China, People’s Republic
Coal Decarbonization: A State-of-the-art Review of Enhanced Hydrogen Production in Underground Coal Gasification
Aug 2022
Publication
The world is endowed with a tremendous amount of coal resources which are unevenly distributed in a few nations. While sustainable energy resources are being developed and deployed fossil fuels dominate the current world energy consumption. Thus low-carbon clean technologies like underground coal gasification (UCG) ought to play a vital role in energy supply and ensuring energy security in the foreseeable future. This paper provides a state-of-the-art review of the world's development of UCG for enhanced hydrogen production. It is revealed that the world has an active interest in decarbonizing the coal industry for hydrogen-oriented research in the context of UCG. While research is ongoing in multiple coal-rich nations China dominates the world's efforts in both industrial-scale UCG pilots and laboratory experiments. A variety of coal ranks were tested in UCG for enhanced hydrogen output and the possibilities of linking UCG with other prospective technologies had been proposed and critically scrutinized. Moreover it is found that transborder collaborations are in dire need to propel a faster commercialization of UCG in an ever-more carbon-conscious world. Furthermore governmental and financial support is necessary to incentivize further UCG development for large-scale hydrogen production.
Analysis of Hydrogen Gas Injection at Various Compositions in an Existing Natural Gas Pipeline
Jul 2021
Publication
The lack of hydrogen (H2) transportation infrastructure restricts the development of the H2 industry. Owing to the high investment of building specific facilities using existing natural gas (NG) pipelines to transport a blend of H2 and NG (H2NG) is a viable means of transportation and approach for large-scale long-time storage. However variation in the thermo-physical properties of an H2NG blend will impact the performance of pipeline appliances. To address the gaps in H2 transmission via an NG system in the context of energy consumption in the present paper a one-dimensional pipeline model is proposed to predict the blended flow in a real existing pipeline (Shan–Jing I China). The data of NG components were derived from real gas fields. Furthermore the influence of H2 fractions on pipeline energy coefficient and the layout of pressurization stations are comprehensively analyzed. In addition the case of intermediate gas injection is investigated and the effects of injection positions are studied. This study serves as a useful reference for the design of an H2NG pipeline system. The present study reveals that with the increasing in H2 fraction the distance between pressure stations increases. Furthermore when the arrangement of original pressure stations is maintained overpressure occur. Intermediate gas injection results in the inlet pressure of subsequent pressurization stations reducing. Using existing pipeline network to transport H2NG it is necessary to make appropriate adjustment.
Combustion Characterization of Hybrid Methane-hydrogen Gas in Domestic Swirl Stoves
Oct 2022
Publication
Combustion of hybrid natural gas (methane) and hydrogen mixture in domestic swirl stoves has been characterized using hot-state experiments and numerical analysis. The detailed combustion mechanism of methane and hydrogen (GRI-Mech 3.0) has been simplified to obtain reduced number of chemical reactions involved (82 % reduction). The novel simplified combustion mechanism developed has been used to obtain combustion characteristics of hybrid methane-hydrogen mixture. The difference between the calculations from the detailed and the simplified mechanisms has been found to be Combustion of hybrid natural gas (methane) and hydrogen mixture in domestic swirl stoves has been characterized using hot-state experiments and numerical analysis. The detailed combustion mechanism of methane and hydrogen (GRI-Mech 3.0) has been simplified to obtain reduced number of chemical reactions involved (82 % reduction). The novel simplified combustion mechanism developed has been used to obtain combustion characteristics of hybrid methane-hydrogen mixture. The difference between the calculations from the detailed and the simplified mechanisms has been found to be <1 %. A numerical model based on the simplified combustion model is developed rigorously tested and validated against hot-state tests. The results depict that the maximum difference in combustion zone’s average temperature is <13 %. The investigations have then been extended to hybrid methane-hydrogen mixtures with varying volume fraction of hydrogen. The results show that for a mixture containing 15 % hydrogen the release of CO due to combustion reduces by 25 % while the combustion zone’s average temperature reduces by 6.7 %. The numerical results and hot-state tests both confirm that the temperature remains stable when hybrid methane-hydrogen mixture is used in domestic swirl gas stoves demonstrating its effectiveness in cooking processes.
Experimental Study of the Feasibility of In‐Situ Hydrogen Generation from Gas Reservoir
Nov 2022
Publication
Due to there is no better way to exploit depleted gas reservoirs and hydrogen can generate from natural gas combustion. In this paper the possibility of in‐situ hydrogen generation in air injected gas reservoirs was determined through pseudo dynamic experiments. The study indicated that highertemperature and steam/methane ratio can generate more hydrogen and the temperature should not be lower than 600 °C within gas reservoirs. The debris has positive catalysis for hydrogen generation. The maximum mole fraction of hydrogen was 26.63% at 600 °C.
Numerical Study on Thermodynamic Coupling Characteristics of Fluid Sloshing in a Liquid Hydrogen Tank for Heavy-Duty Trucks
Feb 2023
Publication
The large-amplitude sloshing behavior of liquid hydrogen in a tank for heavy-duty trucks may have adverse effects on the safety and stability of driving. With successful application of liquid hydrogen in the field of new energy vehicles the coupled thermodynamic performance during liquid hydrogen large-amplitude sloshing becomes more attractive. In this paper a three-dimensional numerical model is established to simulate the thermodynamic coupling characteristics during liquid hydrogen sloshing in a horizontal tank for heavy-duty trucks. The calculation results obtained by the developed model are in good agreement with experimental data for liquid hydrogen. Based on the established 3D model the large-amplitude sloshing behavior of liquid hydrogen under extreme acceleration as well as the effects of acceleration magnitude and duration on liquid hydrogen sloshing is numerically determined. The simulation results show that under the influence of liquid hydrogen large-amplitude sloshing the convective heat transfer of fluid in the tank is greatly strengthened resulting in a decrease in the vapor temperature and an increase in the liquid temperature. In particular the vapor condensation caused by the sloshing promotes a rapid reduction of pressure in the tank. When the acceleration magnitude is 5 g with a duration of 200 ms the maximum reduction of ullage pressure is 1550 Pa and the maximum growth of the force on the right wall is 3.89 kN. Moreover the acceleration magnitude and duration have a remarkable influence on liquid hydrogen sloshing. With the increase in acceleration magnitude or duration there is a larger sloshing amplitude for the liquid hydrogen. When the duration of acceleration is 200 ms compared with the situation at the acceleration magnitude of 5 g the maximum reductions of ullage pressure decrease by 9.46% and 55.02% and the maximum growth of forces on the right wall decrease by 80.57% and 99.53% respectively at 2 g and 0.5 g. Additionally when the acceleration magnitude is 5 g in contrast with the situation at a duration of acceleration of 200 ms the maximum-ullage-pressure drops decrease by 8.17% and 21.62% and the maximum increase in forces on the right wall decrease by 71.80% and 88.63% at 100 ms and 50 ms respectively. These results can provide a reference to the safety design of horizontal liquid hydrogen tanks for heavy-duty trucks.
Hydrogen-rich Fuel Combustion Characteristics of a Counter Dual-swirl Combustor at Fixed Power
Nov 2021
Publication
In order to reduce the emission of carbon dioxide gas turbine power station will expect to use more clean fuels in the future especially those like hydrogen. Hydrogen-rich fuel(syngas) combustion characteristics of the novel counter dual-swirl gas turbine combustor under fixed calorific value input were studied by experiment and numerical simulation. PIV and temperature rake were used respectively to obtain the velocity and temperature distribution in the combustion chamber. The turbulence model of Reynolds stress and the kinetic model of detailed chemical syngas combustion were used simultaneously in the computational simulations. Based on the obtained results it was found that there is a reasonable agreement between the numerical results and the experimental data. The analysis shows that the flow field and temperature field of the combustor were almost unaffected by the change of hydrogen content and shows a nearly identical distribution structure under all conditions with hydrogen content below 90%; but when the H2 content reaches 90% the above characteristic plots were significantly changed. As the H2 content in the fuel increases on the center line of the combustor the jet velocity of the fuel decreased the temperature of the gas flow increased the recovery coefficient of total pressure decreased and the temperature distribution at the combustor outlet became more uniform. In addition it is also found that the syngas turbine with the same output power consumed less fuel than the gas turbine with hydrocarbon fuel. This paper provides reference for the study of hydrogen-rich syngas turbine and the application of hydrogen-rich fuel in combustor of energy system.
Effect of H2 on Blast Furnace Ironmaking: A Review
Nov 2022
Publication
Under the background of “carbon peaking” and “carbon neutralization” the green transformation of iron and steel enterprises is imminent. The hydrogen-rich smelting technology of blast furnaces is very important for reducing energy consumption and CO2 emission in ironmaking systems and it is one of the important directions of green and low-carbon development of iron and steel enterprises. In this paper the research status of the thermal state reduction mechanism of iron-bearing burden coke degradation behavior and formation of the cohesive zone in various areas of blast furnace after hydrogen-rich smelting is summarized which can make a more clear and comprehensive understanding for the effect of H2 on blast furnace ironmaking. Meanwhile based on the current research situation it is proposed that the following aspects should be further studied in the hydrogen-rich smelting of blast furnaces: (1) the utilization rate of hydrogen and degree of substitution for direct reduction (2) combustion behavior of fuel in raceway (3) control of gas flow distribution in the blast furnace (4) operation optimization of the blast furnace.
Data-driven Scheme for Optimal Day-ahead Operation of a Wind/hydrogen System Under Multiple Uncertainties
Nov 2022
Publication
Hydrogen is believed as a promising energy carrier that contributes to deep decarbonization especially for the sectors hard to be directly electrified. A grid-connected wind/hydrogen system is a typical configuration for hydrogen production. For such a system a critical barrier lies in the poor cost-competitiveness of the produced hydrogen. Researchers have found that flexible operation of a wind/hydrogen system is possible thanks to the excellent dynamic properties of electrolysis. This finding implies the system owner can strategically participate in day-ahead power markets to reduce the hydrogen production cost. However the uncertainties from imperfect prediction of the fluctuating market price and wind power reduce the effectiveness of the offering strategy in the market. In this paper we proposed a decision-making framework which is based on data-driven robust chance constrained programming (DRCCP). This framework also includes multi-layer perception neural network (MLPNN) for wind power and spot electricity price prediction. Such a DRCCP-based decision framework (DDF) is then applied to make the day-ahead decision for a wind/hydrogen system. It can effectively handle the uncertainties manage the risks and reduce the operation cost. The results show that for the daily operation in the selected 30 days offering strategy based on the framework reduces the overall operation cost by 24.36% compared to the strategy based on imperfect prediction. Besides we elaborate the parameter selections of the DRCCP to reveal the best parameter combination to obtain better optimization performance. The efficacy of the DRCCP method is also highlighted by the comparison with the chance-constrained programming method.
Progress of Performance, Emission, and Technical Measures of Hydrogen Fuel Internal-Combustion Engines
Oct 2022
Publication
To achieve the goals of low carbon emission and carbon neutrality some urgent challenges include the development and utilization of low-carbon or zero-carbon internal combustion engine fuels. Hydrogen as a clean efficient and sustainable fuel has the potential to meet the abovementioned challenges. Thereby hydrogen internal combustion engines have been attracting attention because of their zero carbon emissions high thermal efficiency high reliability and low cost. In this paper the opportunities and challenges faced by hydrogen internal-combustion engines were analyzed. The progress of hydrogen internal-combustion engines on the mixture formation combustion mode emission reduction knock formation mechanism and knock suppression measures were summarized. Moreover possible technical measures for hydrogen internal-combustion engines to achieve higher efficiency and lower emissions were suggested.
A Review of Hydrogen Purification Technologies for Fuel Cell Vehicles
Mar 2021
Publication
Nowadays we face a series of global challenges including the growing depletion of fossil energy environmental pollution and global warming. The replacement of coal petroleum and natural gas by secondary energy resources is vital for sustainable development. Hydrogen (H2 ) energy is considered the ultimate energy in the 21st century because of its diverse sources cleanliness low carbon emission flexibility and high efficiency. H2 fuel cell vehicles are commonly the end-point application of H2 energy. Owing to their zero carbon emission they are gradually replacing traditional vehicles powered by fossil fuel. As the H2 fuel cell vehicle industry rapidly develops H2 fuel supply especially H2 quality attracts increasing attention. Compared with H2 for industrial use the H2 purity requirements for fuel cells are not high. Still the impurity content is strictly controlled since even a low amount of some impurities may irreversibly damage fuel cells’ performance and running life. This paper reviews different versions of current standards concerning H2 for fuel cell vehicles in China and abroad. Furthermore we analyze the causes and developing trends for the changes in these standards in detail. On the other hand according to characteristics of H2 for fuel cell vehicles standard H2 purification technologies such as pressure swing adsorption (PSA) membrane separation and metal hydride separation were analyzed and the latest research progress was reviewed.
Flexibility Improvement Evaluation of Hydrogen Storage Based on Electricity-Hydrogen Coupled Energy Model
Nov 2021
Publication
To achieve carbon neutrality by 2060 decarbonization in the energy sector is crucial. Hydrogen is expected to be vital for achieving the aim of carbon neutrality for two reasons: use of power-to-hydrogen (P2H) can avoid carbon emissions from hydrogen production which is traditionally performed using fossil fuels; Hydrogen from P2H can be stored for long durations in large scales and then delivered as industrial raw material or fed back to the power system depending on the demand. In this study we focus on the analysis and evaluation of hydrogen value in terms of improvement in the flexibility of the energy system particularly that derived from hydrogen storage. An electricity–hydrogen coupled energy model is proposed to realize the hourly-level operation simulation and capacity planning optimization aiming at the lowest cost of energy. Based on this model and considering Northwest China as the region of study the potential of improvement in the flexibility of hydrogen storage is determined through optimization calculations in a series of study cases with various hydrogen demand levels. The results of the quantitative calculations prove that effective hydrogen storage can improve the system flexibility by promoting the energy demand balance over a long term contributing toward reducing the investment cost of both generators and battery storage and thus the total energy cost. This advantage can be further improved when the hydrogen demand rises. However a cost reduction by 20% is required for hydrogen-related technologies to initiate hydrogen storage as long-term energy storage for power systems. This study provides a suggestion and reference for the advancement and planning of hydrogen storage development in regions with rich sources of renewable energy.
Study on the Effect of Second Injection Timing on the Engine Performances of a Gasoline/Hydrogen SI Engine with Split Hydrogen Direct Injecting
Oct 2020
Publication
Split hydrogen direct injection (SHDI) has been proved capable of better efficiency and fewer emissions. Therefore to investigate SHDI deeply a numerical study on the effect of second injection timing was presented at a gasoline/hydrogen spark ignition (SI) engine with SHDI. With an excess air ratio of 1.5 five different second injection timings achieved five kinds of hydrogen mixture distribution (HMD) which was the main factor affecting the engine performances. With SHDI since the HMD is manageable the engine can achieve better efficiency and fewer emissions. When the second injection timing was 105◦ crank angle (CA) before top dead center (BTDC) the Pmax was the highest and the position of the Pmax was the earliest. Compared with the single hydrogen direct injection (HDI) the NOX CO and HC emissions with SHDI were reduced by 20% 40% and 72% respectively.
Numerical Investigation on the Liquid Hydrogen Leakage and Protection Strategy
Apr 2023
Publication
One of China’s ambitious hydrogen strategies over the past few years has been to promote fuel cells. A number of hydrogen refueling stations (HRSs) are currently being built in China to refuel hydrogen-powered automobiles. In this context it is crucial to assess the dangers of hydrogen leaking in HRSs. The present work simulated the liquid hydrogen (LH2) leakage with the goal of undertaking an extensive consequence evaluation of the LH2 leakage on an LH2 refueling station (LHRS). Furthermore the utilization of an air curtain to prevent the diffusion of the LH2 leakage is proposed and the defending effect is studied accordingly. The results reveal that the Richardson number effectively explained the variation of plume morphology. Furthermore different facilities have great influence on the gas cloud diffusion trajectory with the consideration of different leakage directions. The air curtain shows satisfactory prevention of the diffusion of the hydrogen plume. Studies show that with the increase in air volume (equivalent to wind speed) and the narrowing of the air curtain width (other factors remain unchanged) the maximum flammable distance of hydrogen was shortened.
Evaluating Fuel Cell vs. Battery Electric Trucks: Economic Perspectives in Alignment with China’s Carbon Neutrality Target
Mar 2024
Publication
The electrification of heavy-duty trucks stands as a critical and challenging cornerstone in the low-carbon transition of the transportation sector. This paper employs the total cost of ownership (TCO) as the economic evaluation metric framed within the context of China’s ambitious goals for heavy truck electrification by 2035. A detailed TCO model is developed encompassing not only the vehicles but also their related energy replenishing infrastructures. This comprehensive approach enables a sophisticated examination of the economic feasibility for different deployment contexts of both fuel cell and battery electric heavy-duty trucks emphasizing renewable energy utilization. This study demonstrates that in the context where both fuel cell components and hydrogen energy are costly fuel cell trucks (FCTs) exhibit a significantly higher TCO compared to battery electric trucks (BETs). Specifically for a 16 ton truck with a 500 km range the TCO for the FCT is 0.034 USD/tkm representing a 122% increase over its BET counterpart. In the case of a 49 ton truck designed for a 1000 km range the TCO for the FCT is 0.024 USD/tkm marking a 36% premium compared to the BET model. The technological roadmap suggests a narrowing cost disparity between FCTs and BETs by 2035. For the aforementioned 16 ton truck model the projected TCO for the FCT is expected to be 0.016 USD/tkm which is 58% above the BET and for the 49 ton variant it is anticipated at 0.012 USD per ton-kilometer narrowing the difference to just 4.5% relative to BET. Further analysis within this study on the influences of renewable energy pricing and operational range on FCT and BET costs highlights a pivotal finding: for the 49 ton truck achieving TCO parity between FCTs and BETs is feasible when renewable energy electricity prices fall to 0.022 USD/kWh or when the operational range extends to 1890 km. This underscores the critical role of energy costs and efficiency in bridging the cost gap between FCTs and BETs.
Hydrogen Production System Using Alkaline Water Electrolysis Adapting to Fast Fluctuating Photovoltaic Power
Apr 2023
Publication
Using photovoltaic (PV) energy to produce hydrogen through water electrolysis is an environmentally friendly approach that results in no contamination making hydrogen a completely clean energy source. Alkaline water electrolysis (AWE) is an excellent method of hydrogen production due to its long service life low cost and high reliability. However the fast fluctuations of photovoltaic power cannot integrate well with alkaline water electrolyzers. As a solution to the issues caused by the fluctuating power a hydrogen production system comprising a photovoltaic array a battery and an alkaline electrolyzer along with an electrical control strategy and energy management strategy is proposed. The energy management strategy takes into account the predicted PV power for the upcoming hour and determines the power flow accordingly. By analyzing the characteristics of PV panels and alkaline water electrolyzers and imposing the proposed strategy this system offers an effective means of producing hydrogen while minimizing energy consumption and reducing damage to the electrolyzer. The proposed strategy has been validated under various scenarios through simulations. In addition the system’s robustness was demonstrated by its ability to perform well despite inaccuracies in the predicted PV power.
Utilization of Food Waste for Hydrogen-based Power Generation: Evidence from Four Cities in Ghana
Mar 2023
Publication
Hydrogen gas will be an essential energy carrier for global energy systems in the future. However non-renewable sources account for 96% of the production. Food wastes have high hydrogen generation potential which can positively influence global production and reduce greenhouse gas (GHG) emissions. The study evaluates the potential of food waste hydrogen-based power generation through biogas steam reforming and its environmental and economic impact in major Ghanaian cities. The results highlight that the annual hydrogen generation in Kumasi had the highest share of 40.73 kt followed by Accra with 31.62 kt while the least potential was in Tamale (3.41 kt). About 2073.38 kt was generated in all the major cities. Hydrogen output is predicted to increase from 54.61 kt in 2007 to 119.80 kt by 2030. Kumasi produced 977.54 kt of hydrogen throughout the 24-year period followed by Accra with 759.76 kt Secondi-Takoradi with 255.23 kt and Tamale with 81.85 kt. According to the current study Kumasi had the largest percentage contribution of hydrogen (47.15%) followed by Accra (36.60%) Secondi-Takoradi (12.31%) and Tamale (3.95%). The annual power generation potential in Kumasi and Accra was 73.24 GWh and 56.85 GWh. Kumasi and Accra could offset 8.19% and 6.36% of Ghana's electricity consumption. The total electricity potential of 3728.35 GWh could displace 17.37% of Ghana's power consumption. This electricity generated had a fossil diesel displacement capacity of 1125.90 ML and could reduce GHG emissions by 3060.20 kt CO2 eq. Based on the findings the total GHG savings could offset 8.13% of Ghana's carbon emissions. The cost of power generation from hydrogen is $ 0.074/kWh with an annual positive net present value of $ 658.80 million and a benefit-to-cost ratio of 3.43. The study lays the foundation and opens policy windows for sustainable hydrogen power generation in Ghana and other African countries.
Numerical Simulation on Heating Effects during Hydrogen Absorption in Metal Hydride Systems for Hydrogen Storage
Apr 2022
Publication
A 2-D numerical simulation model was established based on a small-sized metal hydride storage tank and the model was validated by the existing experiments. An external cooling bath was equipped to simulate the heating effects of hydrogen absorption reactions. Furthermore both the type and the flow rate of the cooling fluids in the cooling bath were altered so that changes in temperature and hydrogen storage capacity in the hydrogen storage model could be analyzed. It is demonstrated that the reaction rate in the center of the hydrogen storage tank gradually becomes lower than that at the wall surface. When the flow rate of the fluid is small significant differences can be found in the cooling liquid temperature at the inlet and the outlet cooling bath. In areas adjacent to its inlet the reaction rate is higher than that at the outlet and a better cooling effect is produced by water. As the flow rate increases the total time consumed by hydrogen adsorption reaction is gradually reduced to a constant value. At the same flow rate the wall surface of the tank shows a reaction rate insignificantly different from that in its center provided that cooling water or oil coolant is replaced with air.
Modeling of Unintended Hydrogen Releases from a Fuel Cell Tram
Sep 2021
Publication
Hydrogen is a promising alternative energy carrier that has been increasingly used in industry especially the transportation sector to fuel vehicles through fuel cells. Hydrogen fuel cell vehicles usually have high pressure on-board storage tanks which take up large spaces to provide comparable ranges as current fossil fuel vehicles because of the low volumetric energy density of hydrogen. Therefore hydrogen is also appropriate for large heavy-duty vehicles that have more space than passenger vehicles.
An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan
Dec 2022
Publication
Hydrogen energy is considered one of the main measures of zero carbonization in energy systems but high equipment and hydrogen costs hinder the development of hydrogen energy technology. The objectives of this study are to quantify the environmental advantages of hydrogen energy through a carbon tax and study the application potential of hydrogen energy technology in a regional distributed energy system (RDES). In this study various building types in the smart community covered by Japan’s first hydrogen energy pipeline are used as an example. First ten buildings of five types are selected as the research objectives. Subsequently two comparative system models of a regional distributed hydrogen energy system (RDHES) and an RDES were established. Then by studying the optimal RDHES and RDES configuration and combining the prediction of future downward trends of fuel cell (FC) costs and energy carbon emissions the application effect of FC and hydrogen storage (HS) technologies on the demand side was analyzed. Finally the adaptability of the demand-side hydrogen energy system was studied by analyzing the load characteristics of different types of buildings. The results show that when the FC price is reduced to 1.5 times that of the internal combustion engine (ICE) the existing carbon tax system can sufficiently support the RDHES in gaining economic advantages in some regions. Notably when the carbon emissions of the urban energy system are reduced the RDHES demonstrates stronger anti-risk ability and has greater suitability for promotion in museums and shopping malls. The conclusions obtained in this study provide quantitative support for hydrogen energy promotion policies on the regional demand side and serve as a theoretical reference for the design and adaptability research of RDHESs.
International Experience of Carbon Neutrality and Prospects of Key Technologies: Lessons for China
Feb 2023
Publication
Carbon neutrality (or climate neutrality) has been a global consensus and international experience exchange is essential. Given the differences in the degree of social development resource endowment and technological level each country should build a carbon-neutral plan based on its national conditions. Compared with other major developed countries (e.g. Germany the United States and Japan) China's carbon neutrality has much bigger challenges including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels. Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon near-zero carbon and negative carbon emissions. Technological innovations associated with coal oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed. Based on integrated analysis of international experience from the world's major developed countries in-depth knowledge of the current and future technologies and China's energy and ecological resources potential five lessons for the implementation of China's carbon neutrality are proposed: (1) transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern; (2) renewable power-to-X and large-scale underground energy storage; (3) integration of green hydrogen production storage transport and utilization; (4) construction of clean energy systems based on smart sector coupling (ENSYSCO); (5) improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China. This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.
No more items...