Transmission, Distribution & Storage
Revolutionising Energy Storage: The Latest Breakthrough in Liquid Organic Hydrogen Carriers
Mar 2024
Publication
Liquid organic hydrogen carriers (LOHC) can be used as a lossless form of hydrogen storage at ambient conditions. The storage cycle consists of the exothermic hydrogenation of a hydrogen-lean molecule at the start of the transport usually the hydrogen production site becoming a hydrogen-rich molecule. This loaded molecule can be transported long distances or be used as long-term storage due to its ability to not lose hydrogen over long periods of time. At the site or time of required hydrogen production the hydrogen can be released through an endothermic dehydrogenation reaction. LOHCs show similar properties to crude oils such as petroleum and diesel allowing easy handling and possibilities of integration with current infrastructure. Using this background this paper reviews a variety of aspects of the LOHC life cycle with a focus on currently studied materials. Important factors such as the hydrogenation and dehydrogenation requirements for each material are analysed to determine their ability to be used in current scenarios. Toluene and dibenzyltoluene are attractive options with promising storage attributes however their dehydrogenation enthalpies remain a problem. The economic feasibility of LOHCs being used as a delivery device were briefly analysed. LOHCs have been shown to be the cheapest option for long distance transport (>200 km) and are cheaper than most at shorter distances in terms of specifically transport costs. The major capital cost of an LOHC delivery chain remains the initial investment for the raw materials and the cost of equipment for performing hydrogenation and dehydrogenation. Finally some studies in developing the LOHC field were discussed such as microwave enhancing parts of the process and mixing LOHCs to acquire more advantageous properties.
Seasonal Hydrogen Storage Decisions Under Constrained Electricity Distribution Capacity
Jun 2022
Publication
We consider a profit-maximizing renewable energy producer operating in a rural area with limited electricity distribution capacity to the grid. While maximizing profits the energy producer is responsible for the electricity supply of a local community that aims to be self-sufficient. Energy storage is required to deal with the energy productions' uncertain and intermittent character. A promising new solution is to use strategic hydrogen reserves. This provides a long-term storage option to deal with seasonal mismatches in energy production and the local community's demand. Using a Markov decision process we provide a model that determines optimal daily decisions on how much energy to store as hydrogen and buy or sell from the power grid. We explicitly consider the seasonality and uncertainty of production demand and electricity prices. We show that ignoring seasonal demand and production patterns is suboptimal and that introducing hydrogen storage transforms loss-making operations into profitable ones. Extensive numerical experiments show that the distribution capacity should not be too small to prevent local grid congestion. A higher storage capacity increases the number of buying actions from the grid thereby causing more congestion which is problematic for the grid operator. We conclude that a profit-maximizing hydrogen storage operation alone is not an alternative to grid expansion to solve congestion which is essential knowledge for policy-makers and grid operators.
Perspectives and Prospects of Underground Hydrogen Storage and Natural Hydrogen
Jun 2022
Publication
Hydrogen is considered the fuel of the future due to its cleaner nature compared to methane and gasoline. Therefore renewable hydrogen production technologies and long-term affordable and safe storage have recently attracted significant research interest. However natural underground hydrogen production and storage have received scant attention in the literature despite its great potential. As such the associated formation mechanisms geological locations and future applications remain relatively under-explored thereby requiring further investigation. In this review the global natural hydrogen formation along with reaction mechanisms (i.e. metamorphic processes pyritization and serpentinization reactions) as well as the suitable geological locations (i.e. ophiolites organic-rich sediments fault zones igneous rocks crystalline basements salt bearing strata and hydrocarbon-bearing basins) are discussed. Moreover the underground hydrogen storage mechanisms are detailed and compared with underground natural gas and CO2 storage. Techno-economic analyses of large-scale underground hydrogen storage are presented along with the current challenges and future directions.
Evaluating Hydrogen Gas Transport in Pipelines: Current State of Numerical and Experimental Methodologies
Apr 2024
Publication
This review article provides a comprehensive overview of the fundamentals modelling approaches experimental studies and challenges associated with hydrogen gas flow in pipelines. It elucidates key aspects of hydrogen gas flow including density compressibility factor and other relevant properties crucial for understanding its behavior in pipelines. Equations of state are discussed in detail highlighting their importance in accurately modeling hydrogen gas flow. In the subsequent sections one-dimensional and three-dimensional modelling techniques for gas distribution networks and localized flow involving critical components are explored. Emphasis is placed on transient flow friction losses and leakage characteristics shedding light on the complexities of hydrogen pipeline transportation. Experimental studies investigating hydrogen pipeline transportation dynamics are outlined focusing on the impact of leakage on surrounding environments and safety parameters. The challenges and solutions associated with repurposing natural gas pipelines for hydrogen transport are discussed along with the influence of pipeline material on hydrogen transportation. Identified research gaps underscore the need for further investigation into areas such as transient flow behavior leakage mitigation strategies and the development of advanced modelling techniques. Future perspectives address the growing demand for hydrogen as a clean energy carrier and the evolving landscape of hydrogen-based energy systems.
Hydrogen Liquefaction: A Review of the Fundamental Physics, Engineering Practice and Future Opportunities
Apr 2022
Publication
Hydrogen is emerging as one of the most promising energy carriers for a decarbonised global energy system. Transportation and storage of hydrogen are critical to its large-scale adoption and to these ends liquid hydrogen is being widely considered. The liquefaction and storage processes must however be both safe and efficient for liquid hydrogen to be viable as an energy carrier. Identifying the most promising liquefaction processes and associated transport and storage technologies is therefore crucial; these need to be considered in terms of a range of interconnected parameters ranging from energy consumption and appropriate materials usage to considerations of unique liquid-hydrogen physics (in the form of ortho–para hydrogen conversion) and boil-off gas handling. This study presents the current state of liquid hydrogen technology across the entire value chain whilst detailing both the relevant underpinning science (e.g. the quantum behaviour of hydrogen at cryogenic temperatures) and current liquefaction process routes including relevant unit operation design and efficiency. Cognisant of the challenges associated with a projected hydrogen liquefaction plant capacity scale-up from the current 32 tonnes per day to greater than 100 tonnes per day to meet projected hydrogen demand this study also reflects on the next-generation of liquid-hydrogen technologies and the scientific research and development priorities needed to enable them.
Refurbishment of Natural Gas Pipelines towards 100% Hydrogen—A Thermodynamic-Based Analysis
Dec 2022
Publication
Hydrogen is a key enabler of a sustainable society. Refurbishment of the existing natural gas infrastructure for up to 100% H2 is considered one of the most energy- and resource-efficient energy transportation methods. The question remains whether the transportation of 100% H2 with reasonable adaptions of the infrastructure and comparable energy amounts to natural gas is possible. The well-known critical components for refurbishment such as increased compressor power reduced linepack as well as pipeline transport efficiencies and their influencing factors were considered based on thermodynamic calculations with a step-by-step overview. A H2 content of 20–30% results in comparable operation parameters to pure natural gas. In addition to transport in pipelines decentralized H2 production will also play an important role in addressing future demands.
Energy Storage Systems: A Review
Jul 2022
Publication
The world is rapidly adopting renewable energy alternatives at a remarkable rate to address the ever-increasing environmental crisis of CO2 emissions. Renewable Energy Systems (RES) offers enormous potential to decarbonize the environment because they produce no greenhouse gases or other polluting emissions. However the RES relies on natural resources for energy generation such as sunlight wind water geothermal which are generally unpredictable and reliant on weather season and year. To account for these intermittencies renewable energy can be stored using various techniques and then used in a consistent and controlled manner as needed. Several researchers from around the world have made substantial contributions over the last century to developing novel methods of energy storage that are efficient enough to meet increasing energy demand and technological break-throughs. This review attempts to provide a critical review of the advancements in the Energy Storage System (ESS) from 1850–2022 including its evolution classification operating principles and comparison
Evaluation of Hydrogen Transportation Networks - A Case Study on the German Energy System
May 2023
Publication
Not only due to the energy crisis European policymakers are exploring options to substitute natural gas with renewable hydrogen. A condition for the application of hydrogen is a functioning transportation infrastructure. However the most efficient transport of large hydrogen quantities is still unclear and deeper analyses are missing. A promising option is converting the existing gas infrastructure. This study presents a novel approach to develop hydrogen networks by applying the Steiner tree algorithm to derive candidates and evaluate their costs. This method uses the existing grid (brownfield) and is compared to a newly built grid (Greenfield). The goal is the technical and economic evaluation and comparison of hydrogen network candidates. The methodology is applied to the German gas grid and demand and supply scenarios covering the industry heavy-duty transport power and heating sector imports and domestic production. Five brownfield candidates are compared to a greenfield candidate. The candidates differ by network length and pipeline diameters to consider the transported volume of hydrogen. The economic evaluation concludes that most brownfield candidates’ cost is significantly lower than those of the greenfield candidate. The candidates can serve as starting points for flow simulations and policymakers can estimate the cost based on the results.
Optimizing Renewable Injection in Integrated Natural Gas Pipeline Networks Using a Multi-Period Programming Approach
Mar 2023
Publication
In this paper we propose an optimization model that considers two pathways for injecting renewable content into natural gas pipeline networks. The pathways include (1) power-to-hydrogen or PtH where off-peak electricity is converted to hydrogen via electrolysis and (2) power-to-methane or PtM where carbon dioxide from different source locations is converted into renewable methane (also known as synthetic natural gas SNG). The above pathways result in green hydrogen and methane which can be injected into an existing natural gas pipeline network. Based on these pathways a multi-period network optimization model that integrates the design and operation of hydrogen from PtH and renewable methane is proposed. The multi-period model is a mixed-integer non-linear programming (MINLP) model that determines (1) the optimal concentration of hydrogen and carbon dioxide in the natural gas pipelines (2) the optimal location of PtH and carbon dioxide units while minimizing the overall system cost. We show using a case study in Ontario the optimal network structure for injecting renewable hydrogen and methane within an integrated natural gas network system provides a $12M cost reduction. The optimal concentration of hydrogen ranges from 0.2 vol % to a maximum limit of 15.1 vol % across the network while reaching a 2.5 vol % at the distribution point. This is well below the maximum limit of 5 vol % specification. Furthermore the optimizer realized a CO2 concentration ranging from 0.2 vol % to 0.7 vol %. This is well below the target of 1% specified in the model. The study is essential to understanding the practical implication of hydrogen penetration in natural gas systems in terms of constraints on hydrogen concentration and network system costs.
Geochemical Effects on Storage Gases and Reservoir Rock during Underground Hydrogen Storage: A Depleted North Sea Oil Reservoir Case Study
May 2023
Publication
In this work geochemical modelling using PhreeqC was carried out to evaluate the effects of geochemical reactions on the performance of underground hydrogen storage (UHS). Equilibrium exchange and mineral reactions were considered in the model. Moreover reaction kinetics were considered to evaluate the geochemical effect on underground hydrogen storage over an extended period of 30 years. The developed model was first validated against experimental data adopted from the published literature by comparing the modelling and literature values of H2 and CO2 solubility in water at varying conditions. Furthermore the effects of pressure temperature salinity and CO2% on the H2 and CO2 inventory and rock properties in a typical sandstone reservoir were evaluated over 30 years. Results show that H2 loss over 30 years is negligible (maximum 2%) through the studied range of conditions. The relative loss of CO2 is much more pronounced compared to H2 gas with losses of up to 72%. Therefore the role of CO2 as a cushion gas will be affected by the CO2 gas losses as time passes. Hence remedial CO2 gas injections should be considered to maintain the reservoir pressure throughout the injection and withdrawal processes. Moreover the relative volume of CO2 increases with the increase in temperature and decrease in pressure. Furthermore the reservoir rock properties porosity and permeability are affected by the underground hydrogen storage process and more specifically by the presence of CO2 gas. CO2 dissolves carbonate minerals inside the reservoir rock causing an increase in the rock’s porosity and permeability. Consequently the rock’s gas storage capacity and flow properties are enhanced
Potential of Salt Caverns for Hydrogen Storage in Southern Ontario, Canada
Jul 2023
Publication
Salt caverns produced by solution mining in Southern Ontario provide ideal spaces for gas storage due to their low permeability. Underground hydrogen storage (UHS) is an important part of the future renewable energy market in Ontario in order to achieve global carbon neutrality and to fill the gap left by retiring nuclear power plants. However large-scale hydrogen storage is still restricted by limited storage space on the ground’s surface. In this study hydrogen’s physical and chemical properties are first introduced and characterized by low molecular weight high diffusivity low solubility and low density. Then the geological conditions of the underground reservoirs are analyzed especially salt caverns. Salt caverns with their inert cavity environments and stable physical properties offer the most promising options for future hydrogen storage. The scales heights and thicknesses of the roof and floor salt layers and the internal temperatures and pressures conditions of salt caverns can affect stabilities and storage capacities. Finally several potential problems that may affect the safe storage of hydrogen in salt caverns are discussed. Through the comprehensive analysis of the influencing factors of hydrogen storage in salt caverns this study puts forward the most appropriate development strategy for salt caverns which provides theoretical guidance for UHS in the future and helps to reduce the risk of large-scale storage design.
Can Africa Serve Europe with Hydrogen Energy from Its Renewables?—Assessing the Economics of Shipping Hydrogen and Hydrogen Carriers to Europe from Different Parts of the Continent
Apr 2023
Publication
There exists no single optimal way for transporting hydrogen and other hydrogen carriers from one port to the other globally. Its delivery depends on several factors such as the quantity distance economics and the availability of the required infrastructure for its transportation. Europe has a strategy to invest in the production of green hydrogen in Africa to meet its needs. This study assessed the economic viability of shipping liquefied hydrogen (LH2 ) and hydrogen carriers to Germany from six African countries that have been identified as countries with great potential in the production of hydrogen. The results obtained suggest that the shipping of LH2 to Europe (Germany) will cost between 0.47 and 1.55 USD/kg H2 depending on the distance of travel for the ship. Similarly the transportation of hydrogen carriers could range from 0.19 to 0.55 USD/kg H2 for ammonia 0.25 to 0.77 USD/kg H2 for LNG 0.24 to 0.73 USD/kg H2 for methanol and 0.43 to 1.28 USD/kg H2 for liquid organic hydrogen carriers (LOHCs). Ammonia was found to be the ideal hydrogen carrier since it recorded the least transportation cost. A sensitivity analysis conducted indicates that an increase in the economic life by 5 years could averagely decrease the cost of LNG by some 13.9% NH3 by 13.2% methanol by 7.9% LOHC by 8.03% and LH2 by 12.41% under a constant distance of 6470 nautical miles. The study concludes with a suggestion that if both foreign and local participation in the development of the hydrogen market is increased in Africa the continent could supply LH2 and other hydrogen carriers to Europe at a cheaper price using clean fuel.
Hydrogen Export Competitiveness Index for a Sustainable Hydrogen Economy
May 2023
Publication
The transition to cleaner energy sources including renewables introduces the need for versatile and transportable energy carriers such as hydrogen. This paper aims to quantify the hydrogen export competitiveness of all countries using a newly developed comprehensive index. The developed competitiveness index includes 21 indicators under four main categories: resource availability and potential economic and financial potential political and regulatory status and industrial knowledge. Expert interviews and surveys are conducted to properly identify choose and modify the categories and indicators and to calculate the appropriate weight for each. Top-ranking countries include the United States Australia Canada United Kingdom China Norway India Russia Netherlands and Germany and they are poised to be significant players in the hydrogen market. Policy recommendations for growing the hydrogen production and export sector are given based on each category.
A Bibliometric and Visualized Overview of Hydrogen Embrittlement from 1997 to 2022
Dec 2022
Publication
The mechanical properties of materials deteriorate when hydrogen embrittlement (HE) occurs seriously threatening the reliability and durability of the hydrogen system. Therefore it is important to summarize the status and development trends of research on HE. This study reviewed 6676 publications concerned with HE from 1997 to 2022 based on the Web of Science Core Collection. VOSviewer was used to conduct the bibliometric analysis and produce visualizations of the publications. The results showed that the number of publications on HE increased after 2007 especially between 2017 and 2019. Japan was the country with the highest numbers of productive authors and citations of publications and the total number of citations of Japanese publications was 24589. Kyushu University was the most influential university and the total number of citations of Kyushu University publications was 7999. Akiyama was the most prolific and influential author publishing 88 publications with a total of 2565 citations. The USA South Korea and some European countries are also leading in HE research; these countries have published more than 200 publications. It was also found that the HE publications generally covered five topics: “Hydrogen embrittlement in different materials” “Effect of hydrogen on mechanical properties of materials” “Effect of alloying elements or microstructure on hydrogen embrittlement” “Hydrogen transport” and “Characteristics and mechanisms of hydrogen related failures”. Research hotspots included “Fracture failure behavior and analysis” “Microstructure” “Hydrogen diffusion and transport” “Mechanical properties” “Hydrogen resistance” and so on. These covered the basic methods and purposes of HE research. Finally the distribution of the main subject categories of the publications was determined and these categories covered various topics and disciplines. This study establishes valuable reference information for the application and development of HE research and provides a convenient resource to help researchers and scholars understand the development trends and research directions in this field.
Renaissance of Ammonia Synthesis for Sustainable Production of Energy and Fertilizers
Feb 2021
Publication
Green ammonia synthesis via the Haber–Bosch (HB) process has become a major field of research in the recent years for production of fertilizers and seasonal energy storage due to drastic drop in cost of renewable hydrogen. While the field of catalysis and engineering has worked on this subject for many years the current process of ammonia synthesis remains essentially unaltered. As a result current industrial developments on green ammonia are based on the HB process which can only be economical at exceptionally large scales limiting implementation on financially strained economies. For green ammonia to become an economic “equalizer” that supports the energy transition around the world it is essential to facilitate the downscalability and operational robustness of the process. This contribution briefly discusses the main scientific and engineering findings that have paved the way of low-temperature and pressure ammonia synthesis using heterogeneous catalysts.
Thermo-physical Numerical Model for Hydrogen Storage in Underground Tanks and Caverns
Apr 2024
Publication
Compressed hydrogen storage is an energy-efficient alternative to liquefaction and in the absence of underground salt formations reservoirs like rock caverns mining shafts and cased boreholes are gaining traction. The limited reservoir volume constrained by excavation or drilling results in short high-pressure cycles. Thus effective temperature control is crucial to maintain integrity and maximize hydrogen density. This study presents a validated numerical model with open-access code for simulating heat exchange and predicting operating pressure and temperature for underground hydrogen storage in tanks or caverns. The validation encompasses analytical solutions and existing cylindrical models. Results highlight the heat transfer’s impact on hydrogen density and the limited penetration depth of the thermal perturbation underscoring the need for simulating heat transfer across multiple layers especially in restrictive media like cement. Managing injection and extraction flow rates is crucial to limit temperature peaks for larger radius reservoirs where heat transfer is less efficient.
Assessing the Pressure Losses during Hydrogen Transport in the Current Natural Gas Infrastructure Using Numerical Modelling
May 2023
Publication
The UK government aims to transition its modern natural gas infrastructure towards Hydrogen by 2035. Since hydrogen is a much lighter gas than methane it is important to understand the change in parameters when transporting it. While most modern work in this topic looks at the transport of hydrogen-methane mixtures this work focuses on pure hydrogen transport. The aim of this paper is to highlight the change in gas distribution parameters when natural gas is replaced by hydrogen in the existing infrastructure. This study uses analytical models and computational models to compare the flow of hydrogen and methane in a pipe based on pressure loss. The Darcy-Weisbach and Colebrook-White equations were used for the analytical models and the k- ε model was used for the computational approach. The variables considered in the comparison were the pipe material (X52 Steel and MDPE) and pipe diameters (0.01m–1m). It was observed that hydrogen had to be transported 250–270% the velocity of methane to replicate flow for a fixed length of pipe. Furthermore it was noted that MDPE pipes has 2–31% lower pressure losses compared to X52 steel for all diameters when transporting hydrogen at a high velocity. Lastly it was noted that the analytical model and computational model were in agreement with 1–5% error in their findings.
Laboratory Determination of Hydrogen/methane Dispersion in Rock Cores for Underground Hydrogen Storage
Apr 2024
Publication
Underground hydrogen storage in saline aquifers is a promising way to store large amounts of energy. Utilization of gas cushion enhances the deliverability of the storage and increases the volume of recovery gas. The key factor for the cushion characterization is cushion gas and storage gas mixing which can be used for simulation of mixing zone evolution. In this work coreflooding setup utilizing Raman spectroscopy is built and used for dispersion coefficient determination. Berea sandstone rock core is used as a test sample for setup validation and core entry/exit effects estimation. Dispersion for hydrogen and methane as displacing fluids is determined for 4 locations perspective for hydrogen storage in Poland is found. Reservoir structures most suitable for pure hydrogen or hydrogen/methane blend storage are selected.
Preventing Hydrogen Embrittlement: The Role of Barrier Coatings for the Hydrogen Economy
May 2023
Publication
Hydrogen barrier coatings are protective layers consisting of materials with a low intrinsic hydrogen diffusivity and solubility showing the potential to delay reduce or hinder hydrogen permeation. Hydrogen barrier coatings are expected to enable steels which are susceptible to hydrogen embrittlement specifically cost-effective low alloy-steels or light-weight high-strength steels for applications in a hydrogen economy. Predominantly ceramic coating materials have been investigated for this purpose including oxides nitrides and carbides. In this review the state of the art with respect to hydrogen permeation is discussed for a variety of coatings. Al2O3 TiAlN and TiC appear to be the most promising candidates from a large pool of ceramic materials. Coating methods are compared with respect to their ability to produce layers with suitable quality and their potential for scaling up for industrial use. Different setups for the characterisation of hydrogen permeability are discussed using both gaseous hydrogen and hydrogen originating from an electrochemical reaction. Finally possible pathways for improvement and optimisation of hydrogen barrier coatings are outlined.
Model to Inform the Expansion of Hydrogen Distribution Infrastructure
Jul 2023
Publication
A growing hydrogen economy requires new hydrogen distribution infrastructure to link geographically distributed hubs of supply and demand. The Hydrogen Optimization with Deployment of Infrastructure (HOwDI) Model helps meet this requirement. The model is a spatially resolved optimization framework that determines location-specific hydrogen production and distribution infrastructure to cost-optimally meet a specified location-based demand. While these results are useful in understanding hydrogen infrastructure development there is uncertainty in some costs that the model uses for inputs. Thus the project team took the modeling effort a step further and developed a Monte Carlo methodology to help manage uncertainties. Seven scenarios were run using existing infrastructure and new demand in Texas exploring different policy and tax approaches. The inclusion of tax credits increased the percentage of runs that could deliver hydrogen at <$4/kg from 31% to 77% and decreased the average dispensed cost from $4.35/kg to $3.55/kg. However even with tax credits there are still some runs where unabated SMR is deployed to meet new demand as the low-carbon production options are not competitive. Every scenario except for the zero-carbon scenario (without tax credits) resulted in at least 20% of the runs meeting the $4/kg dispensed fuel cost target. This indicates that multiple pathways exist to deliver $4/kg hydrogen.
No more items...