrogen concentration temperature fields mass fraction and temperature distributions achieving good agreement with the experimental data. To further explore the study of velocity variations shows a consistent decay rate with room-temperature jets. The numerical data reveals comparable inverse centreline hydrogen mass fractions (0.254 for HAR and 0.26 for circular) and normalised centreline temperature decay rates (0.031 for HAR and 0.032 for circular). The present computational model holds the potential for further analysis of cryogenic hydrogen in large-scale facilities.
Hydrogen Behavior and Mitigation Measures: State of Knowledge and Database from Nuclear Community
Nov 2024
Publication
Hydrogen has become a key enabler for decarbonization as countries pledge to reach net zero carbon emissions by 2050. With hydrogen infrastructure expanding rapidly beyond its established applications there is a requirement for robust safety practices solutions and regulations. Since the 1980s considerable efforts have been undertaken by the nuclear community to address hydrogen safety issues because in severe accidents of water-cooled nuclear reactors a large amount of hydrogen can be produced from the oxidation of metallic components with steam. As evidenced in the Fukushima accident hydrogen combustion can cause severe damage to reactor building structures promoting the release of radioactive fission products to the environment. A great number of large-scale experiments have been conducted in the framework of national and international projects to understand the hydrogen dispersion and combustion behavior under postulated accidental conditions. Empirical engineering models and computer codes have been developed and validated for safety analysis. Hydrogen recombiners known as Passive Autocatalytic Recombiners (PARs) were developed and have been widely installed in nuclear containments to mitigate hydrogen risk. Complementary actions and strategies were established as part of severe accident management guidelines to prevent or limit the consequences of hydrogen explosions. In addition hydrogen monitoring systems were developed and have been implemented in nuclear power plants. The experience and knowledge gained from the nuclear community on hydrogen safety is valuable and applicable for other industries involving hydrogen production transport storage and use.
The Progress of Autoignition of High-Pressure Hydrogen Gas Leakage: A Comprehensive Review
Aug 2024
Publication
As a paradigm of clean energy hydrogen is gradually attracting global attention. However its unique characteristics of leakage and autoignition pose significant challenges to the development of high-pressure hydrogen storage technologies. In recent years numerous scholars have made significant progress in the field of high-pressure hydrogen leakage autoignition. This paper based on diffusion ignition theory thoroughly explores the mechanism of high-pressure hydrogen leakage autoignition. It reviews the effects of various factors such as gas properties burst disc rupture conditions tube geometric structure obstacles etc. on shock wave growth patterns and autoignition characteristics. Additionally the development of internal flames and propagation characteristics of external flames after ignition kernels generation are summarized. Finally to promote future development in the field of high-pressure hydrogen energy storage and transportation this paper identifies deficiencies in the current research and proposes key directions for future research.
Recent Developments in Hydrogen Production, Storage, and Transportation: Challenges, Opportunities, and Perspectives
Jul 2024
Publication
Hydrogen (H2 ) is considered a suitable substitute for conventional energy sources because it is abundant and environmentally friendly. However the widespread adoption of H2 as an energy source poses several challenges in H2 production storage safety and transportation. Recent efforts to address these challenges have focused on improving the efficiency and cost-effectiveness of H2 production methods developing advanced storage technologies to ensure safe handling and transportation of H2 and implementing comprehensive safety protocols. Furthermore efforts are being made to integrate H2 into the existing energy infrastructure and explore new opportunities for its application in various sectors such as transportation industry and residential applications. Overall recent developments in H2 production storage safety and transportation have opened new avenues for the widespread adoption of H2 as a clean and sustainable energy source. This review highlights potential solutions to overcome the challenges associated with H2 production storage safety and transportation. Additionally it discusses opportunities to achieve a carbon-neutral society and reduce the dependence on fossil fuels.
Accident Analysis Modeling and Case Study of Hydrogen Refueling Station Using Root Cause Analysis (RCA)
Jun 2025
Publication
As the global transition to carbon neutrality accelerates hydrogen energy has emerged as a key alternative to fossil fuels due to its potential to reduce carbon emissions. Many countries including Korea are constructing hydrogen refueling stations; however safety concerns persist due to accidents caused by equipment failures and human errors. While various accident analysis models exist the application of the root cause analysis (RCA) technique to hydrogen refueling station accidents remains largely unexplored. This study develops an RCA modeling map specifically for hydrogen refueling stations to identify not only direct and indirect causes of accidents but also root causes and applies it to actual accident cases to provide basic data for identifying the root causes of future hydrogen refueling station accidents. The RCA modeling map developed in this study uses accident cause investigation data from accident investigation reports over the past five years which include information on the organizational structure and operational status of hydrogen refueling stations as well as the RCA handbook. The primary defect sources identified were equipment defect personal defect and other defects. The problem categories which were the substructures of the primary defect source “equipment defect” consisted of four categories: the equipment design problem the equipment installation/fabrication problem the equipment reliability program problem and the equipment misuse problem. Additionally the problem categories which were the substructures of the primary defect source “personal defect” consisted of two categories: the company employee problem and the contract employee problem. The problem categories which were the substructures of the primary defect source “other defects” consisted of three categories: sabotage/horseplay natural phenomena and other. Compared to existing accident investigation reports which identified only three primary causes the RCA modeling map revealed nine distinct causes demonstrating its superior analytical capability. In conclusion the proposed RCA modeling map provides a more systematic and comprehensive approach for investigating accident causes at hydrogen refueling stations which could significantly improve safety practices and assist in quickly identifying root causes more efficiently in future incidents.
Environmental Implications of Alternative Production, Distribution, Storage, and Leakage Rates of Hydrogen from Offshore Wind in Norway
Jun 2025
Publication
Renewable hydrogen offers compelling climate mitigation prospects with Norway possessing the opportunity to become a main global producer given its unique combination of wind energy potential available infrastructure and political motivation. However comprehensive environmental impact assessments of hydrogen from offshore wind are lacking and hydrogen leakage rates remain uncertain. A life-cycle assessment of hydrogen production from offshore wind farms in Norway is presented where different combinations of turbines (floating or bottomfixed) storage options (tank or salt cavern) and distribution methods (trucks or pipelines) are considered. Climate change impacts are assessed across the supply chain using global warming potential 100 (GWP100) and 20 (GWP20) and include hydrogen leakage contributions. The results range from 1.56 ± 0.14–2.28 ± 0.14 kg CO2-eq/kg H2 for GWP100 and 2.96 ± 0.76 and 3.75 ± 0.76 kg CO2-eq/kg H2 for GWP20 and are on average 55 % and 45 % lower than those of blue hydrogen respectively. At a default rate of 5 % hydrogen leakage contributes 50–63 % of the total impact for GWP20 and 25–37 % for GWP100. If higher-end leakage rates from literature are considered the impacts increase to 3.46 kg CO2-eq/kg H2 for GWP100 which is still lower than that of blue hydrogen. The scenario combining bottom-fixed turbines salt cavern storage and pipeline distribution presents the lowest environmental impacts. However while bottom-fixed turbines generally offer lower impacts floating turbines pose lesser risk to marine biodiversity. Overall infrastructure represents the main driver of environmental impacts. Mitigation in this area will improve potential benefits.
A Review of Integrated Carbon Capture and Hydrogen Storage: AI-Driven Optimization for Efficiency and Scalability
Jun 2025
Publication
Achieving global net-zero emissions by 2050 demands integrated and scalable strategies that unite decarbonization technologies across sectors. This review provides a forwardlooking synthesis of carbon capture and storage and hydrogen systems emphasizing their integration through artificial intelligence to enhance operational efficiency reduce system costs and accelerate large-scale deployment. While CCS can mitigate up to 95% of industrial CO2 emissions and hydrogen particularly blue hydrogen offers a versatile low-carbon energy carrier their co-deployment unlocks synergies in infrastructure storage and operational management. Artificial intelligence plays a transformative role in this integration enabling predictive modeling anomaly detection and intelligent control across capture transport and storage networks. Drawing on global case studies (e.g. Petra Nova Northern Lights Fukushima FH2R and H21 North of England) and emerging policy frameworks this study identifies key benefits technical and regulatory challenges and innovation trends. A novel contribution of this review lies in its AI-focused roadmap for integrating CCS and hydrogen systems supported by a detailed analysis of implementation barriers and policy-enabling strategies. By reimagining energy systems through digital optimization and infrastructure synergy this review outlines a resilient blueprint for the transition to a sustainable low-carbon future.
Determining the Hydrogen Conversion Rates of a Passive Catalytic Recombiner for Hydrogen Risk Mitigation
May 2025
Publication
Hydrogen can play a key role as short- and long-term energy storage solution in an energy grid with fluctuating renewable sources. In technologies using hydrogen there is always the risk of unintended leakages due to the low density of gaseous hydrogen. The risk becomes specifically high in confined areas where leaking hydrogen could easily mix with air and form flammable gas mixtures. In the maritime transportation large and congested geometries can be subject to accumulation of hydrogen. A mitigation measure for areas where venting is insufficient or even impossible is the installation of catalytic recombiners. The operational behavior can be described with numerical models which are required to optimize the location and to assess the efficiency of the mitigation solution. In the present study we established an experimental procedure in the REKO-4 facility a 5.5 m³ vessel to determine the recombination rate obtained from a recombiner. Based on the experimental data an engineering correlation was developed to be used for simulations in safety assessments.
Numerical Simulation Study on Hydrogen Leakage and Explosion of Hydrogen Fuel Cell Buses
Aug 2025
Publication
This study explores the safety problems of hydrogen leakage and explosion in hydrogen fuel cell buses through Computational Fluid Dynamics simulations. The research investigates the diffusion behavior of hydrogen in the passenger cabin depending on the leakage position and flow rates identifying a stratified constant-concentration layer formed at the top of the cabin. Leakage near the rear wall of the vehicle provided the highest hydrogen concentration while at higher flow rates the diffusive process accelerated the spreading of flammable hydrogen concentrations. Hydrogen ignition simulations showed a fast internal pressure increase and secondary explosions outside the vehicle. Thermal hazards in the cases were higher than overpressure. The research’s additional analysis of ignition timing and source location shows that overpressure peaked initially with delayed ignition but declined afterward while rear-ignited flames exhibited the farthest high-temperature hazard range at 10.88 m. These findings are fundamental for giving insight into hydrogen behavior in confined spaces and thus guiding risk assessment and emergency response planning for the development of safety protocols in hydrogen fuel cell buses contributing to the safer implementation of hydrogen energy in public transportation.
Analysis of Specific Failure Conditions in Electrified Propulsion Systems using Cryogenic Hydrogen as a Primary Energy Carrier
Aug 2025
Publication
In order to minimize emissions of the aerospace sector and thus its impact on the climate several novel concepts of propulsion systems for aircraft are being developed. Many of these concepts do not use an energy source based on the combustion of hydrocarbons but other means of energy generation and storage like hydrogen fuel cells and corresponding hydrogen storage systems. The use of hydrogen as a primary energy carrier in aircraft poses novel and different hazards when compared to conventional propulsion and fuel storage systems. The study described in the present paper identifies analyzes and evaluates failure conditions and corresponding hazards that are associated with the electrified propulsion systems. Mitigation strategies to prevent failures to occur or decrease their severity are recommended. The effects of the assessed failures on aircraft crew and occupants are classified as catastrophic hazardous or major as defined in the according Certification Specifications. Failure Conditions occurring at the aircraft system and subsystem levels are considered and their effect on the aircraft and propulsion system is assessed. The hazards identified mostly emerge due to the properties of the gaseous or liquid hydrogen. They include the flammability of gaseous hydrogen and the very low temperatures of cryogenic liquid hydrogen as well as the installation of high voltage power infrastructure and high capacity heat exchangers.
Analysis of Hydrogen Leakage and Influencing Factors of Fuel Cell Vehicles in Enclosed Spaces
Jun 2025
Publication
A simulation study was conducted on the hydrogen leakage diffusion process and influencing factors of fuel cell vehicles in enclosed spaces. The results indicate that when hydrogen leakage flows towards the rear of the vehicle it mainly flows along the rear wall of the space and diffuses to the surrounding areas. Setting ventilation openings of different areas on the top of the carriage did not significantly improve the spatial diffusion speed of the leaked hydrogen and the impact on the concentration of leaked hydrogen was limited to the vicinity of the ventilation openings. The ventilation opening at the rear can accelerate the diffusion of hydrogen gas to the external environment significantly reducing the concentration of hydrogen and rate of gas rise. When the leaked hydrogen gas flows towards the front of the vehicle and above the space the concentration of hydrogen mainly increases along the height direction of the space. The research results have significant safety implications for the use of fuel cell semi-trailer trucks.
Potential of P-Type Cooper Oxides, N-type Titanium Oxides and their Mixtures as Resistive Hydrogen Gas Sensors - A Review
Oct 2025
Publication
Metal oxides (e.g. SnO2 ZnO TiO2) have been widely investigated materials for gas sensing applications including hydrogen detection. However the potential for hydrogen sensing of metal oxides such as CuO In2O3 NiO exhibiting p-type conduction has been largely overlooked. Over the last 15 years structures based on TiO2 and CuO have gained increasing interest as a promising system for hydrogen detection. Therefore this article aims to: 1) provide an overview of the performance of TiO2 as a reference material and discuss methods to enhance its sensing performance 2) summarize and highlight the role of copper oxides in hydrogen gas detection as the materials that have predominantly been studied for H2S detection 3) review efforts made to improve the sensing performance of heterostructures of CuTiOx from structures with charge compensation effect to those successfully sensing hydrogen 4) present the potential of CuTiOx for H2 detection.
Investigation on Cooling Effect of Water Sprays on Tunnel Fires of Hydrogen
Sep 2025
Publication
As one of the most promising renewable green energies hydrogen power is a popularly accepted option to drive automobiles. Commercial application of fuel cell vehicles has been started since 2015. More and more hydrogen safety concerns have been considered for years. Tunnels are an important part of traffic infrastructure with a mostly confined feature. A hydrogen leak followed possibly by a hydrogen fire is a potential accident scenario which can be triggered trivially by a car accident while hydrogen-powered vehicles operate in a tunnel. Water spray is recommended traditionally as a mitigation measure against tunnel fires. The interaction between water spray and hydrogen fire is studied by way of numerical simulations. By using the computer program of Fire Dynamics Simulator (FDS) tunnel fires of released hydrogen in different scales are simulated coupled with water droplet injections featured in different droplet sizes or varying mass flow rates. The cooling effect of spray on hot gases of hydrogen fires is apparently observed in the simulations. However in some circumstances the turbulence intensified by the water injection can prompt hydrogen combustion which is a negative side effect of the spray.
Estimating Thermal Radiation of Vertical Jet Fires of Hydrogen Pipeline Based on Linear Integral and Machine Learning
Oct 2025
Publication
Accurate and efficient prediction of thermal radiant of hydrogen jet fire is important to schedule safety design and emergency rescue program for hydrogen pipelines. In response this paper proposes a novel Optuna-improved back propagation neural network (Optuna-BPNN) to estimate hydrogen jet flame radiation. A linear integral approach incorporating leakage rate and jet flame length is theoretically derived to establish dataset for machine learning. Then the Optuna tool is employed to optimize the initial weights and thresholds of the BP neural network. Input matrix of the Optuna-BPNN model includes pipeline diameter leakage aperture size and hydrogen pressure. 8 sets of experimental data are employed to verify its correctness. When the abnormal data is excluded the predicted thermal radiation of hydrogen jet fire agrees quite well with experimental results with average and maximum deviations being 12.4% and 24.4% respectively. Using the linear integral approach 32670 thermal radiation data points are generated to train and test the Optuna-BPNN model. The maximum deviation between predicted and theoretical radiant heat flux for training and testing sets are only 4.5% and 6.2% respectively. Parallel comparison trials using 6 different machine learning algorithms show that the Optuna-BPNN model gives the best mean absolute error root mean square error and determination coefficient which proves the effectiveness and feasibility of the developed OptunaBPNN model in predicting thermal radiation of hydrogen pipeline jet fires.
No more items...