Safety
Examining the Nature of Two-dimensional Transverse Waves in Marginal Hydrogen Detonations using Boundary Layer Loss Modeling with Detailed Chemistry
Sep 2023
Publication
Historically it has been a challenge to simulate the experimentally observed cellular structures and marginal behavior of multidimensional hydrogen-oxygen detonations in the presence of losses even with detailed chemistry models. Very recently a quasi-two-dimensional inviscid approach was pursued where losses due to viscous boundary layers were modeled by the inclusion of an equivalent mass divergence in the lateral direction using Fay’s source term formulation with Mirels’ compressible boundary layer solutions. The same approach was used for this study along with the inclusion of thermally perfect detailed chemistry in order to capture the correct ignition sensitivity of the gas to dynamic changes in the thermodynamic state behind the detonation front. In addition the strength of transverse waves and their impact on the detonation front was investigated. Here the detailed San Diego mechanism was applied and it has been found that the detonation cell sizes can be accurately predicted without the need to prescribe specific parameters for the combustion model. For marginal cases where the detonation waves approach their failure limit quasi-stable mode behavior was observed where the number of transverse waves monotonically decreased to a single strong wave over a long enough distance. The strong transverse waves were also found to be slightly weaker than the detonation front indicating that they are not overdriven in agreement with recent studies.
Recent Advances in Combustion Science Related to Hydrogen Safety
Dec 2024
Publication
Hydrogen is a key pillar in the global Net Zero strategy. Rapid scaling up of hydrogen production transport distribution and utilization is expected. This entails that hydrogen which is traditionally an industrial gas will come into proximity of populated urban areas and in some situations handled by the untrained public. To realize all their benefits hydrogen and its technologies must be safely developed and deployed. The specific properties of hydrogen involving wide flammability range low ignition energy and fast flame speed implies that any accidental release of hydrogen can be easily ignited. Comparing with conventional fuels combustion systems fueled by hydrogen are also more prone to flame instability and abnormal combustion. This paper aims to provide a comprehensive review about combustion research related to hydrogen safety. It starts with a brief introduction which includes some overview about risk analysis codes and standards. The core content covers ignition fire explosions and deflagration to detonation transition (DDT). Considering that DDT leads to detonation and that detonation may also be induced directly under special circumstances the subject of detonation is also included for completeness. The review covers laboratory medium and large-scale experiments as well as theoretical analysis and numerical simulation results. While highlights are provided at the end of each section the paper closes with some concluding remarks highlighting the achievements and key knowledge gaps.
Engineering Models for Refueling Protocol Development: Validation and Recommendations
Sep 2023
Publication
Fouad Ammouri,
Nicola Benvenuti,
Elena Vyazmina,
Vincent Ren,
Guillaume Lodier,
Quentin Nouvelot,
Thomas Guewouo,
Dorine Crouslé,
Rony Tawk,
Nicholas Hart,
Steve Mathison,
Taichi Kuroki,
Spencer Quong,
Antonio Ruiz,
Alexander Grab,
Alexander Kvasnicka,
Benoit Poulet,
Christopher Kutz and
Martin Zerta
The PRHYDE project (PRotocol for heavy duty HYDrogEn refueling) funded by the Clean Hydrogen partnership aims at developing recommendations for heavy-duty refueling protocols used for future standardization activities for trucks and other heavy duty transport systems applying hydrogen technologies. Development of a protocol requires a validated approach. Due to the limited time and budget the experimental data cannot cover the whole possible ranges of protocol parameters such as initial vehicle pressure and temperature ambient and precooling temperatures pressure ramp refueling time hardware specifications etc. Hence a validated numerical tool is essential for a safe and efficient protocol development. For this purpose engineering tools are used. They give good results in a very reasonable computation time of several seconds or minutes. These tools provide the heat parameters estimation in the gas (volume average temperature) and 1D temperature distribution in the tank wall. The following models were used SOFIL (Air Liquide tool) HyFill (by ENGIE) and H2Fills (open access code by NREL). The comparison of modelling results and experimental data demonstrated a good capability of codes to predict the evolution of average gas temperature in function of time. Some recommendations on model validation for the future protocol development are given.
Re-enacting the Hydrogen Tank Explosion of a Fuel-cell Electric Vehicle: An Experimental Study
May 2023
Publication
With the world-wide decision to reduce carbon emissions through the Paris Agreement (2015) the demand for hydrogen-fuelled vehicles has been increasing. Although hydrogen is not a toxic gas it has a wide flammable range (4e75%) and can explode due to static electricity. Therefore studies on hydrogen safety are urgently required. In this study an explosion was induced by applying fire to the lower part of a fuel cell electric vehicle (FCEV). Out of three compressed hydrogen storage tanks installed in the vehicle two did not have hydrogen fuel and one was filled with compressed gaseous hydrogen of 700 bar and forcedly deactivated its temperature-activated pressure relief device. The side-on overpressure transducers were installed by distance in main directions to measure the side-on overpressure generated by the vehicle explosion. A 10 m-long protective barrier was installed on which reflected overpressure displacement and acceleration were measured to examine the effect of attenuation of explosion damage in the event of an accident. The vehicle exploded approximately 11 min after ignition generating a blast wave fireballs and fragments. The results of the experiment showed that the protective barrier could almost completely block explosive pressure smoke and scattering generated during an explosion. Through Probit function analysis the probabilities of an accident occurring were derived based on peak overpressure peak impulse and scattering. The results of this study can be used to develop standard operating procedures (SOPs) for firefighters as the base data for setting the initial operation location and deriving the safe separation distance.
Study on the Inherent Safety of On-board Methanol Reforming Hydrogen Production Fuel Cell System
Sep 2023
Publication
Methanol as a liquid phase hydrogen storage carrier has broad prospects. Although the on-board methanol reforming hydrogen fuel cell system (MRFC) has long been proposed to replace the traditional hydrogen fuel cell vehicle the inherent safety of the system itself has rarely been studied. This paper adopted the improved method of Inherently Safer Process Piping (ISPP) to evaluate the pipeline inherent safety of MRFC. The process data such as temperature pressure viscosity and density were obtained by simulating the MRFC in ASPEN HYSYS. The Process Stream Characteristic Index (PSCI) and risk assessment of jet fire and vapor cloud explosion was carried out for the key streams with those simulated data. The results showed the risk ranks of different pipelines in the MRFC and the countermeasures were given according to different risk ranks. Through the in-depth study of the evaluation results this paper demonstrates the risk degree of the system in more detail and reduces the fuzziness of risk rating. By applying ISPP to the small integrated system of MRFC this paper realizes the leap of inherent safety assessment method in the object and provides a reference for the inherent safety assessment of relevant objects in the future.
LES of Turbulent Under-expanded Hydrogen Jet Flames
Sep 2023
Publication
In the frame of hydrogen-powered aircraft Airbus wants to understand all the H2 physics and explore every scenario in order to develop and manufacture safe products operated in a safe environment. Within the framework of a Large Eddy Simulation (LES) methodology for modeling turbulence a comparative numerical study of free under-expanded jet H2/AIR flame is conducted. The investigated geometry consists of straight nozzles with a millimetric diameter fed with pure H2 at upstream pressures ranging from 2 to 10 bar. Numerical results are compared with available experimental measurements such as; temperature signals using thermocouples. LES confirms its prediction capability in terms of shock jet structure and flame length. A particular attention is paid for capturing experimental unstable flame when upstream pressure decreases. Furthermore flame stabilization and flame anchoring are analyzed. Mechanisms of flame stabilization are highlighted for case 1 and stabilization criteria are tested. Finally an ignition map to reach flame stabilization is proposed for each case regarding the literature.
Expansion of Next-Generation Sustainable Clean Hydrogen Energy in South Korea: Domino Explosion Risk Analysis and Preventive Measures Due to Hydrogen Leakage from Hydrogen Re-Fueling Stations Using Monte Carlo Simulation
Apr 2024
Publication
Hydrogen an advanced energy source is growing quickly in its infrastructure and technological development. Urban areas are constructing convergence-type hydrogen refilling stations utilizing existing gas stations to ensure economic viability. However it is essential to conduct a risk analysis as hydrogen has a broad range for combustion and possesses significant explosive capabilities potentially leading to a domino explosion in the most severe circumstances. This study employed quantitative risk assessment to evaluate the range of damage effects of single and domino explosions. The PHAST program was utilized to generate quantitative data on the impacts of fires and explosions in the event of a single explosion with notable effects from explosions. Monte Carlo simulations were utilized to forecast a domino explosion aiming to predict uncertain events by reflecting the outcome of a single explosion. Monte Carlo simulations indicate a 69% chance of a domino explosion happening at a hydrogen refueling station if multi-layer safety devices fail resulting in damage estimated to be three times greater than a single explosion
Numerical Simulations of the Critical Diameter and Flame Stability for the Hydrogen Jet Flames
Sep 2023
Publication
This study focuses on development of a CFD model able to simulate the experimentally observed critical nozzle diameter for hydrogen non-premixed flames. The critical diameter represents the minimum nozzle size through which a free jet flame will remain stable at all driving pressures. Hydrogen non-premixed flames will not blow-out at diameters equal to or greater than the critical diameter. Accurate simulation of this parameter is important for assessment of thermally activated pressure relief device (TPRD) performance during hydrogen blowdown from a storage tank. At TPRD diameters below the critical value there is potential for a hydrogen jet flame to blow-out as the storage tank vents potentially leading to hydrogen accumulation in an indoor release scenario. Previous experimental studies have indicated that the critical diameter for hydrogen is approximately 1 mm. In this study flame stability is considered across a range of diameters and overpressures from 0.1 mm to 2 mm and from 0.2 MPa to 20 MPa respectively. The impact of turbulent Schmidt number Sct which is the ratio of momentum diffusivity (kinematic viscosity) and mass diffusivity on the hydrogen concentration profile in the region near the nozzle exit and subsequent influence on critical diameter was investigated and discussed. For lower Sct values the enhanced mass mixing resulted in smaller predicted critical diameters. The use of value Sct=0.61 in the model demonstrated the best agreement with experimental values of the critical diameter. The model reproduced the critical diameter of 1 mm and then was applied to predict flame stability for under-expanded hydrogen jets.
Overview of International Activities in Hydrogen System Safety in IEA Hydrogen TCP Task 43
Sep 2023
Publication
Safety and reliability have long been recognized as key issues for the development commercialization and implementation of new technologies and infrastructure and hydrogen systems are no exception to this rule. Reliability engineering quantitative risk assessment (QRA) and knowledge exchange each play a key role in proactive addressing safety – before problems happen – and help us learn from problems if they happen. Many international research activities are focusing on both reliability and risk assessment for hydrogen systems. However the element of knowledge exchange is sometimes less visible. To support international collaboration and knowledge exchange the International Energy Agency (IEA) convened a new Technology Collaboration Program “Task 43: Safety and Regulatory Aspects of Emerging Large Scale Hydrogen Energy Applications” started in June 2022. Within Task 43 Subtask E focuses on Hydrogen Systems Safety. This paper discusses the structure of the Hydrogen Systems Safety subtask and the aligned activities and introduces opportunities for future work.
Nuclear Enabled Hydrogen CO-generation: Safety and Regulatory Insight
Sep 2023
Publication
National Nuclear Laboratory (NNL) is aiming to demonstrate through a research and development programme that nuclear enabled hydrogen can be used to support future clean energy systems. Demonstrating the safe operation of hydrogen facilities co-generating with a nuclear reactor will be key to enabling the deployment and success of nuclear enabled hydrogen technologies in the future. During the deployment continuity of supply will be paramount and possibly requires inter-seasonal storage. Co-generation is a means of using a source of energy in this case a nuclear reactor to efficiently produce power and thermal energy. Since a great deal of the heat energy is lost to the environment in a power plant making use of wasted energy for other useful output like the production of hydrogen and direct heating would be advantageous to plant economics and energy system flexibility. The civil nuclear industry is regulated around the world. This approach ensures that all the activities related to the production of power from nuclear and the hazards associated with ionising radiation are controlled in a manner which protects workers members of the public property and the environment. Nuclear safety assessments follow a rigorous process and are required as part of the Nuclear Site Licence. A fundamental requirement which is cited in the UK legislation is that the risks associated with all activities at the licensed site be reduced to As Low As Reasonably Practicable (ALARP). The principle places a requirement on duty holders to implement measures to reduce risk where doing so is considered reasonable and proportionate. The inclusion of risks for hazardous materials associated with the hydrogen production facilities need to be considered and this requires harmonisation of two different safety and regulatory governance regimes which have not previously interacted in this way. The safety demonstration for nuclear facilities is provided through the Safety Case.
Methodology for Consequence-based Setback Distance Calculations for Bulk Liquid Hydrogen Storage Systems
Sep 2023
Publication
Updates to the separation distances between different exposures and bulk liquid hydrogen systems are included in the 2023 version of NFPA 2: Hydrogen Technologies Code. This work details the models and calculations leading to those distances. The specific models used including the flow of liquid hydrogen through an orifice within the Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+) toolkit are described and discussed to emphasize challenges specific to liquid hydrogen systems. Potential hazards and harm affecting individual exposures (e.g. ignition sources air intakes) for different unignited concentrations overpressures and heat flux levels were considered and exposures were grouped into three bins. For each group the distances to a specific hazard criteria (e.g. heat flux level) for a characteristic leak size informed by a risk-analysis led to a hazard distance. The maximum hazard distance within each group was selected to determine a table of separation distances based on internal pressure and pipe size rather than storage volume similar to the bulk gaseous separation distance tables in NFPA 2. The new separation distances are compared to the previous distances and some implications of the updated distances are given.
A New Dimensionless Number for Type IV Composite Pressure Vessel Designer to Increase Efficiency and Reduce Cost
Sep 2023
Publication
A new dimensionless number (DN) is proposed in order to evaluate the performance of a high-pressure vessel composite structure. It shows that very few composite part is used at its maximum loading potential during bursting. Today for 70 MPa on-board type IV composite tanks DN values close to 20%. The suggested DN will be a useful indicator for an industrial application. By maximizing the DN at the design phase it is possible to minimize the mass of the composite structure of a CPV to reduce the manufacturing time and cost. To increase the DN as close as possible to 100% it is necessary to succeed in increasing the overall loading of the composite structure to have better oriented fibre. For this it seems necessary to find new processes which make it possible to better orient the fibre.
Effect of Wall Friction on Shock-flame Interactions in a Hydrogen-air Mixture
Sep 2023
Publication
Shock-flame interactions (SFI) occur in a variety of combustion scenarios of scientific and engineering interest which can distort the flame extend the flame surface area and subsequently enhance heat release. This process is dominated by Richtmyer-Meshkov instability (RMI) that features the perturbation growth of a density-difference interface (flame) after the shock passage. The main mechanism of RMI is the vorticity deposition results from a misalignment between pressure and density gradients. This paper focuses on the multi-dimensional interactions between shock wave and flame in a hydrogen-air mixture. The simulations of this work were conducted by solving three-dimensional fully-compressible reactive Navier-Stokes equations using a high-order numerical method on a dynamically adapting mesh. The effect of wall friction on the SFI was examined by varying wall boundary condition (free-slip/no-slip) on sidewall. The results show that the global flame perturbation grows faster with the effect of wall friction in the no-slip case than that in the free-slip case in the process of SFI. Two effects of wall friction on SFI were found: (1) flame stretching close to the no-slip wall and (2) damping of local flame perturbation at the no-slip wall. The flame stretch effect leads to a significantly higher growth rate in the global flame perturbation. By contrast the damping effect locally moderates the flame perturbation induced by RMI in close proximity to the no-slip wall because less vorticity is deposited on this part of flame during SFI.
Analysis and Comparison of Hydrogen Generators Safety Measures According to International Regulations, Codes and Standards (RCS)
Sep 2023
Publication
Climate change has prompted the international community to invest heavily in renewable energy sources in order to gradually replace fossil fuels. Whilst energy systems will be increasingly based on non-programmable renewable sources hydrogen is the main player when it comes to the role of energy reserve. This change has triggered a fast development of hydrogen production technologies with increasing use and installation of hydrogen generators (electrolyzers) in both the civil and industrial sector. The implementation of such investments requires the need for accurate design and verification of hydrogen systems with particular attention on fire safety. Due to its chemical-physical characteristics hydrogen is highly flammable and is often stored at very high-pressure levels. ISO 22734 and NFPA 2 are the main international standards which are currently available for the design of hydrogen generators and systems both of which include fire safety requirements. This paper analyses the main existing Regulations Codes and Standards (RCS) for hydrogen generators with the purpose of evaluating and comparing fire safety measures with focus on both active protection (detection systems extinguishing systems) and passive protection (safety distances separation walls). The scope of the paper is to identify safety measures which can be considered generally applicable and provide a reference for further fire safety regulations. The analysis carried out identifies potential gaps in RCS and suggests areas for potential future research.
Simulation of DDT in Obstructed Channels: Wavy Channels vs. Fence-type Obstacles
Sep 2023
Publication
The capabilities of an OpenFOAM solver to reproduce the transition of stoichiometric H2-air mixtures to detonation in obstructed 2-D channels were tested. The process is challenging numerically as it involves the ignition of a flame kernel its subsequent propagation and acceleration interaction with obstacles formation of shock waves ahead and detonation onset (DO). Two different obstacle configurations were considered in 10-mm high × 1-m long channels: (i) wavy walls (WW) that mimic the behavior of fencetype obstacles but prevent abrupt area changes. In this case flame acceleration (FA) is strongly affected by shock-flame interactions and DO often results from the compression of the gas present between the accelerating flame front and a converging section of the channel. (ii) Fence-type (FT) obstacles. In this case FA is driven by the increase in flame surface area as a result of the interaction of the flame front with the unburned gas flow field ahead particularly downstream of obstacles; shock-flame interactions play a role at the later stages of FA and DO takes place upon reflection of precursor shocks from obstacles. The effect of initial pressure p0 = 25 50 and 100 kPa at constant blockage ratio (BR = 0.6) was investigated and compared for both configurations. Results show that for the same initial pressure (p0 = 50 kPa) the obstacle configurations could lead to different final propagation regimes: a quasi-detonation for WW and a choked-flame for FT due to the increased losses for the latter. At p0 = 25 kPa however while both configurations result in choked flames WW seem to exhibit larger velocity deficits than FT due to longer flame-precursor shock distances during quasi-steady propagation and to the increased presence of unburnt mixture downstream of the tip of the flame that homogeneously explodes providing additional support to the propagation of the flame.
Social Risk Approach for Assessing Public Safety of Large-scale Hydrogen Systems
Sep 2023
Publication
Social risk is a comprehensive concept that considers not only internal/external physical risks but also risks (which are multiple varied and diverse) associated with social activity. It should be considered from diverse perspectives and requires a comprehensive evaluation framework that takes into account the synergistic impact of each element on others rather than evaluating each risk individually. Social risk assessment is an approach that is not limited to internal system risk from an engineering perspective but also considers the stakeholders development stage and societal readiness and resilience to change. This study aimed to introduce a social risk approach to assess the public safety of large-scale hydrogen systems. Guidelines for comprehensive social risk assessment were developed to conduct appropriate risk assessments for advanced science and technology activities with high uncertainties to predict major impacts on society before an accident occurs and to take measures to mitigate the damage and to ensure good governance are in place to facilitate emergency response and recovery in addition to preventive measures. In a case study this approach was applied to a hydrogen refueling station in Japan and risk-based multidisciplinary approaches were introduced. These approaches can be an effective supporting tool for social implementation with respect to large-scale hydrogen systems such as liquefied hydrogen storage tanks. The guidelines for social risk assessment of large-scale hydrogen systems are under the International Energy Agency Technology Collaboration Program Hydrogen Safety Task 43. This study presents potential case studies of social risk assessment for large-scale hydrogen systems for future.
Storage and Transportation Technology Solutions Selection for Large-scale Hydrogen Energy Utilization Scenarios under the Trend of Carbon Neutralization
Apr 2021
Publication
This paper mainly introduces the main pain point of China's civil hydrogen energy supply chain - the problem of storage and transportation and analyzes the safety economy and scale effect and other issues of the existing hydrogen energy storage and transportation compares with other storage and transportation technology solutions and comprehensively screens out the storage and transportation technology solution mainly based on liquid hydrogen technology. The liquid hydrogen technology solution has significant advantages over the existing compressed hydrogen system in terms of safety economy and scale effect especially for future large-scale hydrogen energy application scenarios. In addition the future hydrogen energy storage and transportation system based on liquid hydrogen technology can help improve the overall utilization efficiency of country’s renewable energy promote the country's energy transition promote the electrification of the country's transportation sector and help achieve China's carbon emission reduction 2030/2060 target.
A Comprehensive Review on Liquid Hydrogen Transfer Operations and Safety Considerations for Mobile Applications
Dec 2024
Publication
The adoption of liquid hydrogen (LH2) as an energy carrier presents significant opportunities for distributing large quantities of hydrogen efficiently. However ensuring safety of LH2 transfer operations requires the evo lution of suitable technologies and regulatory framework. This study offers an extensive overview of technical considerations and safety aspects pertaining to liquid hydrogen installations and mobile applications. A signif icant lack of regulations specifically tailored for LH2 transfer operations is highlighted. Additionally experi mental findings and outcomes of the modelling activities carried out in previous research are presented shedding light on the combustion and ignition behaviour of liquid hydrogen during accident scenarios. The identification of research gaps and ongoing research projects underscores the importance of continued investigation and development of this critical area.
The Economical Repurposing Pipeliness to Hydrogen - Why Performance Testing of Representative Line Pipes is Key?
Sep 2023
Publication
The introduction of hydrogen in natural gas pipeline systems introduces integrity challenges due to the nature of interactions between hydrogen and line pipe steel materials. However not every natural gas pipeline is equal in regards to the challenges potentially posed by the repurposing to hydrogen. Existing codes and practices penalise high-grade materials on the basis of a perceived higher susceptibility to hydrogen embrittlement in regards to their increased strength. This philosophy challenges the realisation of a hydrogen economy because it puts at economical and technical risk the conversion of almost half of the natural gas transmission systems in western countries.
The paper addresses the question whether pipe grade is actually a good proxy to strength and predictor to assess the performance of steel line pipes in hydrogen. Drivers that could affect the suitability of pipeline conversion in hydrogen from an integrity management perspective and industry experience of other hydrogen-charging applications are reviewed. In doing so the paper challenges the basis of the assumption that low-grade steels (up to X52 / L360) are automatically safer for hydrogen repurposing while at the other end of the spectrum higher-grade materials (>X52 / L360) are inevitably less suitable for hydrogen service.
Ultimately the paper discusses that materials sampling and testing of representative line pipes populations should be placed at the core of hydrogen repurposing strategies in order to safely address conversion and to maximize the hydrogen chain value. The paper addresses alternatives to make the sampling smart and cost-effective.
The paper addresses the question whether pipe grade is actually a good proxy to strength and predictor to assess the performance of steel line pipes in hydrogen. Drivers that could affect the suitability of pipeline conversion in hydrogen from an integrity management perspective and industry experience of other hydrogen-charging applications are reviewed. In doing so the paper challenges the basis of the assumption that low-grade steels (up to X52 / L360) are automatically safer for hydrogen repurposing while at the other end of the spectrum higher-grade materials (>X52 / L360) are inevitably less suitable for hydrogen service.
Ultimately the paper discusses that materials sampling and testing of representative line pipes populations should be placed at the core of hydrogen repurposing strategies in order to safely address conversion and to maximize the hydrogen chain value. The paper addresses alternatives to make the sampling smart and cost-effective.
Designing an Inherently Safe H2 Infrastructure: Combining Analytical, Experimental, and Numerical Investigations to Optimize H2 Refuelling Stations Safety by Passive Mitigation
Sep 2023
Publication
Natural ventilation is a well-known passive mitigation method to limit hydrogen build-up in confined spaces in case of accidental release [1-3]. In most cases a basic design of H2 infrastructure is adopted and vents installed for natural ventilation are adjusted according to safety targets and constraints of the considered structure. With the growing H2 mobility market the demand for H2 refueling infrastructure in our urban environment is on the rise. In order to meet both safety requirements and societal acceptance the design of such infrastructure is becoming more important. In this study a novel design concept is proposed for the hydrogen refueling station (HRS) by modifying physical structure while keeping safety consideration as the top priority of the concept. In this collaborative project between Air Liquide and the University of Delaware an extensive evaluation was performed on new structures of the processing container and dispenser of HRS by integrating safety protocols via passive means. Through a SWOT analysis combined with the most relevant approaches including analytical engineering models numerical simulations [4] and dedicated experimental trials an optimized design was obtained and its safety enhancement was fully evaluated. A small-scale processing container and an almost full-scale dispenser were built and tested to validate the design concepts by simulating accidental H2 release scenarios and assessing the associated consequences in terms of accumulation and potential flammable volumes formation. A conical dispenser and a V-shaped roof-top processing container which were easy to build and implement were designed and tested for this proof-of-concept study. This unique methodology from conception fundamental analysis investigation and validation through experimental design execution and evaluation is fully described in this study.
No more items...