Australia
Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water Splitting
Apr 2022
Publication
Electrocatalysts are capable of transforming water into hydrogen oxygen and therefore into energy in an environmentally friendly and sustainable manner. However the limitations in the research of high performance catalysts act as an obstructer in the development of using water as green energy. Here we report on a delicate method to prepare novel bimetallic metal organic framework derived electrocatalysts (C–NiCu–BDC–GO–CC) using graphene oxide (GO) modified carbon cloth as a 3D flexible and conductive substrate. The resultant electrocatalyst C–NiCu–BDC– GO–CC exhibited very low electron transfer resistance which benefited from its extremely thin 3D sponge-like morphology. Furthermore it showed excellent oxygen evolution reaction (OER) activity achieving 10 mA/cm2 at a low overpotential of 390 mV in 1 M KOH electrolyte with a remarkable durability of 10 h.
The Role of Hydrogen on the Behavior of Intergranular Cracks in Bicrystalline α-Fe Nanowires
Jan 2021
Publication
Hydrogen embrittlement (HE) has been extensively studied in bulk materials. However little is known about the role of H on the plastic deformation and fracture mechanisms of nanoscale materials such as nanowires. In this study molecular dynamics simulations are employed to study the influence of H segregation on the behavior of intergranular cracks in bicrystalline α-Fe nanowires. The results demonstrate that segregated H atoms have weak embrittling effects on the predicted ductile cracks along the GBs but favor the cleavage process of intergranular cracks in the theoretically brittle directions. Furthermore it is revealed that cyclic loading can promote the H accumulation into the GB region ahead of the crack tip and overcome crack trapping thus inducing a ductile-to-brittle transformation. This information will deepen our understanding on the experimentally-observed H-assisted brittle cleavage failure and have implications for designing new nanocrystalline materials with high resistance to HE.
Sustainable Power Supply Solutions for Off-Grid Base Stations
Sep 2015
Publication
The telecommunication sector plays a significant role in shaping the global economy and the way people share information and knowledge. At present the telecommunication sector is liable for its energy consumption and the amount of emissions it emits in the environment. In the context of off-grid telecommunication applications off-grid base stations (BSs) are commonly used due to their ability to provide radio coverage over a wide geographic area. However in the past the off-grid BSs usually relied on emission-intensive power supply solutions such as diesel generators. In this review paper various types of solutions (including in particular the sustainable solutions) for powering BSs are discussed. The key aspects in designing an ideal power supply solution are reviewed and these mainly include the pre-feasibility study and the thermal management of BSs which comprise heating and cooling of the BS shelter/cabinets and BS electronic equipment and power supply components. The sizing and optimization approaches used to design the BSs’ power supply systems as well as the operational and control strategies adopted to manage the power supply systems are also reviewed in this paper.
Hybrid Water Electrolysis: A New Sustainable Avenue for Energy-Saving Hydrogen Production
Oct 2021
Publication
Developing renewable energy-driven water splitting for sustainable hydrogen production plays a key role in achieving the carbon neutrality goal. Nevertheless the efficiency of traditional pure water electrolysis is severely hampered by the anodic oxygen evolution reaction (OER) due to its sluggish kinetics. In this context replacing OER with thermodynamically more favorable oxidation reactions to produce hydrogen via hybrid water electrolysis becomes an energy-saving hydrogen production scheme. Here the recent advances in hybrid water electrolysis are critically reviewed. First the fundamentals of electrochemical oxidation of typical organic molecules such as urea hydrazine and biomass are presented. Then the recent achievements in electrocatalysts for hybrid water electrolysis are introduced with an emphasis on outlining catalyst design strategies and the correlation between catalyst structure and performance. Finally future perspectives in this field for a sustainable hydrogen economy are proposed.
Recent Progress in Ammonia Fuel Cells and their Potential Applications
Nov 2020
Publication
Conventional technologies are largely powered by fossil fuel exploitation and have ultimately led to extensive environmental concerns. Hydrogen is an excellent carbon-free energy carrier but its storage and long-distance transportation remain big challenges. Ammonia however is a promising indirect hydrogen storage medium that has well-established storage and transportation links to make it an accessible fuel source. Moreover the notion of ‘green ammonia’ synthesised from renewable energy sources is an emerging topic that may open significant markets and provide a pathway to decarbonise a variety of applications reliant on fossil fuels. Herein a comparative study based on the chosen design working principles advantages and disadvantages of direct ammonia fuel cells is summarised. This work aims to review the most recent advances in ammonia fuel cells and demonstrates how close this technology type is to integration with future applications. At present several challenges such as material selection NOx formation CO2 tolerance limited power densities and long term stability must still be overcome and are also addressed within the contents of this review.
Research and Development of Hydrogen Carrier Based Solutions for Hydrogen Compression and Storage
Aug 2022
Publication
Martin Dornheim,
Lars Baetcke,
Etsuo Akiba,
Jose-Ramón Ares,
Tom Autrey,
Jussara Barale,
Marcello Baricco,
Kriston Brooks,
Nikolaos Chalkiadakis,
Véronique Charbonnier,
Steven Christensen,
José Bellosta von Colbe,
Mattia Costamagna,
Erika Michela Dematteis,
Jose-Francisco Fernández,
Thomas Gennett,
David Grant,
Tae Wook Heo,
Michael Hirscher,
Katherine Hurst,
Mykhaylo V. Lototskyy,
Oliver Metz,
Paola Rizzi,
Kouji Sakaki,
Sabrina Sartori,
Emmanuel Stamatakis,
Alastair D. Stuart,
Athanasios Stubos,
Gavin Walker,
Colin Webb,
Brandon Wood,
Volodymyr A. Yartys and
Emmanuel Zoulias
Industrial and public interest in hydrogen technologies has risen strongly recently as hydrogen is the ideal means for medium to long term energy storage transport and usage in combination with renewable and green energy supply. In a future energy system the production storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper we summarize the newest developments of hydrogen carriers for storage and compression and in addition give an overview of the different research activities in this field.
Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage
Oct 2017
Publication
Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds which have fascinating structures compositions and properties. Complex metal hydrides are a rapidly expanding class of materials approaching multi-functionality in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state act as novel battery materials both as electrolytes and electrode materials or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron nitrogen and aluminum e.g. metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.
Net Zero and Geospheric Return: Actions Today for 2030 and Beyond
Sep 2020
Publication
In a report co-authored by Columbia University’s Centre on Global Energy Policy (CGEP) and the Global CCS Institute titled ‘Net Zero and Geospheric Return: Actions today for 2030’ findings reveal that climate finance policies and the development of carbon dioxide removal technologies need to grow rapidly within the next 10 years in order to curb climate change and hit net-zero targets.
The report unveils key climate actions required to avoid climate catastrophe:
With 2020 set to close the hottest decade on record CO2 emissions need to drop by 50% to achieve net-zero climate goals by 2030 The rapid deployment of climate mitigating infrastructure needs to occur including the expansion of CO2 pipelines from the current 8000 km to 43000 km by 2030 Clear climate polices which reduce the financial and regulatory risk of CO2 capture and storage and increase CO2 storage options need to be quickly developed and implemented.
Link to document on Global CCS Institute Website
The report unveils key climate actions required to avoid climate catastrophe:
With 2020 set to close the hottest decade on record CO2 emissions need to drop by 50% to achieve net-zero climate goals by 2030 The rapid deployment of climate mitigating infrastructure needs to occur including the expansion of CO2 pipelines from the current 8000 km to 43000 km by 2030 Clear climate polices which reduce the financial and regulatory risk of CO2 capture and storage and increase CO2 storage options need to be quickly developed and implemented.
Link to document on Global CCS Institute Website
Stronger Together: Multi-annual Variability of Hydrogen Production Supported by Wind Power in Sweden
Mar 2021
Publication
Hydrogen produced from renewable electricity will play an important role in deep decarbonisation of industry. However adding large electrolyser capacities to a low-carbon electricity system also increases the need for additional electricity generation from variable renewable energies. This will require hydrogen production to be variable unless other sources provide sufficient flexibility. Existing sources of flexibility in hydro-thermal systems are hydropower and thermal generation which are both associated with sustainability concerns. In this work we use a dispatch model for the case of Sweden to assess the power system operation with large-scale electrolysers assuming that additional wind power generation matches the electricity demand of hydrogen production on average. We evaluate different scenarios for restricting the flexibility of hydropower and thermal generation and include 29 different weather years to test the impact of variable weather regimes. We show that (a) in all scenarios electrolyser utilisation is above 60% on average (b) the inter-annual variability of hydrogen production is substantial if thermal power is not dispatched for electrolysis and (c) this problem is aggravated if hydropower flexibility is also restricted. Therefore either long-term storage of hydrogen or backup hydrogen sources may be necessary to guarantee continuous hydrogen flows. Large-scale dispatch of electrolysis capacity supported by wind power makes the system more stable if electrolysers ramp down in rare hours of extreme events with low renewable generation. The need for additional backup capacities in a fully renewable electricity system will thus be reduced if wind power and electrolyser operation are combined in the system.
Influence of Pressure, Temperature and Organic Surface Concentration on Hydrogen Wettability of Caprock; Implications for Hydrogen Geo-storage
Sep 2021
Publication
Hydrogen (H2) as a cleaner fuel has been suggested as a viable method of achieving the decarbonization objectives and meeting increasing global energy demand. However successful implementation of a full-scale hydrogen economy requires large-scale hydrogen storage (as hydrogen is highly compressible). A potential solution to this challenge is injecting hydrogen into geologic formations from where it can be withdrawn again at later stages for utilization purposes. The geostorage capacity of a porous formation is a function of its wetting characteristics which strongly influence residual saturations fluid flow rate of injection rate of withdrawal and containment security. However literature severely lacks information on hydrogen wettability in realistic geological and caprock formations which contain organic matter (due to the prevailing reducing atmosphere). We therefore measured advancing (θa) and receding (θr) contact angles of mica substrates at various representative thermo-physical conditions (pressures 0.1-25 MPa temperatures 308–343 K and stearic acid concentrations of 10−9 - 10−2 mol/L). The mica exhibited an increasing tendency to become weakly water-wet at higher temperatures lower pressures and very low stearic acid concentration. However it turned intermediate-wet at higher pressures lower temperatures and increasing stearic acid concentrations. The study suggests that the structural H2 trapping capacities in geological formations and sealing potentials of caprock highly depend on the specific thermo-physical condition. Thus this novel data provides a significant advancement in literature and will aid in the implementation of hydrogen geo-storage at an industrial scale.
Renewable Hydrogen for the Chemical Industry
Aug 2020
Publication
Hydrogen is often touted as the fuel of the future but hydrogen is already an important feedstock for the chemical industry. This review highlights current means for hydrogen production and use and the importance of progressing R&D along key technologies and policies to drive a cost reduction in renewable hydrogen production and enable the transition of chemical manufacturing toward green hydrogen as a feedstock and fuel. The chemical industry is at the core of what is considered a modern economy. It provides commodities and important materials e.g. fertilizers synthetic textiles and drug precursors supporting economies and more broadly our needs. The chemical sector is to become the major driver for oil production by 2030 as it entirely relies on sufficient oil supply. In this respect renewable hydrogen has an important role to play beyond its use in the transport sector. Hydrogen not only has three times the energy density of natural gas and using hydrogen as a fuel could help decarbonize the entire chemical manufacturing but also the use of green hydrogen as an essential reactant at the basis of many chemical products could facilitate the convergence toward virtuous circles. Enabling the production of green hydrogen at cost could not only enable new opportunities but also strengthen economies through a localized production and use of hydrogen. Herein existing technologies for the production of renewable hydrogen including biomass and water electrolysis and methods for the effective storage of hydrogen are reviewed with an emphasis on the need for mitigation strategies to enable such a transition.
Energetics of LOHC: Structure-Property Relationships from Network of Thermochemical Experiments and in Silico Methods
Feb 2021
Publication
The storage of hydrogen is the key technology for a sustainable future. We developed an in silico procedure which is based on the combination of experimental and quantum-chemical methods. This method was used to evaluate energetic parameters for hydrogenation/dehydrogenation reactions of various pyrazine derivatives as a seminal liquid organic hydrogen carriers (LOHC) that are involved in the hydrogen storage technologies. With this in silico tool the tempo of the reliable search for suitable LOHC candidates will accelerate dramatically leading to the design and development of efficient materials for various niche applications.
Technology Investment Roadmap First Low Emissions Technology Statement – 2020 Global Leadership in Low Emissions Technologies
Sep 2020
Publication
Australia’s Technology Investment Roadmap is a strategy to accelerate development and commercialisation of low emissions technologies.
Annual low emissions statements are key milestones of the roadmap process. These statements prioritise low emissions technologies with potential to deliver the strongest economic and emissions reduction outcomes for Australia. They focus government investment on new and emerging technologies.
In this Statement
The first Low Emissions Technology Statement presents a vision of a prosperous Australia recognised as a global low emissions technology leader
Annual low emissions statements are key milestones of the roadmap process. These statements prioritise low emissions technologies with potential to deliver the strongest economic and emissions reduction outcomes for Australia. They focus government investment on new and emerging technologies.
In this Statement
The first Low Emissions Technology Statement presents a vision of a prosperous Australia recognised as a global low emissions technology leader
- priority technologies and economic stretch goals
- Australia’s big technology challenges and opportunities
- Technology Investment Framework
- monitoring transparency and impact evaluation
Synergistic Hybrid Marine Renewable Energy Harvest System
Mar 2024
Publication
This paper proposes a novel hybrid marine renewable energy-harvesting system to increase energy production reduce levelized costs of energy and promote renewable marine energy. Firstly various marine renewable energy resources and state-of-art technologies for energy exploitation and storage were reviewed. The site selection criteria for each energy-harvesting approach were identified and a scoring matrix for site selection was proposed to screen suitable locations for the hybrid system. The Triton Knoll wind farm was used to demonstrate the effectiveness of the scoring matrix. An integrated energy system was designed and FE modeling was performed to assess the effects of additional energy devices on the structural stability of the main wind turbine structure. It has been proven that the additional energy structures have a negligible influence on foundation/structure deflection.
Converting Sewage Water into H2 Fuel Gas Using Cu/CuO Nanoporous Photocatalytic Electrodes
Feb 2022
Publication
This work reports on H2 fuel generation from sewage water using Cu/CuO nanoporous (NP) electrodes. This is a novel concept for converting contaminated water into H2 fuel. The preparation of Cu/CuO NP was achieved using a simple thermal combustion process of Cu metallic foil at 550 ◦C for 1 h. The Cu/CuO surface consists of island-like structures with an inter-distance of 100 nm. Each island has a highly porous surface with a pore diameter of about 250 nm. X-ray diffraction (XRD) confirmed the formation of monoclinic Cu/CuO NP material with a crystallite size of 89 nm. The prepared Cu/CuO photoelectrode was applied for H2 generation from sewage water achieving an incident to photon conversion efficiency (IPCE) of 14.6%. Further the effects of light intensity and wavelength on the photoelectrode performance were assessed. The current density (Jph) value increased from 2.17 to 4.7 mA·cm−2 upon raising the light power density from 50 to 100 mW·cm−2 . Moreover the enthalpy (∆H*) and entropy (∆S*) values of Cu/CuO electrode were determined as 9.519 KJ mol−1 and 180.4 JK−1 ·mol−1 respectively. The results obtained in the present study are very promising for solving the problem of energy in far regions by converting sewage water to H2 fuel.
The Global Status of CCS 2019: Targeting Climate Change
Dec 2019
Publication
CCS is an emissions reduction technology critical to meeting global climate targets. The Global Status of CCS 2019 documents important milestones for CCS over the past 12 months its status across the world and the key opportunities and challenges it faces. We hope this report will be read and used by governments policy-makers academics media commentators and the millions of people who care about our climate.
Hydrogen Impacts on Downstream Installation and Appliances
Nov 2019
Publication
The report analyses the technical impacts to end-users of natural gas in Australian distribution networks when up to 10% hydrogen (by volume) is mixed with natural gas.
The full report can be found at this link.
The full report can be found at this link.
Hydrogen to Support Electricity Systems
Jan 2020
Publication
The Department of Environment Land Water and Planning (DELWP) engaged GHD Advisory and ACIL Allen to assess the roles opportunities and challenges that hydrogen might play in the future to support Australia’s power systems and to determine whether the relevant electricity system regulatory frameworks are compatible with both enabling an industrial-scale1 hydrogen production capability and the use of hydrogen for power generation.
You can read the full report on the website of the Australian Government at this link
You can read the full report on the website of the Australian Government at this link
Regulatory Mapping for Future Fuels
May 2020
Publication
Australia’s gas infrastructure is currently subject to regulations that were designed for a natural-gas only network system. Future Fuels CRC has released a full report and database of regulations to share exactly how Australia’s current gas regulations can be modernised to enable hydrogen biomethane and other potential future fuels.
This research thoroughly assessed Australia’s current regulatory framework to identify the regulations that will require modernisation to facilitate the use of future fuels within Australia’s energy networks and align them with the goals of Australia’s National Hydrogen Strategy. This study builds on the initial work completed as part of Australia’s National Hydrogen Strategy and creates a comprehensive regulatory map of relevant legislation across the natural gas production and supply chain which may be impacted by the addition of future fuels such as hydrogen and biomethane.
The research was delivered by RMIT University of Sydney and GPA Engineering supported by our industry and government participants APA APGA ATCO AusNet Services ENA Energy Safe Victoria Jemena and the South Australian Government.
The study’s report summarises the key issues and the direction of possible solutions. The study also created a database that holds details of legislation by state and territory as well as Commonwealth legislation and applicable Australian standards. The database is designed to be readily updated as these regulations continue to evolve.
The Australian energy industry and regulators benefit from this study by ensuring that any regulatory changes required for future fuels are identified early so that appropriate regulatory changes can be initiated and delivered. These changes will enable the many highly-regulated pilot projects happening across Australia to expand and develop under a modernised and effective regulatory environment.
You can find the full report on the Future Fuels CRC website here
This research thoroughly assessed Australia’s current regulatory framework to identify the regulations that will require modernisation to facilitate the use of future fuels within Australia’s energy networks and align them with the goals of Australia’s National Hydrogen Strategy. This study builds on the initial work completed as part of Australia’s National Hydrogen Strategy and creates a comprehensive regulatory map of relevant legislation across the natural gas production and supply chain which may be impacted by the addition of future fuels such as hydrogen and biomethane.
The research was delivered by RMIT University of Sydney and GPA Engineering supported by our industry and government participants APA APGA ATCO AusNet Services ENA Energy Safe Victoria Jemena and the South Australian Government.
The study’s report summarises the key issues and the direction of possible solutions. The study also created a database that holds details of legislation by state and territory as well as Commonwealth legislation and applicable Australian standards. The database is designed to be readily updated as these regulations continue to evolve.
The Australian energy industry and regulators benefit from this study by ensuring that any regulatory changes required for future fuels are identified early so that appropriate regulatory changes can be initiated and delivered. These changes will enable the many highly-regulated pilot projects happening across Australia to expand and develop under a modernised and effective regulatory environment.
You can find the full report on the Future Fuels CRC website here
Australian and Global Hydrogen Demand Growth Scenario Analysis
Nov 2019
Publication
Deloitte was commissioned by the National Hydrogen Taskforce established by the COAG Energy Council to undertake an Australian and Global Growth Scenario Analysis. Deloitte analysed the current global hydrogen industry its development and growth potential and how Australia can position itself to best capitalise on the newly forming industry.
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
No more items...