Transmission, Distribution & Storage
Improved Overall Hydrogen Storage Properties of a CsH and KH Co-doped Mg(NH2)2/2LiH System by Forming Mixed Amides of Li–K and Cs–Mg
Jun 2017
Publication
A CsH and KH co-doped Mg(NH2)2/2LiH composite was prepared with a composition of Mg(NH2)2/2LiH–(0.08 − x)CsH–xKH and the hydrogen storage characteristics was systematically investigated. The results showed that the presence of KH further improved the reaction thermodynamics and kinetics of hydrogen storage in a CsH-containing Mg(NH2)2/2LiH system. A sample with 0.04 mol CsH and 0.04 mol KH had optimal hydrogen storage performance; its dehydrogenation could proceed at 130 °C and hydrogenation at 120 °C with 4.89 wt% of hydrogen storage capacity. At 130 °C a 25-fold increase in the dehydrogenation rate was achieved for the CsH and KH co-doped sample. More importantly the CsH and KH co-doped sample also had good cycling stability because more than 97% of the hydrogen storage capacity (4.34 wt%) remained for theMg(NH2)2/2LiH–0.04CsH–0.04KH sample after 30 cycles. A structural characterization revealed that added CsH and KH participated in the dehydrogenation and hydrogenation reactions by reversibly forming mixed amides of Li–K and Cs–Mg which caused the improved hydrogen storage thermodynamics and kinetics.
Radiation Damage of Reactor Pressure Vessel Steels Studied by Positron Annihilation Spectroscopy—A Review
Oct 2020
Publication
Safe and long term operation of nuclear reactors is one of the most discussed challenges in nuclear power engineering. The radiation degradation of nuclear design materials limits the operational lifetime of all nuclear installations or at least decreases its safety margin. This paper is a review of experimental PALS/PLEPS studies of different nuclear reactor pressure vessel (RPV) steels investigated over last twenty years in our laboratories. Positron annihilation lifetime spectroscopy (PALS) via its characteristics (lifetimes of positrons and their intensities) provides useful information about type and density of radiation induced defects. The new results obtained on neutron-irradiated and hydrogen ions implanted German steels were compared to those from the previous studies with the aim to evaluate different processes (neutron flux/fluence thermal treatment or content of selected alloying elements) to the microstructural changes of neutron irradiated RPV steel specimens. The possibility of substitution of neutron treatment (connected to new defects creation) via hydrogen ions implantation was analyzed as well. The same materials exposed to comparable displacement damage (dpa) introduced by neutrons and accelerated hydrogen ions shown that in the results interpretation the effect of hydrogen as a vacancy-stabilizing gas must be considered too. This approach could contribute to future studies of nuclear fission/fusion design steels treated by high levels of neutron irradiation.
Research of Nanomaterials as Electrodes for Electrochemical Energy Storage
Jan 2022
Publication
This paper has experimentally proved that hydrogen accumulates in large quantities in metal-ceramic and pocket electrodes of alkaline batteries during their operation. Hydrogen accumulates in the electrodes in an atomic form. After the release of hydrogen from the electrodes a powerful exothermic reaction of atomic hydrogen recombination with a large energy release occurs. This exothermic reaction is the cause of thermal runaway in alkaline batteries. For the KSL-15 battery the gravimetric capacity of sintered nickel matrix of the oxide-nickel electrode as hydrogen storage is 20.2 wt% and cadmium electrode is 11.5 wt%. The stored energy density in the metal-ceramic matrix of the oxide-nickel electrode of the battery KSL-15 is 44 kJ/g and in the cadmium electrode it is 25 kJ/g. The similar values for the KPL-14 battery are as follows. The gravimetric capacity of the active substance of the pocket oxide-nickel electrode as a hydrogen storage is 22 wt% and the cadmium electrode is 16.9 wt%. The density of the stored energy in the active substance oxide-nickel electrode is 48 kJ/g and in the active substance of the cadmium electrode it is 36.8 kJ/g. The obtained results of the accumulation of hydrogen energy in the electrodes by the electrochemical method are three times higher than any previously obtained results using the traditional thermochemical method.
Large-scale Compressed Hydrogen Storage as Part of Renewable Electricity Storage Systems
Mar 2021
Publication
Storing energy in the form of hydrogen is a promising green alternative. Thus there is a high interest to analyze the status quo of the different storage options. This paper focuses on the large-scale compressed hydrogen storage options with respect to three categories: storage vessels geological storage and other underground storage alternatives. In this study we investigated a wide variety of compressed hydrogen storage technologies discussing in fair detail their theory of operation potential and challenges. The analysis confirms that a techno-economic chain analysis is required to evaluate the viability of one storage option over another for a case by case. Some of the discussed technologies are immature; however this does not rule out these technologies; rather it portrays the research opportunities in the field and the foreseen potential of these technologies. Furthermore we see that hydrogen would have a significant role in balancing intermittent renewable electricity production.
Review and Assessment of the Effect of Hydrogen Gas Pressure on the Embrittlement of Steels in Gaseous Hydrogen Environment
Apr 2021
Publication
Hydrogen gas pressure is an important test parameter when considering materials for high-pressure hydrogen applications. A large set of data on the effect of hydrogen gas pressure on mechanical properties in gaseous hydrogen experiments was reviewed. The data were analyzed by converting pressures into fugacities (f) and by fitting the data using an f|n| power law. For 95% of the data sets |n| was smaller than 0.37 which was discussed in the context of (i) rate-limiting steps in the hydrogen reaction chain and (ii) statistical aspects. This analysis might contribute to defining the appropriate test fugacities (pressures) to qualify materials for gaseous hydrogen applications.
Irreproducibility in Hydrogen Storage Material Research
Sep 2016
Publication
The storage of hydrogen in materials has received a significant amount of attention in recent years because this approach is widely thought to be one of the most promising solutions to the problem of storing hydrogen for use as an alternative energy carrier in a safe compact and affordable form. However there have been a number of high profile cases in which erroneous or irreproducible data have been published. Meanwhile the irreproducibility of research results in a wide range of disciplines has been the subject of an increasing amount of attention due to problems with some of the data in the literature. In this Perspective we provide a summary of the problems that have affected hydrogen storage material research. We also discuss the reasons behind them and possible ways of reducing the likelihood of further problems occurring in the future.
Nonlinear Model Predictive Control of an Autonomous Power System Based on Hydrocarbon Reforming and High Temperature Fuel Cell
Mar 2021
Publication
The integration and control of energy systems for power generation consists of multiple heterogeneous subsystems such as chemical electrochemical and thermal and contains challenges that arise from the multi-way interactions due to complex dynamic responses among the involved subsystems. The main motivation of this work is to design the control system for an autonomous automated and sustainable system that meets a certain power demand profile. A systematic methodology for the integration and control of a hybrid system that converts liquefied petroleum gas (LPG) to hydrogen which is subsequently used to generate electrical power in a high-temperature fuel cell that charges a Li-Ion battery unit is presented. An advanced nonlinear model predictive control (NMPC) framework is implemented to achieve this goal. The operational objective is the satisfaction of power demand while maintaining operation within a safe region and ensuring thermal and chemical balance. The proposed NMPC framework based on experimentally validated models is evaluated through simulation for realistic operation scenarios that involve static and dynamic variations of the power load.
Research and Development of Hydrogen Carrier Based Solutions for Hydrogen Compression and Storage
Aug 2022
Publication
Martin Dornheim,
Lars Baetcke,
Etsuo Akiba,
Jose-Ramón Ares,
Tom Autrey,
Jussara Barale,
Marcello Baricco,
Kriston Brooks,
Nikolaos Chalkiadakis,
Véronique Charbonnier,
Steven Christensen,
José Bellosta von Colbe,
Mattia Costamagna,
Erika Michela Dematteis,
Jose-Francisco Fernández,
Thomas Gennett,
David Grant,
Tae Wook Heo,
Michael Hirscher,
Katherine Hurst,
Mykhaylo V. Lototskyy,
Oliver Metz,
Paola Rizzi,
Kouji Sakaki,
Sabrina Sartori,
Emmanuel Stamatakis,
Alastair D. Stuart,
Athanasios Stubos,
Gavin Walker,
Colin Webb,
Brandon Wood,
Volodymyr A. Yartys and
Emmanuel Zoulias
Industrial and public interest in hydrogen technologies has risen strongly recently as hydrogen is the ideal means for medium to long term energy storage transport and usage in combination with renewable and green energy supply. In a future energy system the production storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper we summarize the newest developments of hydrogen carriers for storage and compression and in addition give an overview of the different research activities in this field.
Enabling Large-scale Hydrogen Storage in Porous Media – The Scientific Challenges
Jan 2021
Publication
Niklas Heinemann,
Juan Alcalde,
Johannes M. Miocic,
Suzanne J. T. Hangx,
Jens Kallmeyer,
Christian Ostertag-Henning,
Aliakbar Hassanpouryouzband,
Eike M. Thaysen,
Gion J. Strobel,
Cornelia Schmidt-Hattenberger,
Katriona Edlmann,
Mark Wilkinson,
Michelle Bentham,
Stuart Haszeldine,
Ramon Carbonell and
Alexander Rudloff
Expectations for energy storage are high but large-scale underground hydrogen storage in porous media (UHSP) remains largely untested. This article identifies and discusses the scientific challenges of hydrogen storage in porous media for safe and efficient large-scale energy storage to enable a global hydrogen economy. To facilitate hydrogen supply on the scales required for a zero-carbon future it must be stored in porous geological formations such as saline aquifers and depleted hydrocarbon reservoirs. Large-scale UHSP offers the much-needed capacity to balance inter-seasonal discrepancies between demand and supply decouple energy generation from demand and decarbonise heating and transport supporting decarbonisation of the entire energy system. Despite the vast opportunity provided by UHSP the maturity is considered low and as such UHSP is associated with several uncertainties and challenges. Here the safety and economic impacts triggered by poorly understood key processes are identified such as the formation of corrosive hydrogen sulfide gas hydrogen loss due to the activity of microbes or permeability changes due to geochemical interactions impacting on the predictability of hydrogen flow through porous media. The wide range of scientific challenges facing UHSP are outlined to improve procedures and workflows for the hydrogen storage cycle from site selection to storage site operation. Multidisciplinary research including reservoir engineering chemistry geology and microbiology more complex than required for CH4 or CO2 storage is required in order to implement the safe efficient and much needed large-scale commercial deployment of UHSP.
Influence of Thermal Treatment on SCC and HE Susceptibility of Supermartensitic Stainless Steel 16Cr5NiMo
Apr 2020
Publication
A 16Cr5NiMo supermartensitic stainless steel was subjected to different tempering treatments and analyzed by means of permeation tests and slow strain rate tests to investigate the effect of different amounts of retained austenite on its hydrogen embrittlement susceptibility. The 16Cr5NiMo steel class is characterized by a very low carbon content. It is the new variant of 13Cr4Ni. These steels are used in many applications for example compressors for sour environments offshore piping naval propellers aircraft components and subsea applications. The typical microstructure is a soft-tempered martensite very close to a body-centered cubic with a retained austenite fraction and limited δ ferrite phase. Supermartensitic stainless steels have high mechanical properties together with good weldability and corrosion resistance. The amount of retained austenite is useful to increase low temperature toughness and stress corrosion cracking resistance. Experimental techniques allowed us to evaluate diffusion coefficients and the mechanical behaviour of metals in stress corrosion cracking (SCC) conditions.
Hydrogen or Batteries for Grid Storage? A Net Energy Analysis
Apr 2015
Publication
Energy storage is a promising approach to address the challenge of intermittent generation from renewables on the electric grid. In this work we evaluate energy storage with a regenerative hydrogen fuel cell (RHFC) using net energy analysis. We examine the most widely installed RHFC configuration containing an alkaline water electrolyzer and a PEM fuel cell. To compare RHFC's to other storage technologies we use two energy return ratios: the electrical energy stored on invested (ESOIe) ratio (the ratio of electrical energy returned by the device over its lifetime to the electrical-equivalent energy required to build the device) and the overall energy efficiency (the ratio of electrical energy returned by the device over its lifetime to total lifetime electrical-equivalent energy input into the system). In our reference scenario the RHFC system has an ESOIeratio of 59 more favorable than the best battery technology available today (Li-ion ESOIe= 35). (In the reference scenario RHFC the alkaline electrolyzer is 70% efficient and has a stack lifetime of 100 000 h; the PEM fuel cell is 47% efficient and has a stack lifetime of 10 000 h; and the round-trip efficiency is 30%.) The ESOIe ratio of storage in hydrogen exceeds that of batteries because of the low energy cost of the materials required to store compressed hydrogen and the high energy cost of the materials required to store electric charge in a battery. However the low round-trip efficiency of a RHFC energy storage system results in very high energy costs during operation and a much lower overall energy efficiency than lithium ion batteries (0.30 for RHFC vs. 0.83 for lithium ion batteries). RHFC's represent an attractive investment of manufacturing energy to provide storage. On the other hand their round-trip efficiency must improve dramatically before they can offer the same overall energy efficiency as batteries which have round-trip efficiencies of 75–90%. One application of energy storage that illustrates the trade-off between these different aspects of energy performance is capturing overgeneration (spilled power) for later use during times of peak output from renewables. We quantify the relative energetic benefit of adding different types of energy storage to a renewable generating facility using [EROI]grid. Even with 30% round-trip efficiency RHFC storage achieves the same [EROI]grid as batteries when storing overgeneration from wind turbines because its high ESOIeratio and the high EROI of wind generation offset the low round-trip efficiency.
Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage
Oct 2017
Publication
Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds which have fascinating structures compositions and properties. Complex metal hydrides are a rapidly expanding class of materials approaching multi-functionality in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state act as novel battery materials both as electrolytes and electrode materials or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron nitrogen and aluminum e.g. metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.
The Hydrogen Storage Properties of MgH2–Fe7S8 Composites
Nov 2020
Publication
Nanostructured Fe7S8 was successfully synthesized and its catalytic effect on hydrogen absorption/desorption performance of MgH22 is systemically discussed. The MgH2 + 16.7 wt% Fe7S8 composite prepared by ball-milling method offers a striking catalytic activity for hydrogenation kinetics and also reduces the initial decomposition temperature for MgH22. The composite of MgH2–Fe7S8 can absorb 4.000 wt% of hydrogen within 1800 s at 473 K which is about twice that of pristine MgH2 (1.847 wt%) under the same conditions. The onset hydrogen release temperature of Fe7S8-modified MgH2 is 420 K which is 290 K lower than that of additive-free MgH2 (710 K). Meanwhile the doped sample could release 4.403 wt% of hydrogen within 1800 s at 623 K as compared to 2.479 wt% of hydrogen by MgH2. The activation energy for MgH2–Fe7S8 is about 130.0 kJ mol−1 approximately 36 kJ mol−1 lower than that of MgH2. The hydriding process of MgH2 + 16.7 wt% Fe7S8 follows the nucleation and growth mechanism. The prominent hydrogen storage performances are related to the reactions between MgH2 and Fe7S8. The newly formed MgS and Fe in the ball-milling process present a co-catalytic effect on the hydrogen storage performance of MgH22.
Innovation Insights Brief - Five Steps to Energy Storage
Jan 2020
Publication
As the global electricity systems are shaped by decentralisation digitalisation and decarbonisation the World Energy Council’s Innovation Insights Briefs explore the new frontiers in energy transitions and the challenges of keeping pace with fast moving developments. We use leadership interviews to map the state of play and case studies across the whole energy landscape and build a broader and deeper picture of new developments within and beyond the new energy technology value chain and business ecosystem.<br/><br/>With major decarbonisation efforts and the scaling up of renewable power generation the widespread adoption of energy storage continues to be described as the key game changer for electricity systems. Affordable storage systems are a critical missing link between intermittent renewable power and a 24/7 reliability net-zero carbon scenario. Beyond solving this salient challenge energy storage is being increasingly considered to meet other needs such as relieving congestion or smoothing out the variations in power that occur independently of renewable-energy generation. However whilst there is plenty of visionary thinking recent progress has focused on short-duration and battery-based energy storage for efficiency gains and ancillary services; there is limited progress in developing daily weekly and even seasonal cost-effective solutions which are indispensable for a global reliance on intermittent renewable energy sources.
Hydrogen Generation from Methanol at Near-room Temperature
Sep 2017
Publication
As a promising hydrogen storage medium methanol has many advantages such as a high hydrogen content (12.5 wt%) and low-cost. However conventional methanol–water reforming methods usually require a high temperature (>200 °C). In this research we successfully designed an effective strategy to fully convert methanol to hydrogen for at least 1900 min (∼32 h) at near-room temperature. The strategy involves two main procedures which are CH3OH →HCOOH → H2 and CH3OH → NADH → H2. HCOOH and the reduced form of nicotinamide adenine dinucleotide (NADH) are simultaneously produced through the dehydrogenation of methanol by the cooperation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Subsequently HCOOH is converted to H2 by a new iridium polymer complex catalyst and an enzyme mimic is used to convert NADH to H2 and nicotinamide adenine dinucleotide (NAD+). NAD+ can then be reconverted to NADH by repeating the dehydrogenation of methanol. This strategy and the catalysts invented in this research can also be applied to hydrogen production from other small organic molecules (e.g. ethanol) or biomass (e.g. glucose) and thus will have a high impact on hydrogen storage and applications.
Hydrogen Storage Behavior of Nanocrystalline and Amorphous Mg–Ni–Cu–La Alloys
Sep 2020
Publication
Alloying and structural modification are two effective ways to enhance the hydrogen storage kinetics and decrease the thermal stability of Mg and Mg-based alloys. In order to enhance the characteristics of Mg2Ni-type alloys Cu and La were added to an Mg2Ni-type alloy and the sample alloys (Mg24Ni10Cu2)100−xLax (x = 0 5 10 15 20) were prepared by melt spinning. The influences of La content and spinning rate on the gaseous and electrochemical hydrogen storage properties of the sample alloys were explored in detail. The structural identification carried out by XRD and TEM indicates that the main phase of the alloys is Mg2Ni and the addition of La results in the formation of the secondary phases LaMg3 and La2Mg17. The as-spun alloys have amorphous and nanocrystalline structures and the addition of La promotes glass formation. The electrochemical properties examined by an automatic galvanostatic system show that the samples possess a good activation capability and achieve their maximal discharge capacities within three cycles. The discharge potential characteristics were vastly ameliorated by melt spinning and La addition. The discharge capacities of the samples achieve their maximal values as the La content changes and the discharge capacities always increase with increasing spinning rate. The addition of La leads to a decline in hydrogen absorption capacity but it can effectively enhance the rate of hydrogen absorption. The addition of La and melt spinning significantly increase the hydrogen desorption rate due to the reduced activation energy.
Rock Mass Response for Lined Rock Caverns Subjected to High Internal Gas Pressure
Mar 2022
Publication
The storage of hydrogen gas in underground lined rock caverns (LRCs) enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel. Predicting the response of rock mass is important to ensure that gas leakage due to rupture of the steel lining does not occur. Analytical and numerical models can be used to estimate the rock mass response to high internal pressure; however the fitness of these models under different in situ stress conditions and cavern shapes has not been studied. In this paper the suitability of analytical and numerical models to estimate the maximum cavern wall tangential strain under high internal pressure is studied. The analytical model is derived in detail and finite element (FE) models considering both two-dimensional (2D) and three-dimensional (3D) geometries are presented. These models are verified with field measurements from the LRC in Skallen southwestern Sweden. The analytical model is inexpensive to implement and gives good results for isotropic in situ stress conditions and large cavern heights. For the case of anisotropic horizontal in situ stresses as the conditions in Skallen the 3D FE model is the best approach
Recent Advances on the Thermal Destabilization of Mg-based Hydrogen Storage Materials
Jan 2021
Publication
Magnesium hydride and its compounds have a high hydrogen storage capacity and are inexpensive and thus have been considered as one of the most promising hydrogen storage materials for on-board applications. Nevertheless Mg/MgH2 systems suffer from great drawbacks in terms of kinetics and thermodynamics for hydrogen uptake/release. Over the past decades although significant progress has been achieved with respect to hydrogen sorption kinetics in Mg/MgH2 systems their high thermal stability remains the main drawback which hinders their practical applications. Accordingly herein we present a brief summary of the synthetic routes and a comprehensive overview of the advantages and disadvantages of the promising strategies to effectively tune the thermodynamics of Mg-based materials such as alloying nanostructuring metastable phase formation changing reaction pathway and nano Mg-based composites. Among them nanostructuring and metastable phase formation which have the superiority of changing the thermodynamics without affecting the hydrogen capacity have attracted increasing interest in this field. To further optimize the hydrogen storage performance we specially emphasize novel nanostructured materials which have the advantage of combining alloy engineering nanostructuring and the synergistic effect to change the thermodynamics of Mg/MgH2 to some extent. Furthermore the remaining challenges and the directions of further research on MgH2 including the fundamental mechanism of the Mg–H bond instability advanced synthetic routes stabilizing nanostructures and predicting novel composite materials are proposed.
Corrosion Study of Pipeline Steel under Stress at Different Cathodic Potentials by EIS
Dec 2019
Publication
The effect of different cathodic potentials applied to the X70 pipeline steel immersed in acidified and aerated synthetic soil solution under stress using a slow strain rate test (SSRT) and electrochemical impedance spectroscopy (EIS) was studied. According to SSRT results and the fracture surface analysis by scanning electron microscopy (SEM) the steel susceptibility to stress corrosion cracking (SCC) increased as the cathodic polarization increased (Ecp). This behavior is attributed to the anodic dissolution at the tip of the crack and the increment of the cathodic reaction (hydrogen evolution) producing hydrogen embrittlement. Nevertheless when the Ecp was subjected to the maximum cathodic potential applied (−970 mV) the susceptibility decreased; this behavior is attributed to the fact that the anodic dissolution was suppressed and the process of the SCC was dominated only by hydrogen embrittlement (HE). The EIS results showed that the cathodic process was influenced by the mass transport (hydrogen diffusion) due to the steel undergoing so many changes in the metallic surface as a result of the applied strain that it generated active sites at the surface.
Dissecting the Exergy Balance of a Hydrogen Liquefier: Analysis of a Scaled-up Claude Hydrogen Liquefier with Mixed Refrigerant Pre-cooling
Oct 2020
Publication
For liquid hydrogen (LH2) to become an energy carrier in energy commodity markets at scales comparable to for instance LNG liquefier capacities must be scaled up several orders of magnitude. While state-of-the-art liquefiers can provide specific power requirements down to 10 kWh/kg a long-term target for scaled-up liquefier trains is 6 kWh/kg. High capacity will shift the cost weighting more towards operational expenditures which motivates for measures to improve the efficiency. Detailed exergy analysis is the best means for gaining a clear understanding of all losses occurring in the liquefaction process. This work analyses in detail a hydrogen liquefier that is likely to be realisable without intermediate demonstration phases and all irreversibilities are decomposed to the component level. The overall aim is to identify the most promising routes for improving the process. The overall power requirement is found to be 7.09 kWh/kg with stand-alone exergy efficiencies of the mixed-refrigerant pre-cooling cycle and the cryogenic hydrogen Claude cycle of 42.5% and 38.4% respectively. About 90% of the irreversibilities are attributed to the Claude cycle while the remainder is caused by pre-cooling to 114 K. For a component group subdivision the main contributions to irreversibilities are hydrogen compression and intercooling (39%) cryogenic heat exchangers (21%) hydrogen turbine brakes (15%) and hydrogen turbines (13%). Efficiency improvement measures become increasingly attractive with scale in general and several options exist. An effective modification is to recover shaft power from the cryogenic turbines. 80% shaft-to-shaft power recovery will reduce the power requirement to 6.57 kWh/kg. Another potent modification is to replace the single mixed refrigerant pre-cooling cycle with a more advanced mixed-refrigerant cascade cycle. For substantial scaling-up in the long term promising solutions can be cryogenic refrigeration cycles with refrigerant mixtures of helium/neon/hydrogen enabling the use of efficient and well scalable centrifugal compressors.
No more items...