Transmission, Distribution & Storage
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Criteria and Proposals for EMC Tests on Ultrasonic Meters with Non-conventional Gases
Oct 2022
Publication
The NEWGASMET project has the overall objective to increase knowledge about the accuracy and durability of commercially available gas meters after exposure to renewable gases. This should lead to the improvement of existing meter designs and flow calibration standards. One of the recently released results is a proposal for a set of test gases to represent the range of non-conventional gases in the scope of the revision of the gas meter standards. In details these were proposed to be used in the CEN/TC237 standards and the OIML-R137:2014. During the project meetings concerns have been raised regarding the applicability of such test gases to EMC tests for static meters. Today such tests are performed in air but there is a clear agreement that the behaviour of the meter during EMC tests can be influenced by the renewable gas type. At least this agreement exists for the ultrasonic measurement technology while further discussion might be needed for the mass flow. However it is not simply possible to redesign the current EMC tests by replacing air with the defined gas mixtures as this would be quite impractical especially considering the explosive nature of the test gases.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Effect of Hydrogen Admixture on the Accuracy of a Rotary Flow Meter
Aug 2021
Publication
With the rise of hydrogen use in the natural gas grid a need exists for reliable measurements of the amount of energy being transported and traded for hydrogen admixtures. Using VSL’s high-pressure Gas Oil Piston Prover (GOPP) primary standard the effect of mixing hydrogen with natural gas on the performance of a high-pressure gas flow meter was investigated. The error of a rotary flow meter was determined using the best possible uncertainty by calibration with the primary standard for high-pressure natural gas flow. The rotary flow meter was calibrated using both natural gas and hydrogen enriched natural gas (nominally 15% hydrogen) at two different pressures: 9 and 16 bar. Results indicate that for the rotary flow meter and hydrogen admixtures used the differences in the meter errors between high-pressure hydrogen-enriched natural gas calibration and high-pressure natural gas calibration are smaller than the corresponding differences between atmospheric pressure air calibration and high-pressure natural gas calibration.
OIES Podcast: Global Trade of Hydrogen: What is the Best Way to Transfer Hydrogen Over Long Distances?
Aug 2022
Publication
In this podcast David Ledesma talks with Rahmat Poudineh Senior Research Fellow and Aliaksei Patonia Research Fellow on issues and options with respect to long distance transportation of the hydrogen.
Hydrogen currently is mainly a local or regional commodity. If hydrogen is to become a truly global-traded commodity it needs to be transported over long transoceanic distances in an economical way. However unlike natural gas shipping compressed or liquefied hydrogen over long distances is very inefficient and expensive. At the same time hydrogen can be converted into multiple carriers with a higher energy density and higher transport capacity such as liquid ammonia toluene/methylcyclohexane (MCH) or methanol. These chemicals have their own advantages and drawbacks and their techno-economic characteristics in terms of boil-off gas and thermodynamic and conversion losses play a key role in the efficiency of transoceanic transportation of the hydrogen.
On the other hand apart from techno-economic features there are other factors to consider for long distance transportation of the hydrogen via its careers. Here such issues as safety public acceptance as well as legal and regulatory constraints may come into play. Another factor is the availability of the industries and infrastructures already developed around any of possible hydrogen carriers as well as their potential industrial applicability beyond hydrogen. Finally technological progress in other decarbonization applications and most importantly full commercialization of CCUS solutions is likely to dramatically change the approach towards long distance hydrogen transportation.
The podcast can be found on their website.
Hydrogen currently is mainly a local or regional commodity. If hydrogen is to become a truly global-traded commodity it needs to be transported over long transoceanic distances in an economical way. However unlike natural gas shipping compressed or liquefied hydrogen over long distances is very inefficient and expensive. At the same time hydrogen can be converted into multiple carriers with a higher energy density and higher transport capacity such as liquid ammonia toluene/methylcyclohexane (MCH) or methanol. These chemicals have their own advantages and drawbacks and their techno-economic characteristics in terms of boil-off gas and thermodynamic and conversion losses play a key role in the efficiency of transoceanic transportation of the hydrogen.
On the other hand apart from techno-economic features there are other factors to consider for long distance transportation of the hydrogen via its careers. Here such issues as safety public acceptance as well as legal and regulatory constraints may come into play. Another factor is the availability of the industries and infrastructures already developed around any of possible hydrogen carriers as well as their potential industrial applicability beyond hydrogen. Finally technological progress in other decarbonization applications and most importantly full commercialization of CCUS solutions is likely to dramatically change the approach towards long distance hydrogen transportation.
The podcast can be found on their website.
Hydrogen Embrittlement of a Boiler Water Wall Tube in a District Heating System
Jul 2022
Publication
A district heating system is an eco-friendly power generation facility with high energy efficiency. The boiler water wall tube used in the district heating system is exposed to extremely harsh conditions and unexpected fractures often occur during operation. In this study a corrosion failure analysis of the boiler water wall tube was performed to elucidate the failure mechanisms. The study revealed that overheating by flames was the cause of the failure of the boiler water wall tube. With an increase in temperature in a localized region the microstructure not only changed from ferrite/pearlite to martensite/bainite which made it more susceptible to brittleness but it also developed tensile residual stresses in the water-facing side by generating cavities or microcracks along the grain boundaries inside the tube. High-temperature hydrogen embrittlement combined with stress corrosion cracking initiated many microcracks inside the tube and created an intergranular fracture.
Wettability of Shale–brine–H2 System and H2-brine Interfacial Tension for Assessment of the Sealing Capacities of Shale Formations During Underground Hydrogen Storage
Jul 2022
Publication
Replacement of fossil fuels with clean hydrogen has been recognized as the most feasible approach of implementing CO2-free hydrogen economy globally. However large-scale storage of hydrogen is a critical component of hydrogen economy value chain because hydrogen is the lightest molecule and has moderately low volumetric energy content. To achieve successful storage of buoyant hydrogen at the subsurface and convenient withdrawal during the period of critical energy demand the integrity of the underground storage rock and overlying seal (caprock) must be assured. Presently there is paucity of information on hydrogen wettability of shale and the interfacial properties of H2/brine system. In this research contact angles of shale/H2/brine system and hydrogen/brine interfacial tension (IFT) were measured using Krüss drop shape analyzer (DSA 100) at 50 ◦C and varying pressure (14.7–1000 psi). A modified form of sessile drop approach was used for the contact angles measurement whereas the H2- brine IFT was measured through the pendant drop method. H2-brine IFT values decreased slightly with increasing pressure ranging between 63.68◦ at 14.7 psia and 51.29◦ at 1000 psia. The Eagle-ford shale with moderate total organic carbon (TOC) of 3.83% attained fully hydrogen-wet (contact angle of 99.9◦ ) and intermediate-wet condition (contact angle of 89.7◦ ) at 14.7 psi and 200 psi respectively. Likewise the Wolf-camp shale with low TOC (0.30%) attained weakly water-wet conditions with contact angles of 58.8◦ and 62.9◦ at 14.7 psi and 200 psi respectively. The maximum height of hydrogen that can be securely trapped by the Wolf-camp shale was approximately 325 meters whereas the value was merely 100 meters for the Eagle-ford shale. Results of this study will aid in assessment of hydrogen storage capacity of organic-rich shale (adsorption trapping) as well as evaluation of the sealing potentials of low TOC shale (caprock) during underground hydrogen storage.
Feasibility of Hydrogen Storage in Depleted Hydrocarbon Chalk Reservoirs: Assessment of Biochemical and Chemical Effects
Jul 2022
Publication
Hydrogen storage is one of the energy storage methods that can help realization of an emission free future by saving surplus renewable energy for energy deficit periods. Utilization of depleted hydrocarbon reservoirs for large-scale hydrogen storage may be associated with the risk of chemical/biochemical reactions. In the specific case of chalk reservoirs the principal reactions are abiotic calcite dissolution acetogenesis methanogenesis and biological souring. Here we use PHREEQC to evaluate the dynamics and the extent of hydrogen loss by each of these reactions in hydrogen storage scenarios for various Danish North Sea chalk hydrocarbon reservoirs. We find that: (i) Abiotic calcite dissolution does not occur in the temperature range of 40-180◦ C. (ii) If methanogens and acetogens grow as slow as the slowest growing methanogens and acetogens reported in the literature methanogenesis and acetogenesis cannot cause a hydrogen loss more than 0.6% per year. However (iii) if they proceed as fast as the fastest growing methanogens and acetogens reported in the literature a complete loss of all injected hydrogen in less than five years is possible. (iv) Co-injection of CO2 can be employed to inhibit calcite dissolution and keep the produced methane due to methanogenesis carbon neutral. (v) Biological sulfate reduction does not cause significant hydrogen loss during 10 years but it can lead to high hydrogen sulfide concentrations (1015 ppm). Biological sulfate reduction is expected to impact hydrogen storage only in early stages if the only source of sulfur substrates are the dissolved species in the brine and not rock minerals. Considering these findings we suggest that depleted chalk reservoirs may not possess chemical/biochemical risks and be good candidates for large-scale underground hydrogen storage.
What is Stored, Why, and How? Mental Models, Knowledge, and Public Acceptance of Hydrogen Storage
Nov 2016
Publication
Although electricity storage plays a decisive role for the German “Energiewende” and it has become evident that the successful diffusion of technologies is not only a question of technical feasibility but also of social acceptance research on electricity storage technologies from a social science point of view is still scarce. This study therefore empirically explores laypersons’ mindsets and knowledge related to storage technologies focusing on hydrogen. While the results indicate overall supportive attitudes and trust in hydrogen storage some misconceptions a lack of information as well as concerns were identified which should be addressed in future communication concepts.
Recent Developments in State-of-the-art Hydrogen Energy Technologies – Review of Hydrogen Storage Materials
Jan 2023
Publication
Hydrogen energy has been assessed as a clean and renewable energy source for future energy demand. For harnessing hydrogen energy to its fullest potential storage is a key parameter. It is well known that important hydrogen storage characteristics are operating pressure-temperature of hydrogen hydrogen storage capacity hydrogen absorption-desorption kinetics and heat transfer in the hydride bed. Each application needs specific properties. Every class of hydrogen storage materials has a different set of hydrogenation characteristics. Hence it is required to understand the properties of all hydrogen storage materials. The present review is focused on the state-of– the–art hydrogen storage materials including metal hydrides magnesium-based materials complex hydride systems carbonaceous materials metal organic frameworks perovskites and materials and processes based on artificial intelligence. In each category of materials‘ discovery hydrogen storage mechanism and reaction crystal structure and recent progress have been discussed in detail. Together with the fundamental synthesis process latest techniques of material tailoring like nanostructuring nanoconfinement catalyzing alloying and functionalization have also been discussed. Hydrogen energy research has a promising potential to replace fossil fuels from energy uses especially from automobile sector. In this context efforts initiated worldwide for clean hydrogen production and its use via fuel cell in vehicles is much awaiting steps towards sustainable energy demand.
Hydrogen Embrittlement Characteristics in Cold-drawn High-strength Stainless Steel Wires
Mar 2023
Publication
Hydrogen uptake and embrittlement characteristics of a cold-drawn austenitic stainless steel wire were investigated. Slow strain rate testing and fracture surface analysis were applied to determine the hydrogen embrittlement resistance providing an apparent decrease in resistance to hydrogen embrittlement for a 50% degree of cold deformation. The hydrogen content was assessed by thermal desorption and laser-induced breakdown spectroscopy establishing a correlation between the total absorbed hydrogen and the intensity of near-surface hydrogen. The sub-surface hydrogen content of the hot-rolled specimen was determined to be 791 wt.ppm.
Underground Hydrogen Storage: Application of Geochemical Modelling in a Case Study in the Molasse Basin, Upper Austria
Feb 2019
Publication
Hydrogen storage in depleted gas fields is a promising option for the large-scale storage of excess renewable energy. In the framework of the hydrogen storage assessment for the “Underground Sun Storage” project we conduct a multi-step geochemical modelling approach to study fluid–rock interactions by means of equilibrium and kinetic batch simulations. With the equilibrium approach we estimate the long-term consequences of hydrogen storage whereas kinetic models are used to investigate the interactions between hydrogen and the formation on the time scales of typical storage cycles. The kinetic approach suggests that reactions of hydrogen with minerals become only relevant over timescales much longer than the considered storage cycles. The final kinetic model considers both mineral reactions and hydrogen dissolution to be kinetically controlled. Interactions among hydrogen and aqueous-phase components seem to be dominant within the storage-relevant time span. Additionally sensitivity analyses of hydrogen dissolution kinetics which we consider to be the controlling parameter of the overall reaction system were performed. Reliable data on the kinetic rates of mineral dissolution and precipitation reactions specifically in the presence of hydrogen are scarce and often not representative of the studied conditions. These uncertainties in the kinetic rates for minerals such as pyrite and pyrrhotite were investigated and are discussed in the present work. The proposed geochemical workflow provides valuable insight into controlling mechanisms and risk evaluation of hydrogen storage projects and may serve as a guideline for future investigations.
Control of a Three-Phase Current Source Rectifier for H2 Storage Applications in AC Microgrids
Mar 2022
Publication
The share of electrical energy from renewable sources has increased considerably in recent years in an attempt to reduce greenhouse gas emissions. To mitigate the uncertainties of these sources and to balance energy production with consumption an energy storage system (ESS) based on water electrolysis to produce hydrogen is studied. It can be applied to AC microgrids where several renewable energy sources and several loads may be connected which is the focus of the study. When excess electricity production is converted into hydrogen via water electrolysis low DC voltages and high currents are applied which needs specific power converters. The use of a three-phase buck-type current source converter in a single conversion stage allows for an adjustable DC voltage to be obtained at the terminals of the electrolyzer from a three-phase AC microgrid. The voltage control is preferred to the current control in order to improve the durability of the system. The classical control of the buck-type rectifier is generally done using two loops that correspond only to the control of its output variables. The lack of control of the input variables may generate oscillations of the grid current. Our contribution in this article is to propose a new control for the buck-type rectifier that controls both the input and output variables of the converter to avoid these grid current oscillations without the use of active damping methods. The suggested control method is based on an approach using the flatness properties of differential systems: it ensures the large-signal stability of the converter. The proposed control shows better results than the classical control especially in oscillation mitigation and dynamic performances with respect to the rejection of disturbances caused by a load step.
Extended Design Philosophy of Hydrogen Transport Pipelines
Oct 2024
Publication
This paper examines some specific design issues associated with hydrogen transportation via pipelines based on recent field development study of high-throughput hydrogen pipelines. A mechanical design review is undertaken and the current design practices and challenge are examined first. An array of key parameters considered to have significant bearing on the hydrogen pipeline general mechanical design are considered and assessed including OOR imperfections combined stress and design factors thermal gradients joint mismatch and fabrication fatigue assessment installation specifications and material consideration. Some of these are typically ignored for the conventional pipeline design but open to rationalization for hydrogen charged pipeline systems subject to material embrittlement risk arising from hydrogen absorption. Complementary to the current design standards and as a spur to discussion on the hydrogen pipeline design analysis special considerations and recommendations are proposed on materials specification additional design criteria and construction assessments and their rationale to mitigate material embrittlement with a view to improving hydrogen pipeline design reliability and integrity management potentially leading to some tangible cost saving.
Sensitivity Analysis of the Methanation Process in Underground Hydrogen Storage: A Case Study in Upper Austria
Jan 2025
Publication
Underground hydrogen storage (UHS) has attracted increasing attention as a promising technology for the largescale storage of renewable energy resources and the decarbonization of energy systems. This study aimed to identify critical parameters influencing UHS performance particularly the role of hydrogen conversion via in situ methanation and hydrogen recovery during production cycles. The main focus is the Lehen field in Upper Austria where a pilot hydrogen storage project was conducted under the leadership of RAG Austria AG. A layered reservoir model was developed on the basis of well-log data to simulate the field trials that occurred in 2016. A sensitivity analysis was performed with the one-parameter-at-a-time (OPAAT) method and the response surface methodology (RSM) to evaluate the impacts of different parameters on hydrogen methanation and hydrogen recovery. The RSM results indicate the activation energy as the most influential factor on methanation that accounts for ~20000 moles variation in generated methane significantly higher than the 6000 moles variance observed in OPAAT. However initial CO2 content contributes up to 15000 moles of methane gener ation as per RSM whereas OPAAT results in a larger impact of up to 32000 moles. These discrepancies demonstrate the limitations of isolated parameter analyses like OPAAT which may not accurately capture the complex interactions between factors influencing the methanation process. This research provides valuable in sights for optimizing UHS performance by emphasizing the influence of reservoir parameters on storage effi ciency. In addition a robust workflow for conducting comprehensive sensitivity analyses of UHS systems is established. By understanding these key factors the potential and predictability of large-scale UHS systems can be significantly improved.
Understanding Costs in Hydrogen Infrastructure Networks: A Multi-stage Approach for Spatially-aware Pipeline Design
Jan 2025
Publication
The emergence and design of hydrogen transport infrastructures are crucial steps towards the development of a hydrogen economy. However pipeline routing remains underdeveloped in hydrogen infrastructure design models despite its significant impact on the resultant cost and network configuration. Many previous studies assume uniform cost surfaces on which pipelines are designed. Studies that consider a variable cost surface focus on designing candidate networks rather than bespoke routes for a given infrastructure. This study proposes a novel multi-stage approach based on a graph-based Steiner tree with Obstacles Genetic Algorithm (StObGA) to route pipelines on a complex cost surface for multi-source multi-sink hydrogen networks. The application of StObGA results in cost savings of 20–40% compared to alternative graph-based methods that assume uniform cost surfaces. Furthermore this publication presents an in-depth methodological comparative analysis of different pipeline routing and sizing methods used in the literature and discusses their impact. Finally we demonstrate how this model can generate design variations and provide practical insights to inform industry and policymakers.
Optimal Sizing of Renewable Energy Storage: A Techno-economic Analysis of Hydrogen, Battery and Hybrid Systems Considering Degradation and Seasonal Storage
Feb 2023
Publication
Energy storage is essential to address the intermittent issues of renewable energy systems thereby enhancing system stability and reliability. This paper presents the design and operation optimisation of hydrogen/battery/ hybrid energy storage systems considering component degradation and energy cost volatility. The study ex amines a real-world case study which is a grid-connected warehouse located in a tropical climate zone with a photovoltaic solar system. An accurate and robust Multi-Objective Modified Firefly Algorithm (MOMFA) is proposed for the optimal design and operation of the energy storage systems of the case study. To further demonstrate the robustness and versatility of the optimisation method another synthetic case is tested for a location in a temperate climate zone that has a high seasonal mismatch. The modelling results show that the system in the tropical zone always provides a superior return when compared to a similar system in the temperate zone due to abundant solar resources. When comparing battery-only and hydrogen-only systems battery systems perform better than hydrogen systems in many situations with a higher self-sufficient ratio and net present value. However if there is high seasonal variation and a high requirement for using renewable energy (the penetration of renewable energy is >80 %) using hydrogen for energy storage is more beneficial. Furthermore the hybrid system (i.e. combining battery and hydrogen) outperforms battery-only and hydrogenonly systems. This is attributed to the complementary combination of hydrogen which can be used as a longterm energy storage option and battery which is utilised as a short-term option. This study also shows that storing hydrogen in a long-term strategy can lower component degradation enhance efficiency and increase the total economic performance of hydrogen and hybrid storage systems. The developed optimisation method and findings of this study can support the implementation of energy storage systems for renewable energy.
Advancements in Hydrogen Storage Vessels: A Bibliometric Analysis
Feb 2025
Publication
This bibliometric study examines the evolution of compressed-hydrogen storage technologies over the last 20 years revealing exponential growth in research and highlighting key advancements in compressed-hydrogen storage materials-based solutions and integration with renewable energy systems. The analysis highlights the pivotal role of composite material tanks and the filament-winding process in revolutionizing storage technology. These innovations have enhanced safety reduced weight and facilitated adaptation for use in automotive and industrial applications. Global research efforts are characterized by substantial international collaboration spearheaded by a small cohort of highly productive researchers and supported by a broader network of contributors. Notwithstanding the ongoing challenges pertaining to safety considerations and cost scalability the potential of hydrogen as a clean energy carrier and its role in balancing renewable energy systems serve to reinforce its importance in the transition to sustainable energy.
Insights into Site Evaluation for Underground Hydrogen Storage (UHS) on Gas Mixing-the Effects of Meter-Scale Heterogeniety and Associated Reservoir Characterization Parameters
Feb 2025
Publication
Underground Hydrogen Storage (UHS) as an emerging large-scale energy storage technology has shown great promise to ensure energy security with minimized carbon emission. A set of comprehensive UHS site evaluation criteria based on important factors that affect UHS performances is needed for its potential commercialization. This study focuses on the UHS site evaluation of gas mixing. The economic implications of gas mixing between injected hydrogen gas and the residual or cushion gas in a porous storage reservoir is an emerging problem for Underground Hydrogen Storage (UHS). It is already clear that reservoir scale heterogeneity such as formation structure (e.g. formation dip angle) and facies heterogeneity of the sedimentary rock may considerably affect the reservoir-scale mechanical dispersion-induced gas mixing during UHS in high permeability braided-fluvial systems (a common depleted reservoir type for UHS). Following this finding the current study uses the processmimicking modeling software to build synthetic meandering-fluvial reservoir models. Channel dimensions and the presence of abandoned channel facies are set as testing parameters resulting in 4 simulation cases with 200 realizations. Numerical flow simulations are performed on these models to investigate and compare the effects of reservoir and metre-scale heterogeneity on UHS gas mixing. Through simulation channel dimensions (reservoir-scale heterogeneity) are found to affect the uncertainty of produced gas composition due to mixing (represented by the P10-P90 difference of hydrogen fraction in a produced stream) by up to 42%. The presence of abandoned channel facies (metre-scale heterogeneity) depending on their architectural relationship with meander belts could also influence the gas mixing process to a comparable extent (up to 40%). Moreover we show that there is no clear statistical correlation between gas mixing and typical reservoir characterization parameters such as original gas in place (OGIP) average reservoir permeability and the Dykstra-Parsons coefficient. Instead the average time of travel of all reservoir cells calculated from flow diagnostics shows a negative correlation with the level of gas mixing. These results reveal the importance of 3D reservoir architecture analysis (integration of multiple levels of heterogeneity) to UHS site evaluation on gas mixing in depleted gas reservoirs. This study herein provides valuable insights into UHS site evaluation regarding gas mixing.
The Development, Current Status and Challenges of Salt Cavern Hydrogen Storage Technology in China
Feb 2025
Publication
This paper provides a systematic visualization of the development current status and challenges of salt cavern hydrogen storage technology based on the relevant literature from the past five years in the Web of Science Core Collection database. Using VOSviewer (version 1.6.20) and CiteSpace software (advanced version 6.3.R3) this study analyzes the field from a knowledge mapping perspective. The findings reveal that global research hotspots are primarily focused on multi-energy collaboration integration of renewable energy systems and exploration of commercialization highlighting the essential role of salt cavern hydrogen storage in driving the energy transition and promoting sustainable development. In China research mainly concentrates on theoretical innovations and technological optimizations to address complex geological conditions. Despite the rapid growth in the number of Chinese publications unresolved challenges remain such as the complexity of layered salt rock and thermodynamic coupling effects during highfrequency injection and extraction as well as issues concerning permeability and microbial activity. Moving forward China’s salt cavern hydrogen storage technology should focus on strengthening engineering practices suited to local geological conditions and enhancing the application of intelligent technologies thereby facilitating the translation of theoretical research into practical applications.
Long-Duration Energy Storage: A Critical Enabler for Renewable Integration and Decarbonization
Jan 2025
Publication
This paper focuses on the critical role of long-duration energy storage (LDES) technologies in facilitating renewable energy integration and achieving carbon neutrality. It presents a systematic review of four primary categories: mechanical energy storage chemical energy storage electrochemical energy storage and thermal energy storage. The study begins by analyzing the technical advantages and geographical constraints of pumped hydro energy storage (PHES) and compressed air energy storage (CAES) in high-capacity applications. It then explores the potential of hydrogen and synthetic fuels for long-duration clean energy storage. The section on electrochemical energy storage highlights the high energy density and flexible scalability of lithium-ion batteries and redox flow batteries. Finally the paper evaluates innovative advancements in large-scale thermal energy storage technologies including sensible heat storage latent heat storage and thermochemical heat storage. By comparing the performance metrics application scenarios and development prospects of various energy storage technologies this work provides theoretical support and practical insights for maximizing renewable energy utilization and driving the sustainable transformation of global energy systems.
Repurposing Natural Gas Pipelines for Hydrogen: Limits and Options from a Case Study in Germany
Jul 2024
Publication
We investigate the challenges and options for repurposing existing natural gas pipelines for hydrogen transportation. Challenges of re-purposing are mainly related to safety and due to the risk of hydrogen embrittlement of pipeline steels and the smaller molecular size of the gas. From an economic perspective the lower volumetric energy density of hydrogen compared to natural gas is a challenge. We investigate three pipeline repurposing options in depth: a) no modification to the pipeline but enhanced maintenance b) use of gaseous inhibitors and c) the pipe-in-pipe approach. The levelized costs of transportation of these options are compared for the case of the German Norddeutsche Erdgasleitung (NEL) pipeline. We find a similar cost range for all three options. This indicates that other criteria such as the sunk costs public acceptance and consumer requirements are likely to shape the decision making for gas pipeline repurposing.
No more items...