Transmission, Distribution & Storage
Pore-scale Study of Microbial Hydrogen Consumption and Wettability Alteration During Underground Hydrogen Storage
Feb 2023
Publication
Hydrogen can be a renewable energy carrier and is suggested to store renewable energy and mitigate carbon dioxide emissions. Subsurface storage of hydrogen in salt caverns deep saline formations and depleted oil/gas reservoirs would help to overcome imbalances between supply and demand of renewable energy. Hydrogen however is one of the most important electron donors for many subsurface microbial processes including methanogenesis sulfate reduction and acetogenesis. These processes cause hydrogen loss and changes of reservoir properties during geological hydrogen storage operations. Here we report the results of a typical halophilic sulfate-reducing bacterium growing in a microfluidic pore network saturated with hydrogen gas at 35 bar and 37°C. Test duration is 9 days. We observed a significant loss of H2 from microbial consumption after 2 days following injection into a microfluidic device. The consumption rate decreased over time as the microbial activity declined in the pore network. The consumption rate is influenced profoundly by the surface area of H2 bubbles and microbial activity. Microbial growth in the silicon pore network was observed to change the surface wettability from a water-wet to a neutral-wet state. Due to the coupling effect of H2 consumption by microbes and wettability alteration the number of disconnected H2 bubbles in the pore network increased sharply over time. These results may have significant implications for hydrogen recovery and gas injectivity. First pore-scale experimental results reveal the impacts of subsurface microbial growth on H2 in storage which are useful to estimate rapidly the risk of microbial growth during subsurface H2 storage. Second microvisual experiments provide critical observations of bubble-liquid interfacial area and reaction rate that are essential to the modeling that is needed to make long-term predictions. Third results help us to improve the selection criteria for future storage sites.
Permeability Modeling and Estimation of Hydrogen Loss through Polymer Sealing Liners in Underground Hydrogen Storage
Apr 2022
Publication
Fluctuations in renewable energy production especially from solar and wind plants can be solved by large‐scale energy storage. One of the possibilities is storing energy in the form of hydrogen or methane–hydrogen blends. A viable alternative for storing hydrogen in salt caverns is Lined Rock Cavern (LRC) underground energy storage. One of the most significant challenges in LRC for hydrogen storage is sealing liners which need to have satisfactory sealing and mechanical properties. An experimental study of hydrogen permeability of different kinds of polymers was conducted followed by modeling of hydrogen permeability of these materials with different additives (graphite halloysite and fly ash). Fillers in polymers can have an impact on the hydrogen permeability ratio and reduce the amount of polymer required to make a sealing liner in the reservoir. Results of this study show that hydrogen permeability coefficients of polymers and estimated hydrogen leakage through these materials are similar to the results of salt rock after the salt creep process. During 60 days of hydrogen storage in a tank of 1000 m2 inner surface 1 cm thick sealing liner and gas pressure of 1.0 MPa only approx. 1 m3STP of hydrogen will diffuse from the reservoir. The study also carries out the modeling of the hydrogen permeability of materials using the Max‐ well model. The difference between experimental and model results is up to 17% compared to the differences exceeding 30% in some other studies.
Large-scale Underground Hydrogen Storage: Integrated Modeling of a Reservoir-wellbore System
Jan 2023
Publication
Underground Hydrogen Storage (UHS) has received significant attention over the past few years as hydrogen seems well-suited for adjusting seasonal energy gaps. We present an integrated reservoir-well model for “Viking A00 the depleted gas field in the North Sea as a potential site for UHS. Our findings show that utilizing the integrated model results in more reasonable predictions as the gas composition changes over time. Sensitivity analyses show that the lighter the cushion gas the more production can be obtained. However the purity of the produced hydrogen will be affected to some extent which can be enhanced by increasing the fill-up period and the injection rate. The results also show that even though hydrogen diffuses into the reservoir and mixes up with the native fluids (mainly methane) the impact of hydrogen diffusion is marginal. All these factors will potentially influence the project's economics.
Benchmark Study for the Simulation of Underground Hydrogen Storage Operations
Aug 2022
Publication
While the share of renewable energy sources increased within the last years with an ongoing upward trend the energy sector is facing the problem of storing large amounts of electrical energy properly. To compensate daily and seasonal fluctuations a sufficient storage system has to be developed. The storage of hydrogen in the subsurface referred to as Underground Hydrogen Storage (UHS) shows potential to be a solution for this problem. Hydrogen produced from excess energy via electrolysis is injected into a subsurface reservoir and withdrawn when required. As hydrogen possesses unique thermodynamic properties many commonly used correlations can not be simply transferred to a system with a high hydrogen content. Mixing processes with the present fluids are essential to be understood to achieve high storage efficiencies. Additionally in the past microbial activity e.g. by methanogenic archaea was observed leading to a changing fluid composition over time. To evaluate the capability of reservoir simulators to cover these processes the present study establishes a benchmark scenario of an exemplary underground hydrogen storage scenario. The benchmark comprises of a generic sandstone gas reservoir and a typical gas storage schedule is defined. Based on this benchmark the present study assesses the capabilities of the commercial simulator Schlumberger ECLIPSE and the open-source simulator DuMux to mimic UHS related processes such as hydrodynamics but also microbial activity. While ECLIPSE offers a reasonable mix of user-friendliness and computation time DuMux allows for a better adjustment of correlations and the implementation of biochemical reactions. The corresponding input data (ECLIPSE format) and relevant results are provided in a repository to allow this simulation study’s reproduction and extension.
Recent Challenges and Development of Technical and Technoeconomic Aspects for Hydrogen Storage, Insights at Different Scales; A State of Art Review
May 2024
Publication
The importance of the energy transition and the role of green hydrogen in facilitating this transition cannot be denied. Therefore it is crucial to pay close attention to and thoroughly understand hydrogen storage which is a critical aspect of the hydrogen supply chain. In this comprehensive review paper we have undertaken the task of categorising and evaluating various hydrogen storage technologies across three different scales. These scales include small-scale and laboratory-based methods such as metal-based hydrides physical adsorbents and liquid organic hydrogen carriers. Also we explore medium and large-scale approaches like compressed gaseous hydrogen liquid cryogenic hydrogen and cryocompressed hydrogen. Lastly we delve into very large-scale options such as salt caverns aquifers depleted gas/oil reservoirs abandoned mines and hard rock caverns. We have thoroughly examined each storage technology from technical and maturity perspectives as well as considering its techno-economic viability. It is worth noting that development has been ongoing for each storage mechanism; however numerous technical and economic challenges persist in most areas. Particularly the cost per kilogramme of hydrogen for most current technologies demands careful consideration. It is recommended that small-scale hydrogen storage technologies such as metal hydrides (e.g. MgH2 LiBH4) need ongoing research to enhance their performance. Physical adsorbents have limited capacity except for activated carbon. Some liquid organic hydrogen carriers (LCOHs) are suitable for medium-scale storage in the near term. Ammonia-borane (AB) with its high gravimetric and volumetric properties is a promising choice for medium-scale storage pending effective dehydrogenation. It shows potential as a hydrogen carrier due to its high storage capacity stability and solubility surpassing DOE targets for storage capabilities. Medium-scale storage utilising compressed gas cylinders and advancements in liquefied and cryocompressed hydrogen storage requires cost reduction measures and a strategic supply chain. Large-scale storage options include salt caverns aquifers and depleted gas/oil reservoirs with salt caverns offering pure hydrogen need further technoeconomic analysis and deployment projects to mature but storage costs are reasonable ranging mostly from €0.25/kg to €1.5/kg for location specific large-scale options.
Fluid-dynamics Analyses and Economic Investigation of Offshore Hydrogen Transport via Steel and Composite Pipelines
Apr 2024
Publication
One of the challenges associated with the use of hydrogen is its storage and transportation. Hydrogen pipelines are an essential infrastructure for transporting hydrogen from offshore production sites to onshore distribution centers. This paper presents an innovative analysis of the pressure drops velocity profile and levelized cost of hydrogen (LCOH) in various hydrogen transportation scenarios examining the influence of pipeline type (steel vs. composite) diameter and outlet pressure. The role of the compressor and the pipeline individually and together was assessed for 1000 and 100 tons of hydrogen. Notably the LCOH was highly sensitive to these parameters with the compressor contribution ranging between 21.52% and 85.11% and the pipeline’s share varying from 14.89% to 78.48%. The outflow pressure and diameter of the pipeline have a significant impact on the performance: when 1000 tons of hydrogen is transported the internal pressure drop ranges from 2 to 30 bar and the flow velocity can vary between 2 and 25 m/s. For equivalent hydrogen quantities the composite pipeline exhibits the same trends but with minor variations in the specific values.
Emerging Borophene Two-dimensional Nanmaterials for Hydrogen Storage
May 2023
Publication
The growing demand for energy and the need to reduce the carbon footprint has made green hydrogen a promising alternative to traditional fossil fuels. Green hydrogen is produced using renewable energy sources making it a sustainable and environmentally friendly energy source. Solid-state hydrogen storage aims to store hydrogen in a solid matrix offering potential advantages such as higher safety and improved energy density compared to traditional storage methods such as compressed gas or liquid hydrogen. However the development of efficient and economically viable solid-state storage materials is still a challenge and research continues in this field. Borophene is a two-dimensional material that offers potential as an intermediate hydrogen storage material due to its moderate binding energy and reversible behavior. Its unique geometry and electronic properties also allow for higher hydrogen adsorption capacity than metal-based complex hydrides surpassing the goals set by the U.S. Department of Energy. Borophene has shown great potential for hydrogen storage but it is still not practical for commercial use. In this review borophene nanomaterials chemical and physical properties are discussed related to hydrogen storage and binding energy. The importance of borophene for hydrogen storage the challenges it faces and its future prospects are also being discussed.
Hydrogen Storage by Liquid Hydrogen Carriers: Catalyst, Renewable Carrier, and Technology - A Review
Mar 2023
Publication
Hydrogen has attracted widespread attention as a carbon-neutral energy source but developing efficient and safe hydrogen storage technologies remains a huge challenge. Recently liquid organic hydrogen carriers (LOHCs) technology has shown great potential for efficient and stable hydrogen storage and transport. This technology allows for safe and economical large-scale transoceanic transportation and long-cycle hydrogen storage. In particular traditional organic hydrogen storage liquids are derived from nonrenewable fossil fuels through costly refining procedures resulting in unavoidable environmental contamination. Biomass holds great promise for the preparation of LOHCs due to its unique carbon-balance properties and feasibility to manufacture aromatic and nitrogen-doped compounds. According to recent studies almost 100% conversion and 92% yield of benzene could be obtained through advanced biomass conversion technologies showing great potential in preparing biomass-based LOHCs. Overall the present LOHCs systems and their unique applications are introduced in this review and the technical paths are summarized. Furthermore this paper provides an outlook on the future development of LOHCs technology focusing on biomass-derived aromatic and N-doped compounds and their applications in hydrogen storage.
Linking Geological and Infrastructural Requirements for Large-scale Underground Hydrogen Storage in Germany
Jun 2023
Publication
Hydrogen storage might be key to the success of the hydrogen economy and hence the energy transition in Germany. One option for cost-effective storage of large quantities of hydrogen is the geological subsurface. However previous experience with underground hydrogen storage is restricted to salt caverns which are limited in size and space. In contrast pore storage facilities in aquifers -and/or depleted hydrocarbon reservoirs- could play a vital role in meeting base load needs due to their wide availability and large storage capacity but experiences are limited to past operations with hydrogen-bearing town gas. To overcome this barrier here we investigate hydrogen storage in porous storage systems in a two-step process: 1) First we investigate positive and cautionary indicators for safe operations of hydrogen storage in pore storage systems. 2) Second we estimate hydrogen storage capacities of pore storage systems in (current and decommissioned) underground natural gas storage systems and saline aquifers. Our systematic review highlights that optimal storage conditions in terms of energy content and hydrogen quality are found in sandstone reservoirs in absence of carbonate and iron bearing accessory minerals at a depth of approx. 1100 m and a temperature of at least 40°C. Porosity and permeability of the reservoir formation should be at least 20% and 5 × 10−13 m2 (~500 mD) respectively. In addition the pH of the brine should fall below 6 and the salinity should exceed 100 mg/L. Based on these estimates the total hydrogen storage capacity in underground natural gas storages is estimated to be up to 8 billion cubic meters or (0.72 Mt at STP) corresponding to 29 TWh of energy equivalent of hydrogen. Saline aquifers may offer additional storage capacities of 81.6–691.8 Mt of hydrogen which amounts to 3.2 to 27.3 PWh of energy equivalent of hydrogen the majority of which is located in the North German basin. Pore storage systems could therefore become a crucial element of the future German hydrogen infrastructure especially in regions with large industrial hydrogen (storage) demand and likely hydrogen imports via pipelines and ships.
OIES Podcast - Hydrogen Storage for a Net-zero Carbon Future
May 2023
Publication
In this podcast David Ledesma engages in a conversation with Alex Patonia and Rahmat Poudineh on their recent paper focusing on hydrogen storage for a net-zero carbon future. The podcast delves into the various types of hydrogen storage options highlighting their relative strengths and drawbacks.
In order for a hydrogen economy to be established several key factors must be addressed including efficient and decarbonized production adequate transportation infrastructure and the deployment of suitable hydrogen storage facilities. However hydrogen presents unique challenges when it comes to storage and handling. Due to its extremely low volumetric energy density under ambient conditions hydrogen cannot be efficiently or economically stored without undergoing compression liquefaction or conversion into other more manageable substances.
At present there exist several hydrogen storage solutions at different levels of technology market and commercial readiness each with varying applications depending on specific circumstances.
Additionally the podcast explores the primary barriers that hinder investment in hydrogen storage and the essential components of a viable business model that can address the primary risks to which potential hydrogen storage investors are exposed.
The podcast can be found on their website.
In order for a hydrogen economy to be established several key factors must be addressed including efficient and decarbonized production adequate transportation infrastructure and the deployment of suitable hydrogen storage facilities. However hydrogen presents unique challenges when it comes to storage and handling. Due to its extremely low volumetric energy density under ambient conditions hydrogen cannot be efficiently or economically stored without undergoing compression liquefaction or conversion into other more manageable substances.
At present there exist several hydrogen storage solutions at different levels of technology market and commercial readiness each with varying applications depending on specific circumstances.
Additionally the podcast explores the primary barriers that hinder investment in hydrogen storage and the essential components of a viable business model that can address the primary risks to which potential hydrogen storage investors are exposed.
The podcast can be found on their website.
Key Considerations for Evaluating Underground Hydrogen Storage (UHS) Potential in Five Contrasting Australian Basins
Apr 2024
Publication
Hydrogen gas can provide baseload energy as society decarbonizes through the energy transition. Underground Hydrogen Storage (UHS) will be secure convenient and scalable to accommodate excess hydrogen production or compensate temporary shortfalls in energy supply. Hydrogen is a gas under all viable subsurface conditions so is invasive mobile and low-density. Methane and CO2 are also stored underground but storage parameters differ for each affecting the balance of geological storage risks. UHS in Australia is most likely to utilise conventional sedimentary reservoir rocks bound by conventional trapping closures. Hydrogen energy density will affect the competitiveness of UHS against purpose-built surface storage or solution-mined salt cavities. This study presents an overview of key considerations when screening for UHS opportunities and evaluates them for five Australian sedimentary basins. A threshold storage depth mapped across them reveals that the most prospective UHS basins will have to function as integrated energy fluid resource systems.
Numerical Simulation of Hydrogen Diffusion in Cement Sheath of Wells Used for Underground Hydrogen Storage
Jul 2023
Publication
The negative environmental impact of carbon emissions from fossil fuels has promoted hydrogen utilization and storage in underground structures. Hydrogen leakage from storage structures through wells is a major concern due to the small hydrogen molecules that diffuse fast in the porous well cement sheath. The second-order parabolic partial differential equation describing the hydrogen diffusion in well cement was solved numerically using the finite difference method (FDM). The numerical model was verified with an analytical solution for an ideal case where the matrix and fluid have invariant properties. Sensitivity analyses with the model revealed several possibilities. Based on simulation studies and underlying assumptions such as non-dissolvable hydrogen gas in water present in the cement pore spaces constant hydrogen diffusion coefficient cement properties such as porosity and saturation etc. hydrogen should take about 7.5 days to fully penetrate a 35 cm cement sheath under expected well conditions. The relatively short duration for hydrogen breakthrough in the cement sheath is mainly due to the small molecule size and high hydrogen diffusivity. If the hydrogen reaches a vertical channel behind the casing a hydrogen leak from the well is soon expected. Also the simulation result reveals that hydrogen migration along the axial direction of the cement column from a storage reservoir to the top of a 50 m caprock is likely to occur in 500 years. Hydrogen diffusion into cement sheaths increases with increased cement porosity and diffusion coefficient and decreases with water saturation (and increases with hydrogen saturation). Hence cement with a low water-to-cement ratio to reduce water content and low cement porosity is desirable for completing hydrogen storage wells.
Derivation and Validation of a Reference Data-based Real Gas Model for Hydrogen
Mar 2023
Publication
Hydrogen plays an important role for the decarbonization of the energy sector. In its gaseous form it is stored at pressures of up to 1000 bar at which real gas effects become relevant. To capture these effects in numerical simulations accurate real gas models are required. In this work new correlation equations for relevant hydrogen properties are developed based on the Reference Fluid Thermodynamic and Transport Properties Database (REFPROP). Within the regarded temperature (150e400 K) and pressure (0.1e1000 bar) range this approach yields a substantially improved accuracy compared to other databased correlations. Furthermore the developed equations are validated in a numerical simulation of a critical flow Venturi nozzle. The results are in much better accordance with experimental data compared to a cubic equation of state model. In addition the simulation is even slightly faster.
Underground Hydrogen Storage to Balance Seasonal Variations in Energy Demand: Impact of Well Configuration on Storage Performance in Deep Saline Aquifers
Mar 2023
Publication
Grid-scale underground hydrogen storage (UHS) is essential for the decarbonization of energy supply systems on the path towards a zero-emissions future. This study presents the feasibility of UHS in an actual saline aquifer with a typical dome-shaped anticline structure to balance the potential seasonal mismatches between energy supply and demand in the UK domestic heating sector. As a main requirement for UHS in saline aquifers we investigate the role of well configuration design in enhancing storage performance in the selected site via numerical simulation. The results demonstrate that the efficiency of cyclic hydrogen recovery can reach around 70% in the short term without the need for upfront cushion gas injection. Storage capacity and deliverability increase in successive storage cycles for all scenarios with the co-production of water from the aquifer having a minimal impact on the efficiency of hydrogen recovery. Storage capacity and deliverability also increase when additional wells are added to the storage site; however the distance between wells can strongly influence this effect. For optimum well spacing in a multi-well storage scenario within a dome-shaped anticline structure it is essential to attain an efficient balance between well pressure interference effects at short well distances and the gas uprising phenomenon at large distances. Overall the findings obtained and the approach described can provide effective technical guidelines pertaining to the design and optimization of hydrogen storage operations in deep saline aquifers.
A Techno-economic Study of the Strategy for Hydrogen Transport by Pipelines in Canada
Jan 2023
Publication
Hydrogen as a clean zero-emission energy fuel will play a critical role in energy transition and achievement of the net-zero target in 2050. Hydrogen delivery is integral to the entire value chain of a full-scale hydrogen economy. This work conducted a systematic review and analysis of various hydrogen transportation methods including truck tankers for liquid hydrogen tube trailers for gaseous hydrogen and pipelines by identifying and ranking the main properties and affecting factors associated with each method. It is found that pipelines especially the existing natural gas pipelines provide a more efficient and cheaper means to transport hydrogen over long distances. Analysis was further conducted on Canadian natural gas pipeline network which has been operating for safe effective and efficient energy transport over six decades. The established infrastructure along with the developed operating and management experiences and skillful manpower makes the existing pipelines the best option for transport of hydrogen in either blended or pure form in the country. The technical challenges in repurposing the existing natural gas pipelines for hydrogen service were discussed and further work was analyzed.
Hydrogen Storage for a Net-zero Carbon Future
Apr 2023
Publication
If a hydrogen economy is to become a reality along with efficient and decarbonized production and adequate transportation infrastructure deployment of suitable hydrogen storage facilities will be crucial. This is because due to various technical and economic reasons there is a serious possibility of an imbalance between hydrogen supply and demand. Hydrogen storage could also be pivotal in promoting renewable energy sources and facilitating the decarbonization process by providing long duration storage options which other forms of energy storage such as batteries with capacity limitations or pumped hydro with geographical limitations cannot meet. However hydrogen is not the easiest substance to store and handle. Under ambient conditions the extremely low volumetric energy density of hydrogen does not allow for its efficient and economic storage which means it needs to be compressed liquefied or converted into other substances that are easier to handle and store. Currently there are different hydrogen storage solutions at varying levels of technology market and commercial readiness with different applications depending on the circumstances. This paper evaluates the relative merits and techno-economic features of major types of hydrogen storage options: (i) pure hydrogen storage (ii) synthetic hydrocarbons (iii) chemical hydrides (iv) liquid organic hydrogen carriers (v) metal hydrides and (vi) porous materials. The paper also discusses the main barriers to investment in hydrogen storage and highlights key features of a viable business model in particular the policy and regulatory framework needed to address the primary risks to which potential hydrogen storage investors are exposed.
OIES Podcast - Renewable Hydrogen Import Routes into the EU
Jun 2023
Publication
In this podcast David Ledesma talks to Martin Lambert and Abdurahman Alsulaiman about the potential hydrogen import market particularly focusing on the EU which currently holds the largest and earliest hydrogen target. The podcast explores the emerging hydrogen trade market and considers numerous possibilities for its open up providing better clarity on policy statements and balance them against project announcements.
Throughout the podcast Martin and Abdulrahman delve into various key points – they shed light on the primary areas of focus for projects set to be completed by or before 2030 as well as the distinction between announcements and tangible progress such as projects currently at the Final Investment Decision stage or under construction.
Additionally they explore the EU’s role as one of the few countries to have publicly announced its requirements for hydrogen imports and its ambitious hydrogen import target. The EU is currently establishing a benchmark for the future hydrogen market. However in order for the EU to succeed in establishing future hydrogen supply lines with future trade partners it will be crucial to engage in open dialogues covering a wide range of topics.
Join us in this podcast as we uncover the potential of the hydrogen import market with a specific focus on the EU and discuss the necessary steps for its success.
The podcast can be found on their website.
Throughout the podcast Martin and Abdulrahman delve into various key points – they shed light on the primary areas of focus for projects set to be completed by or before 2030 as well as the distinction between announcements and tangible progress such as projects currently at the Final Investment Decision stage or under construction.
Additionally they explore the EU’s role as one of the few countries to have publicly announced its requirements for hydrogen imports and its ambitious hydrogen import target. The EU is currently establishing a benchmark for the future hydrogen market. However in order for the EU to succeed in establishing future hydrogen supply lines with future trade partners it will be crucial to engage in open dialogues covering a wide range of topics.
Join us in this podcast as we uncover the potential of the hydrogen import market with a specific focus on the EU and discuss the necessary steps for its success.
The podcast can be found on their website.
High Surface Area Carbon Nitride Nanotubes for Improved Hydrogen Storage: A Grinding and Solution Mixing Approach
Jul 2025
Publication
This study examines the structural chemical and hydrogen storage properties of graphitic carbon nitride (gC3N4) nanotubes synthesized via a novel grinding-solution-synthesis (GSS) method which involve two consecutive precursor mixing processes: grinding and solution mixing. The impact of grinding duration on morphology surface area and hydrogen storage capacity was analyzed. X-ray diffraction (XRD) confirmed characteristic (100) and (002) peaks at ~13.1◦ and 28.0◦ respectively. Fourier-transform infrared (FTIR) spectroscopy identified tri-s-triazine heterocycles and hydrogen-bonded amino groups with a new peak at 1650 cm− 1 suggesting structural modifications. X-ray photoelectron spectroscopy (XPS) confirmed elemental composition with minor bonding variations. Nitrogen adsorption/desorption analyses showed that the 30-min ground sample (B1G30) had the highest specific surface area (321 m2 g-1) and pore volume (1.07 cm3 /g) while prolonged grinding (60–90 min) caused nanotube degradation reducing these properties. Scanning and transmission electron microscopy (SEM/TEM) confirmed nanotubular morphology with decreasing diameters and increasing structural collapse at longer grinding durations. Hydrogen storage tests revealed B1G30 exhibited the highest capacity (0.81 wt% at 3.7 MPa) decreasing with extended grinding (B1G60: 0.79 wt% B1G90: 0.75 wt%) due to structural collapse. Extrapolated data suggested B1G30 could reach ~4.0 wt% at 10 MPa. These findings underscore the importance of nanotube integrity in optimizing hydrogen adsorption and highlight g-C3N4 nanotubes’ potential for hydrogen storage applications. This GSS technique presents a cost-effective method for industrial-scale fabrication of high-surface-area g-C3N4 nanotubes enabling their large-scale use in energy storage carbon capture photocatalysis and other applications.
A Review on Metal Hydride Materials for Hydrogen Storage
Jul 2023
Publication
To achieve the shift to renewable energies efficient energy storage is of the upmost importance. Hydrogen as a chemical energy storage represents a promising technology due to its high gravimetric energy density. However the most efficient form of hydrogen storage still remains an open question. Absorption-based storage of hydrogen in metal hydrides offers high volumetric energy densities as well as safety advantages. In this work technical economic and environmental aspects of different metal hydride materials are investigated. An overview of the material properties production methods as well as possibilities for enhancement of properties are presented. Furthermore impacts on material costs abundance of raw materials and dependency on imports are discussed. Advantages and disadvantages of selected materials are derived and may serve as a decision basis for material selection based on application. Further research on enhancement of material properties as well as on the system level is required for widespread application of metal hydrides.
Comparative Techno-economic Analysis of Large-scale Renewable Energy Storage Technologies
Jun 2023
Publication
Energy storage is an effective way to address the instability of renewable energy generation modes such as wind and solar which are projected to play an important role in the sustainable and low-carbon society. Economics and carbon emissions are important indicators that should be thoroughly considered for evaluating the feasibility of energy storage technologies (ESTs). In this study we study two promising routes for large-scale renewable energy storage electrochemical energy storage (EES) and hydrogen energy storage (HES) via technical analysis of the ESTs. The levelized cost of storage (LCOS) carbon emissions and uncertainty assessments for EESs and HESs over the life cycle are conducted with full consideration of the critical links for these routes. In order to reduce the evaluation error we use the Monte Carlo method to derive a large number of data for estimating the economy and carbon emission level of ESTs based on the collected data. The results show that lithium ion (Li-ion) batteries show the lowest LCOS and carbon emissions at 0.314 US$ kWh-1 and 72.76 gCO2e kWh-1 compared with other batteries for EES. Different HES routes meaning different combinations of hydrogen production delivery and refueling methods show substantial differences in economics and the lowest LCOS and carbon emissions at 0.227 US$ kWh-1 and 61.63 gCO2e kWh-1 are achieved using HES routes that involve hydrogen production by alkaline electrolyzer (AE) delivery by hydrogen pipeline and corresponding refueling. The findings of this study suggest that HES and EES have comparable levels of economics and carbon emissions that should be both considered for large-scale renewable energy storage to achieve future decarbonization goals.
No more items...