Transmission, Distribution & Storage
Notch-induced Anisotropic Fracture of Cold Drawn Pearlitic Steels and the Associated Crack Path Deflection and Mixed-mode Stress State: A Tribute to Masaccio
Jul 2018
Publication
This paper deals with notch-induced anisotropic fracture behavior of progressively cold drawn pearlitic steels on the basis of their microstructural evolution during manufacturing by multi-step cold drawing that produces slenderizing and orientation of the pearlitic colonies together with densification and orientation of the Fe/Fe3C lamellae reviewing previous research by the author. Results of fracture test using notched specimens of cold drawn pearlitic steels with different degrees of cold drawing (distinct levels of strain hardening) in air and hydrogen environment shows: (i) the key impact of the colonies and lamellae alignment and orientation on notch-induced fracture producing anisotropic fracture behavior with its related crack path deflection (or fracture path deviation); (ii) the necessity of both stress triaxiality (constraint) and microstructural orientation (colonies/lamellae) alignment to produce fracture path deflection; (iii) hydrogen presence (the circumstance) promotes crack path deviation in addition to the inherent microstructural anisotropy created by cold drawing; (iv) the anisotropic fracture path with a stepped profile in cold drawn pearlitic steel consisting of deflections and deviations from the initial transverse fracture path in mode I resembles Masaccio’s Tribute Money painting with its mountains at the background so that the present paper can be considered as a Tribute to Masaccio.
Analysis of the Environmental Degradation Effects on the Cables of “La Arena” Bridge (Spain)
Sep 2017
Publication
After nearly 25 years of service some of the wires of the tendons of “La Arena” bridge (Spain) started to exhibit the effects of environmental degradation processes. “La Arena” is cable-stayed bridge with 6 towers and a reference span between towers of about 100 meters. After a maintenance inspection of the bridge evidences of corrosion were detected in some of the galvanized wires of the cables. A more in-deep analysis of these wires revealed that many of them exhibited loss of section due to the corrosion process. In order to clarify the causes of this degradation event and to suggest some remedial actions an experimental program was designed. This program consisted of tensile and fatigue tests on some strand samples of the bridge together with a fractographic analysis of the fracture surfaces of the wires its galvanized layer thickness and some hydrogen measurements (hydrogen embrittlement could be another effect of the environmental degradation process).Once the type and extension of the flaws in the wires was characterized a structural integrity assessment of the strands was performed with the aim of quantifying the margins until failure and establishing some maintenance recommendations.
Everything About Hydrogen Podcast: Rethinking Hydrogen Storage with H2GOPOWER
Sep 2019
Publication
For this episode we speak to Enass Abo-Hamed the CEO of H2GOPower about their cutting edge hydrogen storage technology. Below we have attached a few links to the content discussed on the show and some further background reading.
The podcast can be found on their website
The podcast can be found on their website
Potential Role of Natural Gas Infrastructure in China to Supply Low-carbon Gases During 2020–2050
Oct 2021
Publication
As natural gas (NG) demand increases in China the question arises how the NG infrastructure fit into a low greenhouse gas (GHG) emissions future towards 2050. Herein the potential role of the NG infrastructure in supplying low-carbon gases during 2020–2050 for China at a provincial resolution was analyzed for different scenarios. In total four low-carbon gases were considered in this study: biomethane bio-synthetic methane hydrogen and low-carbon synthetic methane. The results show that the total potential of low-carbon gas production can increase from 1.21 EJ to 5.25 EJ during 2020–2050 which can replace 20%–67% of the imported gas. In particular Yunnan and Inner Mongolia contribute 17% of China’s low-carbon gas production. As the deployment of NG infrastructure can be very different three scenarios replacing imported pipeline NG were found to reduce the expansion of gas infrastructure by 35%–42% while the three scenarios replacing LNG imports were found to increase infrastructure expansion by 31%–53% as compared to the base case. The cumulative avoided GHG emissions for the 6 analyzed scenarios were 6.0–8.3 Gt CO2. The GHG avoidance costs were highly influenced by the NG price. This study shows that the NG infrastructure has the potential to supply low-carbon gases in China thereby significantly reducing GHG emissions and increasing both China’s short- and long-term gas supply independence.
Resilience-oriented Schedule of Microgrids with Hybrid Energy Storage System using Model Predictive Control
Nov 2021
Publication
Microgrids can be regarded as a promising solution by which to increase the resilience of power systems in an energy paradigm based on renewable generation. Their main advantage is their ability to work as islanded systems under power grid outage conditions. Microgrids are usually integrated into electrical markets whose schedules are carried out according to economic aspects while resilience criteria are ignored. This paper shows the development of a resilience-oriented optimization for microgrids with hybrid Energy Storage System (ESS) which is validated via numerical simulations. A hybrid ESS composed of hydrogen and batteries is therefore considered with the objective of improving the autonomy of the microgrid while achieving a rapid transition response. The control problem is formulated using Stochastic Model Predictive Control (SMPC) techniques in order to take into account possible transitions between grid-connected and islanded modes at all the sample instants of the schedule horizon (SH). The control problem is developed by considering a healthy operation of the hybrid ESS thus avoiding degradation issues. The plant is modeled using the Mixed Logic Dynamic (MLD) framework owing to the presence of logic and dynamic control variables.
Power-to-Gas and Power-to-X—The History and Results of Developing a New Storage Concept
Oct 2021
Publication
Germany’s energy transition known as ‘Energiewende’ was always very progressive. However it came technically to a halt at the question of large-scale seasonal energy storage for wind and solar which was not available. At the end of the 2000s we combined our knowledge of both electrical and process engineering imitated nature by copying photosynthesis and developed Power-to-Gas by combining water electrolysis with CO2 -methanation to convert water and CO2 together with wind and solar power to synthetic natural gas. Storing green energy by coupling the electricity with the gas sector using its vast TWh-scale storage facility was the solution for the biggest energy problem of our time. This was the first concept that created the term ‘sector coupling’ or ‘sectoral integration’. We first implemented demo sites presented our work in research industry and ministries and applied it in many macroeconomic studies. It was an initial idea that inspired others to rethink electricity as well as eFuels as an energy source and energy carrier. We developed the concept further to include Power-to-Liquid Power-to-Chemicals and other ways to ‘convert’ electricity into molecules and climate-neutral feedstocks and named it ‘Power-to-X’ at the beginning of the 2010s.
Effect of the High-Pressure Hydrogen Gas Exposure in the Silica-Filled EPDM Sealing Composites with Different Silica Content
Mar 2022
Publication
With the increasing interest in hydrogen energy the stability of hydrogen storage facilities and components is emphasized. In this study we analyzed the effect of high-pressure hydrogen gas treatment in silica-filled EPDM composites with different silica contents. In detail cure characteristics crosslink density mechanical properties and hydrogen permeation properties were investigated. Results showed that material volume remaining hydrogen content and mechanical properties were changed after 96.3 MPa hydrogen gas exposure. With an increase in the silica content the crosslink density and mechanical properties increased but hydrogen permeability was decreased. After treatment high-silica-content composites showed lower volume change than low-silica-content composites. The crack damage due to the decompression caused a decrease in mechanical properties but high silica content can inhibit the reduction in mechanical properties. In particular EPDM/silica composites with a silica content of above 60 phr exhibited excellent resistance to hydrogen gas as no change in their physical and mechanical properties was observed.
Does the United Kingdom Have Sufficient Geological Storage Capacity to Support a Hydrogen Economy? Estimating the Salt Cavern Storage Potential of Bedded Halite Formations
Jun 2022
Publication
Hydrogen can be used to enable decarbonisation of challenging applications such as provision of heat and as a fuel for heavy transport. The UK has set out a strategy for developing a new low carbon hydrogen sector by 2030. Underground storage will be a key component of any regional or national hydrogen network because of the variability of both supply and demand across different end-use applications. For storage of pure hydrogen salt caverns currently remain the only commercially proven subsurface storage technology implemented at scale. A new network of hydrogen storage caverns will therefore be required to service a low carbon hydrogen network. To facilitate planning for such systems this study presents a modelling approach used to evaluate the UK's theoretical hydrogen storage capacity in new salt caverns in bedded rock salt. The findings suggest an upper bound potential for hydrogen storage exceeding 64 million tonnes providing 2150 TWh of storage capacity distributed in three discrete salt basins in the UK. The modelled cavern capacity has been interrogated to identify the practical inter-seasonal storage capacity suitable for integration in a hydrogen transmission system. Depending on cavern spacing a peak load deliverability of between 957 and 1876 GW is technically possible with over 70% of the potential found in the East Yorkshire and Humber region. The range of geologic uncertainty affecting the estimates is approximately ±36%. In principle the peak domestic heating demand of approximately 170 GW across the UK can be met using the hydrogen withdrawn from caverns alone albeit in practice the storage potential is unevenly distributed. The analysis indicates that the availability of salt cavern storage potential does not present a limiting constraint for the development of a low-carbon hydrogen network in the UK. The general framework presented in this paper can be applied to other regions to estimate region-specific hydrogen storage potential in salt caverns.
Performance Assessment of a Hybrid System with Hydrogen Storage and Fuel Cell for Cogeneration in Buildings
Jun 2020
Publication
The search for new fuels to supersede fossil fuels has been intensified these recent decades. Among these fuels hydrogen has attracted much interest due to its advantages mainly cleanliness and availability. It can be produced from various raw materials (e.g. water biomass) using many resources mainly water electrolysis and natural gas reforming. However water electrolysis combined with renewable energy sources is the cleanest way to produce hydrogen while reducing greenhouse gases. Besides hydrogen can be used by fuel cells for producing both electrical and thermal energy. The aim of this work was towards efficient integration of this system into energy efficient buildings. The system is comprised of a photovoltaic system hydrogen electrolyzer and proton exchange membrane fuel cell operating as a cogeneration system to provide the building with both electricity and thermal energy. The system’s modeling simulations and experimentations were first conducted over a short-run period to assess the system’s performance. Reported results show the models’ accuracy in analyzing the system’s performance. We then used the developed models for long-run testing of the hybrid system. Accordingly the system’s electrical efficiency was almost 32%. Its overall efficiency reached 64.5% when taking into account both produced electricity and thermal energy.
Green Hydrogen Storage in an Underground Cavern: A Case Study in Salt Diapir of Spain
Jun 2022
Publication
The Poza de la Sal diapir is a closed circular depression with Cretaceous Mesozoic materials formed by gypsum Keuper clays and a large extension of salt in the center with intercalations of ophite. The low seismic activity of the area the reduced permeability and porosity of the salt caverns and the proximity to the Páramo de Poza wind park make it a suitable place for the construction of a facility for underground storage of green hydrogen obtained from surplus wind power. The design of a cavern for hydrogen storage at a depth of 1000 m takes into account the differences in stresses temperatures and confining pressures involved in the salt deformation process. During the 8 months of the injection phase 23.0 GWh can be stored in the form of hydrogen obtained from the wind energy surplus to be used later in the extraction phase. The injection and extraction ratio must be developed under the conditions of geomechanical safety of the cavity so as to minimize the risks to the environment and people by conditioning the gas pressure inside the cavity to remain within a given range.
Complex Hydrides for Hydrogen Storage – New Perspectives
Apr 2014
Publication
Since the 1970s hydrogen has been considered as a possible energy carrier for the storage of renewable energy. The main focus has been on addressing the ultimate challenge: developing an environmentally friendly successor for gasoline. This very ambitious goal has not yet been fully reached as discussed in this review but a range of new lightweight hydrogen-containing materials has been discovered with fascinating properties. State-of-the-art and future perspectives for hydrogen-containing solids will be discussed with a focus on metal borohydrides which reveal significant structural flexibility and may have a range of new interesting properties combined with very high hydrogen densities.
Heat Transfer Analysis of High Pressure Hydrogen Tank Fillings
Jun 2022
Publication
Fast fillings of hydrogen vehicles require proper control of the temperature to ensure the integrity of the storage tanks. This study presents an analysis of heat transfer during filling of a hydrogen tank. A conjugate heat transfer based on energy balance is introduced. The numerical model is validated against fast filling experiments of hydrogen in a Type IV tank by comparing the gas temperature evolution. The impact of filling parameters such as initial temperature inlet nozzle diameter and filling time is then assessed. For the considered Type IV tank the results show that both a higher and lower tank shell thermal conductivity results in lower inner wall peak temperatures. The presented model provides an analytical description of the temperature evolution in the gas and in the tank shell and is thus a useful tool to explore a broad range of parameters e.g. to determine new hydrogen filling protocols.
Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety
Sep 2021
Publication
Decarbonization plays an important role in future energy systems for reducing greenhouse gas emissions and establishing a zero-carbon society. Hydrogen is believed to be a promising secondary energy source (energy carrier) that can be converted stored and utilized efficiently leading to a broad range of possibilities for future applications. Moreover hydrogen and electricity are mutually converted creating high energy security and broad economic opportunities toward high energy resilience. Hydrogen can be stored in various forms including compressed gas liquid hydrogen hydrides adsorbed hydrogen and reformed fuels. Among these liquid hydrogen has advantages including high gravimetric and volumetric hydrogen densities and hydrogen purity. However liquid hydrogen is garnering increasing attention owing to the demand for long storage periods long transportation distances and economic performance. This paper reviews the characteristics of liquid hydrogen liquefaction technology storage and transportation methods and safety standards to handle liquid hydrogen. The main challenges in utilizing liquid hydrogen are its extremely low temperature and ortho- to para-hydrogen conversion. These two characteristics have led to the urgent development of hydrogen liquefaction storage and transportation. In addition safety standards for handling liquid hydrogen must be updated regularly especially to facilitate massive and large-scale hydrogen liquefaction storage and transportation.
Mapping Geological Hydrogen Storage Capacity and Regional Heating Demands: An Applied UK Case Study
Feb 2021
Publication
Hydrogen is considered as a low-carbon substitute for natural gas in the otherwise difficult to decarbonise domestic heating sector. This study presents for the first time a globally applicable source to sink methodology and analysis that matches geological storage capacity with energy demand. As a case study it is applied to the domestic heating system in the UK with a focus on maintaining the existing gas distribution network. To balance the significant annual cyclicity in energy demand for heating hydrogen could be stored in gas fields offshore and transported via offshore pipelines to the existing gas terminals into the gas network. The hydrogen energy storage demand in the UK is estimated to be ~77.9 terawatt-hour (TWh) which is approximately 25 % of the total energy from natural gas used for domestic heating. The total estimated storage capacity of the gas fields included in this study is 2661.9 TWh. The study reveals that only a few offshore gas fields are required to store enough energy as hydrogen to balance the entire seasonal demand for UK domestic heating. It also demonstrates that as so few fields are required hydrogen storage will not compete for the subsurface space required for other low-carbon subsurface applications such as carbon storage or compressed air energy storage.
Recent Development in Nanoconfined Hydrides for Energy Storage
Jun 2022
Publication
Hydrogen is the ultimate vector for a carbon-free sustainable green-energy. While being the most promising candidate to serve this purpose hydrogen inherits a series of characteristics making it particularly difficult to handle store transport and use in a safe manner. The researchers’ attention has thus shifted to storing hydrogen in its more manageable forms: the light metal hydrides and related derivatives (ammonia-borane tetrahydridoborates/borohydrides tetrahydridoaluminates/alanates or reactive hydride composites). Even then the thermodynamic and kinetic behavior faces either too high energy barriers or sluggish kinetics (or both) and an efficient tool to overcome these issues is through nanoconfinement. Nanoconfined energy storage materials are the current state-of-the-art approach regarding hydrogen storage field and the current review aims to summarize the most recent progress in this intriguing field. The latest reviews concerning H2 production and storage are discussed and the shift from bulk to nanomaterials is described in the context of physical and chemical aspects of nanoconfinement effects in the obtained nanocomposites. The types of hosts used for hydrogen materials are divided in classes of substances the mean of hydride inclusion in said hosts and the classes of hydrogen storage materials are presented with their most recent trends and future prospects.
Hybrid Energy System Model in Matlab/Simulink Based on Solar Energy, Lithium‐Ion Battery and Hydrogen
Mar 2022
Publication
In this work a model of an energy system based on photovoltaics as the main energy source and a hybrid energy storage consisting of a short‐term lithium‐ion battery and hydrogen as the long‐term storage facility is presented. The electrical and the heat energy circuits and resulting flows have been modelled. Therefore the waste heat produced by the electrolyser and the fuel cell have been considered and a heat pump was considered to cover the residual heat demand. The model is designed for the analysis of a whole year energy flow by using a time series of loads weather and heat profile as input. This paper provides the main set of equations to derive the component properties and describes the implementation into MATLAB/Simulink. The novel model was created for an energy flow simulation over one year. The results of the simulation have been verified by comparing them with well‐established simulation results from HOMER Energy. It turns out that the novel model is well suited for the analysis of the dynamic system behaviour. Moreover different characteristics to achieve an energy balance an ideal dimensioning for the particular use case and further research possibilities of hydrogen use in the residential sector are covered by the novel model.
Everything About Hydrogen Podcast: Envisioning the Hydrogen Revolution
May 2021
Publication
For our 40th episode of the Everything About Hydrogen podcast the gang are joined by hydrogen luminary Marco Alverà the CEO of Snam. Founded in 1941 and listed on the Italian stock exchange since 2001 Snam is a leader in the European gas market and operator of over 41000km of transport networks. Hailed as a visionary who has led the pivot of the world’s 2nd largest gas distribution company towards a clean gas trajectory Marco is widely recognized as a thought leader and a key figure driving the transition towards hydrogen. On the show the team discuss why Marco decided to lead Snam's pivot towards hydrogen what he sees as the role of hydrogen in the energy transition and how blue hydrogen can sit alongside green hydrogen as part of the solution to a decarbonized gas network.
The podcast can be found on their website
The podcast can be found on their website
Hydrogen Storage Behavior of Mg-based Alloy Catalyzed by Carbon-cobalt Composites
Feb 2021
Publication
The composites comprised of Co nanoparticle and C nanosheet were prepared though a high-temperature carbonization reaction. The catalysis of Co@C composites on the hydrogen storage behavior of Mg90Ce5Y5 alloy was investigated in detail by XRD SEM TEM PCI and DSC method. Because of the synergistic catalytic function of C and Co in C@Co nanocomposites the Mg90Ce5Y5 alloy with 10 wt.% C@Co shows the excellent hydrogen absorption and desorption performances. Time for releasing hydrogen reduces from 150 min to 11 min with the addition of the C@Co composites at the temperature of 300 °C. Meanwhile the dehydrogenation activation energy also declines from 130.3 to 81.9 kJ mol−1 H2 after the addition of the C@Co composites. This positive effect attributes to the C layer with the high defect density and the Co nanoparticles which reduces the energy barriers for the nucleation of Mg/MgH2 phase and the recombination of hydrogen molecule. Besides the C@Co composites also improve the activation property of the Mg90Ce5Y5 alloy which was fully activated in the first cycle. Moreover the temperature for initial dehydrogenation and the endothermic peak of the alloy hydride were also decreased. Although the addition of the C@Co composites increases the plateau pressures and decreases the value of the decomposition enthalpy these differences are so small that the improvement on thermodynamics can hardly be seen.
Hydrogen Storage Behavior of TiFe Alloy Activated by Different Methods
Feb 2021
Publication
TiFe activation for hydrogen uptake was conducted through different methods and ball milling with ethanol proved to be the most effective one. TiFe alloy after activation could absorb 1.2 wt% hydrogen at room temperature with absorption and desorption plateaus of 0.5 MPa and 0.2 MPa respectively. Investigation on microstructure and chemical state of TiFe sample after milled with ethanol suggested that the well spread metallic Ti and Fe elements helped hydrogen uptake and release. The activation of TiFe alloy by milling with ethanol was achieved at ambient conditions with ease successfully and possibly can be used for large scale production
A New Model For Hydrogen-Induced Crack (HIC) Growth in Metal Alloy Pipelines Under Extreme Pressure
Dec 2020
Publication
Pipeline failure caused by Hydrogen-Induced Cracking (HIC) also known as Hydrogen Embrittlement (HE) is a pressing issue for the oil and natural gas industry. Bursts in pipelines are devastating and extremely costly. The explosive force of a bursting pipe can inflict fatal injuries to workers while the combined loss of product and effort to repair are highly costly to producers. Further pipeline failures due to HIC have a long lasting impact on the surrounding environment. Safe use and operation of such pipelines depend on a good understanding of the underlying forces that cause HIC. Specifically a reliable way to predict the growth rate of hydrogen-induced cracks is needed to establish a safe duration of service for each length of pipeline. Pipes that have exceeded or are near the end of their service life can then be retired before the risk of HIC-related failures becomes too high. However little is known about the mechanisms that drive HIC. To date no model has been put forth that accurately predicts the growth rate of fractures due to HIC under extreme pressures such as in the context of natural gas and petroleum pipelines. Herein a mathematical model for the growth of fractures by HIC under extreme pressures is presented. This model is derived from first principles and the results are compared with other models. The implications of these findings are discussed and a description of future work based on these findings is presented.
No more items...