Transmission, Distribution & Storage
Morphological, Structural and Hydrogen Storage Properties of LaCrO3 Perovskite-Type Oxides
Feb 2022
Publication
Recently perovskite-type oxides have attracted researchers as new materials for solid hydrogen storage. This paper presents the performances of perovskite-type oxide LaCrO3 dedicated for hydrogen solid storage using both numerical and experimental methods. Ab initio calculations have been used here with the aim to investigate the electronic mechanical and elastic properties of LaCrO3Hx (x = 0 6) for hydrogen storage applications. Cell parameters crystal structures and mechanical properties are determined. Additionally the cohesive energy indicates the stability of the hydride. Furthermore the mechanical properties showed that both compounds (before and after hydrogenation) are stable. The microstructure and storage capacity at different temperatures of these compounds have been studied. We have shown that storage capacities are around 4 wt%. The properties obtained from this type of hydride showed that it can be used for future applications. XRD analysis was conducted in order to study the structural properties of the compound. Besides morphological thermogravimetric analysis was also conducted on the perovskite-type oxide. Finally a comparison of these materials with other hydrides used for hydrogen storage was carried out.
Introducing Power-to-H3: Combining Renewable Electricity with Heat, Water and Hydrogen Production and Storage in a Neighbourhood
Oct 2019
Publication
In the transition from fossil to renewable energy the energy system should become clean while remaining reliable and affordable. Because of the intermittent nature of both renewable energy production and energy demand an integrated system approach is required that includes energy conversion and storage. We propose a concept for a neighbourhood where locally produced renewable energy is partly converted and stored in the form of heat and hydrogen accompanied by rainwater collection storage purification and use (Power-to-H3). A model is developed to create an energy balance and perform a techno-economic analysis including an analysis of the avoided costs within the concept. The results show that a solar park of 8.7 MWp combined with rainwater collection and solar panels on roofs can supply 900 houses over the year with heat (20 TJ) via an underground heat storage system as well as with almost half of their water demand (36000m3) and 540 hydrogen electric vehicles can be supplied with hydrogen (90 tonnes). The production costs for both hydrogen (8.7 €/kg) and heat (26 €/GJ) are below the current end user selling price in the Netherlands (10 €/kg and 34 €/GJ) making the system affordable. When taking avoided costs into account the prices could decrease with 20–26% while at the same time avoiding 3600 tonnes of CO2 a year. These results make clear that it is possible to provide a neighbourhood with all these different utilities completely based on solar power and rainwater in a reliable affordable and clean way.
In-Situ Hollow Sample Setup Design for Mechanical Characterisation of Gaseous Hydrogen Embrittlement of Pipeline Steels and Welds
Aug 2021
Publication
This work discusses the design and demonstration of an in-situ test setup for testing pipeline steels in a high pressure gaseous hydrogen (H2 ) environment. A miniature hollow pipe-like tensile specimen was designed that acts as the gas containment volume during the test. Specific areas of the specimen can be forced to fracture by selective notching as performed on the weldment. The volume of H2 used was minimised so the test can be performed safely without the need of specialised equipment. The setup is shown to be capable of characterising Hydrogen Embrittlement (HE) in steels through testing an X60 pipeline steel and its weldment. The percentage elongation (%El) of the base metal was found to be reduced by 40% when tested in 100 barg H2 . Reduction of cross-sectional area (%RA) was found to decrease by 28% and 11% in the base metal and weld metal respectively when tested in 100 barg H2 . Benchmark test were performed at 100 barg N2 pressure. SEM fractography further indicated a shift from normal ductile fracture mechanisms to a brittle transgranular (TG) quasi-cleavage (QC) type fracture that is characteristic of HE.
Understanding Corrosion Morphology of Duplex Stainless Steel Wire in Chloride Electrolyte
Jul 2021
Publication
The corrosion morphology in grade 2205 duplex stainless steel wire was studied to understand the nature of pitting and the causes of the ferrite phase’s selective corrosion in acidic (pH 3) NaCl solutions at 60 °C. It is shown that the corrosion mechanism is always pitting which either manifests lacy cover perforation or densely arrayed selective cavities developing selectively on the ferrite phase. Pits with a lacy metal cover form in concentrated chloride solutions whereas the ferrite phase’s selective corrosion develops in diluted electrolytes showing dependency on the chloride-ion concentration. The pit perforation is probabilistic and occurs on both austenite and ferrite grains. The lacy metal covers collapse in concentrated solutions but remain intact in diluted electrolytes. The collapse of the lacy metal cover happens due to hydrogen embrittlement. Pit evolution is deterministic and occurs selectively in the ferrite phase in light chloride solutions.
Emerging Electrochemical Energy Conversion and Storage Technologies
Sep 2014
Publication
Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management conservation and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost life time and performance leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells large format lithium-ion batteries electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi-billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies which will have substantial impact on the environment and the way we produce and utilize energy are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.
Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation
Oct 2014
Publication
Electrical power generation is changing dramatically across the world because of the need to reduce greenhouse gas emissions and to introduce mixed energy sources. The power network faces great challenges in transmission and distribution to meet demand with unpredictable daily and seasonal variations. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great potential in meeting these challenges whereby energy is stored in a certain state according to the technology used and is converted to electrical energy when needed. However the wide variety of options and complex characteristic matrices make it difficult to appraise a specific EES technology for a particular application. This paper intends to mitigate this problem by providing a comprehensive and clear picture of the state-of-the-art technologies available and where they would be suited for integration into a power generation and distribution system. The paper starts with an overview of the operation principles technical and economic performance features and the current research and development of important EES technologies sorted into six main categories based on the types of energy stored. Following this a comprehensive comparison and an application potential analysis of the reviewed technologies are presented.
Peculiarities of Bond Strength Degradation in Reinforced Concrete Induced by Accelerated Electrochemical Methods
Dec 2018
Publication
Reinforced concrete (RC) structures are long-term operated objects with service life of 50–100 years. During their operation they subject to continuous ambient effects (cyclic temperature changes acid rains de-icing salts) and service loads (e.g. traffic) which effect on structural integrity of the composite and lead to worsening of structures serviceability. One of the reasons for strength loss of RC members is bond degradation between rebar and concrete. It could be caused by two different factors: overprotection of RC and reinforcement corrosion. These effects were simulated in the laboratory conditions by the electrochemical methods applying of impressed cathodic current and accelerated corrosion tests respectively. It was shown that applied anode polarization causes not only concrete cracking due to internal pressure of corrosion products at the interface but also due to their expansion far from rebar for a distance comparative with a specimen thickness evidently into preliminary formed cracks. Since intensive corrosion of steel reinforcement decreases its diameter and corrosion products can migrate from the rebar surface into a depth of concrete these factors could weaken bond in RC installations up to a total loss of cohesion between rebar and concrete. The influence of cathodic polarization of steel embedded in concrete is commonly seemed to consist in its possible hydrogen embrittlement and ions redistribution in concrete matrix. In this paper the effect of hydrogen recombined at the rebar–concrete interface on bond weakening and concrete cracking is considered.
Indentation and Hydride Orientation in Zr-2.5%Nb Pressure Tube Material
Jun 2019
Publication
In this study indentations were made on Zr-2.5%Nb pressure tube material to induce multi-axial stress field. An I-shaped punch mark was indented on the Pressure tube material with predefined punch load. Later material was charged with 50 wppm of hydrogen. The samples near the punch mark were metallographically examined for hydrides orientation. It was observed that hydrides exhibited preferentially circumferential orientation far away from the indent to mixed orientation containing both circumferential and radial hydrides near the indent. This is probably as a result of stress field generated by indentation. Extent of radial hydride formation was observed to be varying with indentation load.
Hybrid Hydrogen Home Storage for Decentralized Energy Autonomy
May 2021
Publication
As the share of distributed renewable power generation increases high electricity prices and low feed-in tariff rates encourage the generation of electricity for personal use. In the building sector this has led to growing interest in energy self-sufficient buildings that feature battery and hydrogen storage capacities. In this study we compare potential technology pathways for residential energy storage in terms of their economic performance by means of a temporal optimization model of the fully self-sufficient energy system of a single-family building taking into account its residential occupancy patterns and thermal equipment. We show for the first time how heat integration with reversible solid oxide cells (rSOCs) and liquid organic hydrogen carriers (LOHCs) in high-efficiency single-family buildings could by 2030 enable the self-sufficient supply of electricity and heat at a yearly premium of 52% against electricity supplied by the grid. Compared to lithium-ion battery systems the total annualized cost of a self-sufficient energy supply can be reduced by 80% through the thermal integration of LOHC reactors and rSOC systems.
Interfacial Fracture Strength Property of Micro-scale SiN/Cu Components
Jul 2016
Publication
The strength against fracture nucleation from an interface free-edge of silicon-nitride (SiN)/copper (Cu) micro-components is evaluated. A special technique that combines a nano-indenter specimen holder and an environmental transmission electron microscope (E-TEM) is employed. The critical load at the onset of fracture nucleation from a wedge-shaped free-edge (opening angle: 90°) is measured both in a vacuum and in a hydrogen (H2) environment and the critical stress distribution is evaluated by the finite element method (FEM). It is found that the fracture nucleation is dominated by the near-edge elastic singular stress field that extends about a few tens of nanometers from the edge. The fracture nucleation strength expressed in terms of the stress intensity factor (K) is found to be eminently reduced in a H2 environment.
Effect of High-pressure H2 Gas on Tensile and Fatigue Properties of Stainless Steel SUS316L by Means of the Internal High-pressure H2 Gas Method
Dec 2019
Publication
For prohibiting a global warming fuel-cell systems without carbon dioxide emissions are a one of the promising technique. In case of a fuel-cell vehicle (FCV) high-pressure H2 gas is indispensable for a long running range. Although there are lot of paper for studying a hydrogen embrittlement (HE) there are few paper referred to the effect of high-pressure H2on the HE phenomenon.
In this study an effect of high-pressure H2 gas on tensile & fatigue properties of stainless steel SUS316L were investigated by means of the internal high-pressure H2 gas technique. Main findings of this study are as follows;
In this study an effect of high-pressure H2 gas on tensile & fatigue properties of stainless steel SUS316L were investigated by means of the internal high-pressure H2 gas technique. Main findings of this study are as follows;
- Although there are almost no hydrogen embrittlement effect on the 0.2 % proof stress and tensile strength elongation and reduction of area decrease in H2 gas environment
- For case of low Nieq material fatigue life and fatigue limit decrease in H2 gas environment
- For case of low Nieq material not a few α’ martensitic phase generated on the fatigue fractured specimen.
Evaluation of the Performance Degradation of a Metal Hydride Tank in a Real Fuel Cell Electric Vehicle
May 2022
Publication
In a fuel cell electric vehicle (FCEV) powered by a metal hydride tank the performance of the tank is an indicator of the overall health status which is used to predict its behaviour and make appropriate energy management decisions. The aim of this paper is to investigate how to evaluate the effects of charge/discharge cycles on the performance of a commercial automotive metal hydride hydrogen storage system applied to a real FCEV. For this purpose a mathematical model is proposed based on uncertain physical parameters that are identified using the stochastic particle swarm optimisation (PSO) algorithm combined with experimental measurements. The variation of these parameters allows an assessment of the degradation level of the tank’s performance on both the quantitative and qualitative aspects. Simulated results derived from the proposed model and experimental measurements were in good agreement with a maximum relative error of less than 2%. The validated model was used to establish the correlations between the observed degradations in a hydride tank recovered from a real FCEV. The results obtained show that it is possible to predict tank degradations by developing laws of variation of these parameters as a function of the real conditions of the use of the FCEV (number of charging/discharging cycles pressures mass flow rates temperatures).
Micro and Macro Mechanical Analysis of Gas Pipeline Steels
Sep 2017
Publication
The actual safety margins of gas pipelines depend on a number of factors that include the mechanical characteristics of the material. The evolution with time of the metal properties can be evaluated by mechanical tests performed at different scales seeking for the best compromise between the simplicity of the experimental setup to be potentially employed in situ and the reliability of the results. Possible alternatives are comparatively assessed on pipeline steels of different compositions and in different states.
Sulfide Stress Cracking of C-110 Steel in a Sour Environment
Jul 2021
Publication
The scope of this study includes modeling and experimental investigation of sulfide stress cracking (SSC) of high-strength carbon steel. A model has been developed to predict hydrogen permeation in steel for a given pressure and temperature condition. The model is validated with existing and new laboratory measurements. The experiments were performed using C-110 grade steel specimens. The specimens were aged in 2% (wt.) brine saturated with mixed gas containing CH4 CO2 and H2S. The concentration H2S was maintained constant (280 ppm) while varying the partial pressure ratio of CO2 (i.e. the ratio of partial pressure of CO2 to the total pressure) from 0 to 15%. The changes occurring in the mechanical properties of the specimens were evaluated after exposure to assess material embrittlement and SSC corrosion. Besides this the cracks developed on the surface of the specimens were examined using an optical microscope. Results show that the hydrogen permeation and subsequently SSC resistance of C-110 grade steel were strongly influenced by the Partial Pressure Ratio (PPR) of CO2 when the PPR was between 0 and 5%. The PPR of CO2 had a limited impact on the SSC process when it was between 10 and 15 percent.
Interface Instabilities of Growing Hydrides
Jul 2016
Publication
Formation of metal hydrides is a serious complication that occur when hydride forming metals such as zirconium niobium vanadium and magnesium are exposed to long term hydrogen environment. The main concern is that the hydride as being a brittle material has very poor fracture mechanical properties. Formation of hydride is associated with transportation of hydrogen along the gradients of increasing hydrostatic stress which leads to crack tips and other stress concentrators where it forms the hydride. In the present study the thermodynamics of the evolving hydrides is studied. The process is driven by the release of free strain chemical and gradient energies. A phase field model is used to capture the driving forces that the release of the free energy causes. The study gives the conditions that lead to hydride advancement versus retreat and under which conditions the metal-hydride interface becomes unstable and develops a waviness. The spatial frequency spectrum leading to instability is found to depend on the ratio of the elastic strain energy density and parameters related to the interface energy.
Large-scale Stationary Hydrogen Storage via Liquid Organic Hydrogen Carriers
Aug 2021
Publication
Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach liquid organic molecules have emerged as a favorable storage medium because of their desirable properties such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs.
Advanced Hydrogen Storage of the Mg–Na–Al System: A Review
May 2021
Publication
A solid-state storage system is the most practical option for hydrogen because it is more convenient and safer. Metal hydrides especially MgH2 are the most promising materials that offer high gravimetric capacity and good reversibility. However the practical application of MgH2 is restricted by slow sorption kinetics and high stability of thermodynamic properties. Hydrogen storage performance of MgH2 was enhanced by introducing the Mg–Na–Al system that destabilises MgH2 with NaAlH4. The Mg–Na–Al system has superior performance compared to that of unary MgH2 and NaAlH4. To boost the performance of the Mg–Na–Al system the ball milling method and the addition of a catalyst were introduced. The Mg–Na–Al system resulted in a low onset decomposition temperature superior cyclability and enhanced kinetics performances. The Al12Mg17 and NaMgH3 that formed in situ during the dehydrogenation process modify the reaction pathway of the Mg–Na–Al system and alter the thermodynamic properties. In this paper the overview of the recent progress in hydrogen storage of the Mg–Na–Al system is detailed. The remaining challenges and future development of Mg–Na–Al system are also discussed. This paper is the first review report on hydrogen storage properties of the Mg–Na–Al system.
Characterising Hydrogen Induced Cracking of Alloy 625+ Using Correlative SEM - EDX and NanoSIMS
Dec 2020
Publication
Hydrogen induced cracking behaviour of O&G nickel alloy 625+ (UNS N07716) was investigated. Deuterium was introduced electrochemically into samples by cathodic polarisation (3.5 wt.% NaCl.D2O) under different mechanical conditions. Subsequently deuterium distributions were mapped using NanoSIMS. Deuterium was used as an isotopic tracer instead of hydrogen to avoid the detection of hydrogen artefacts. Complimentary image analysis using scanning electron microscopy (SEM) and low voltage energy dispersive X-ray (EDX) allowed the identification of microstructural features corresponding to deuterium enrichments. The results provided experimental evidence of enrichments at dislocation slip bands (DSB) twin boundary and grain boundary features that include σ precipitates.
Magnesium-Based Materials for Hydrogen Storage—A Scope Review
Sep 2020
Publication
Magnesium hydride and selected magnesium-based ternary hydride (Mg2FeH6 Mg2NiH4 and Mg2CoH5) syntheses and modification methods as well as the properties of the obtained materials which are modified mostly by mechanical synthesis or milling are reviewed in this work. The roles of selected additives (oxides halides and intermetallics) nanostructurization polymorphic transformations and cyclic stability are described. Despite the many years of investigations related to these hydrides and the significant number of different additives used there are still many unknown factors that affect their hydrogen storage properties reaction yield and stability. The described compounds seem to be extremely interesting from a theoretical point of view. However their practical application still remains debatable.
Catalytic Hydrogen Production, Storage and Application
Jul 2021
Publication
Hydrogen is a clean fuel for transportation and energy storage. It has several attractive features including a higher energy content by weight use in fuel cells that produces only water as a by-product storage in small and large quantities by various methods and established transportation and infrastructures. A hydrogen economy consists of three steps i.e. hydrogen production storage and applications. All three steps involved in a hydrogen economy can be divided into catalytic and non-catalytic approaches. For catalytic processes the efficiency highly depends on the type and physico-chemical characteristics of the catalysts. Therefore for the improvement of these catalytic processes the development of highly efficient and stable catalysts is highly required.
No more items...