China, People’s Republic
Thickness-Prediction Method Involving Tow Redistribution for the Dome of Composite Hydrogen Storage Vessels
Feb 2022
Publication
Traditional thickness-prediction methods underestimate the actual dome thickness at polar openings leading to the inaccurate prediction of the load-bearing capacity of composite hydrogen storage vessels. A method of thickness prediction for the dome section of composite hydrogen storage vessels was proposed which involved fiber slippage and tow redistribution. This method considered the blocking effect of the port on sliding fiber tows and introduced the thickness correlation to predict the dome thickness at polar openings. The arc length corresponding to the parallel circle radius was calculated and then the actual radius values corresponding to the bandwidth were obtained by the interpolation method. The predicted thickness values were compared with the actual measured thickness. The maximum relative error of the predicted thickness was 4.19% and the mean absolute percentage error was 2.04%. The results show that the present method had a higher prediction accuracy. Eventually this prediction method was used to perform progressive damage analysis on vessels. By comparing with the results of the cubic spline function method the analysis results of the present method approached the actual case. This showed that the present method improved the accuracy of the design.
Modeling and Statistical Analysis of the Three-side Membrane Reactor for the Optimization of Hydrocarbon Production from CO2 Hydrogenation
Feb 2020
Publication
Direct CO2 hydrogenation to hydrocarbons is a promising method of reducing CO2 emissions along with producing value-added products. However reactor design and performance have remained a challenging issue because of low olefin efficiency and high water production as a by-product. Accordingly a one-dimensional non-isothermal mathematical model is proposed to predict the membrane reactor performance and statistical analysis is used to assess the effects of important variables such as temperatures of reactor (Tr:A) shell (Ts:B) and tube (Tt:C) as well as sweep ratio (θ:D) and pressure ratio (φ:E) and their interactions on the products yields. In addition the optimized operating conditions are also obtained to achieve maximum olefin yields. Results reveal that interacting effects comprising AB (TrTs) AC (TrTt) AE (Trφ) BC (TsTt) CE (Ttφ) CD (Ttθ) and DE (θφ) play important roles on the product yields. It is concluded that higher temperatures at low sweep and pressure ratios can maximize the yields of olefins while simultaneously the yields of paraffins are minimized. In this regard optimized values for Tr Ts Tt θ and φ are determined as 325 °C 306.96 °C 325 °C 1 and 1 respectively.
A Critical Review on the Principles, Applications, and Challenges of Waste-to-hydrogen Technologies
Sep 2020
Publication
Hydrogen sourced from energy recovery processes and conversion of waste materials is a method of providing both a clean fuel and a sustainable waste management alternative to landfill and incineration. The question is whether waste-to–hydrogen can become part of the zero-carbon future energy mix and serve as one of the cleaner hydrogen sources which is economically viable and environmentally friendly. This work critically assessed the potential of waste as a source of hydrogen production via various thermochemical (gasification and pyrolysis) and biochemical (fermentation and photolysis) processes. Research has shown hydrogen production yields of 33.6 mol/kg and hydrogen concentrations of 82% from mixed waste feedstock gasification. Biochemical methods such as fermentation can produce hydrogen up to 418.6 mL/g. Factors including feedstock quality process requirements and technology availability were reviewed to guide technology selection and system design. Current technology status and bottlenecks were discussed to shape future development priorities. These bottlenecks include expensive production and operation processes heterogeneous feedstock low process efficiencies inadequate management and logistics and lack of policy support. Improvements to hydrogen yields and production rates are related to feedstock processing and advanced energy efficiency processes such as torrefaction of feedstock which has shown thermal efficiency of gasification up to 4 MJ/kg. This will affect the economic feasibility and concerns around required improvements to bring the costs down to allow waste to viewed as a serious competitor for hydrogen production. Recommendations were also made for financially competitive waste-to-hydrogen development to be part of a combined solution for future energy needs.
Microwave Absorption of Aluminum/Hydrogen Treated Titanium Dioxide Nanoparticles
Dec 2018
Publication
Interactions between incident electromagnetic energy and matter are of critical importance for numerous civil and military applications such as photocatalysis solar cells optics radar detection communications information processing and transport et al. Traditional mechanisms for such interactions in the microwave frequency mainly rely on dipole rotations and magnetic domain resonance. In this study we present the first report of the microwave absorption of Al/H2 treated TiO2 nanoparticles where the Al/H2 treatment not only induces structural and optical property changes but also largely improves the microwave absorption performance of TiO2 nanoparticles. Moreover the frequency of the microwave absorption can be finely controlled with the treatment temperature and the absorption efficiency can reach optimal values with a careful temperature tuning. A large reflection loss of −58.02 dB has been demonstrated with 3.1 mm TiO2 coating when the treating temperature is 700 °C. The high efficiency of microwave absorption is most likely linked to the disordering-induced property changes in the materials. Along with the increased microwave absorption properties are largely increased visible-light and IR absorptions and enhanced electrical conductivity and reduced skin-depth which is likely related to the interfacial defects within the TiO2 nanoparticles caused by the Al/H2 treatment.
Raw Biomass Electroreforming Coupled to Green Hydrogen Generation
Mar 2021
Publication
Despite the tremendous progress of coupling organic electrooxidation with hydrogen generation in a hybrid electrolysis electroreforming of raw biomass coupled to green hydrogen generation has not been reported yet due to the rigid polymeric structures of raw biomass. Herein we electrooxidize the most abundant natural amino biopolymer chitin to acetate with over 90% yield in hybrid electrolysis. The overall energy consumption of electrolysis can be reduced by 15% due to the thermodynamically and kinetically more favorable chitin oxidation over water oxidation. In obvious contrast to small organics as the anodic reactant the abundance of chitin endows the new oxidation reaction excellent scalability. A solar-driven electroreforming of chitin and chitin-containing shrimp shell waste is coupled to safe green hydrogen production thanks to the liquid anodic product and suppression of oxygen evolution. Our work thus demonstrates a scalable and safe process for resource upcycling and green hydrogen production for a sustainable energy future.
Synthesizing the High Surface Area g-C3N4 for Greatly Enhanced Hydrogen Production
Jul 2021
Publication
Adjusting the structure of g-C3N4 to significantly enhance its photocatalytic activity has attracted considerable attention. Herein a novel sponge-like g-C3N4 with a porous structure is prepared from the annealing of protonated melamine under N2/H2 atmosphere (PH-CN). Compared to bulk g-C3N4 via calcination of melamine under ambient atmosphere (B-CN) PH-CN displays thinner nanosheets and a higher surface area (150.1 m2/g) which is a benefit for shortening the diffusion distance of photoinduced carriers providing more active sites and finally favoring the enhancement of the photocatalytic activity. Moreover it can be clearly observed from the UV-vis spectrum that PH-CN displays better performance for harvesting light compared to B-CN. Additionally the PH-CN is prepared with a larger band gap of 2.88 eV with the Fermi level and conduction band potential increased and valence band potential decreased which could promote the water redox reaction. The application experiment results show that the hydrogen evolution rate on PH-CN was nearly 10 times higher than that of B-CN which was roughly 4104 μmol h−1 g−1. The method shown in this work provides an effective approach to adjust the structure of g-C3N4with considerable photocatalytic hydrogen evolution activity.
Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Nano-NiO/Al2O3 Catalyst
Feb 2022
Publication
Hydrogen production from biomass pyrolysis is economically and technologically attractive from the perspectives of energy and the environment. The two-stage catalytic pyrolysis of pine sawdust for hydrogen-rich gas production is investigated using nano-NiO/Al2O3 as the catalyst at high temperatures. The influences of residence time (0–30 s) and catalytic temperature (500–800 ◦C) on pyrolysis performance are examined in the distribution of pyrolysis products gas composition and gas properties. The results show that increasing the residence time decreased the solid and liquid products but increased gas products. Longer residence times could promote tar cracking and gas-phase conversion reactions and improve the syngas yield H2/CO ratio and carbon conversion. The nano-NiO/A12O3 exhibits excellent catalytic activity for tar removal with a tar conversion rate of 93% at 800 ◦C. The high catalytic temperature could significantly improve H2 and CO yields by enhancing the decomposition of tar and gas-phase reactions between CO2 and CH4 . The increasing catalytic temperature increases the dry gas yield and carbon conversion but decreases the H2/CO ratio and low heating value.
Comprehensive Performance Evaluation of Densified Liquid Hydrogen/Liquid Oxygen as Propulsion Fuel
Jan 2022
Publication
Densified liquid hydrogen/liquid oxygen is a promising propulsion fuel in the future. In order to systematically demonstrate the benefits and challenges of densified liquid hydrogen/liquid oxygen a transient thermodynamical model considering the heat leakage temperature rise engine thrust pressurization pressure of the tank and wall thickness of tank is developed in the present paper and the performance of densified liquid hydrogen/liquid oxygen as propulsion fuel is further evaluated in actual application. For liquid hydrogen/liquid oxygen tanks at different structural dimensions the effects of many factors such as temperature rise during propellant ground parking lift of engine thrust mass reduction of the tank structure and extension of spacecraft in‐orbit time are analyzed to demonstrate the comprehensive performance of liquid hydrogen/liquid oxygen after densification. Meanwhile the problem of subcooling combination matching of liquid hydro‐ gen/liquid oxygen is proposed for the first time. Combining the fuel consumption and engine thrust lifting the subcooling combination matching of liquid hydrogen/liquid oxygen at different mixing ratios and constant mixing ratios are discussed respectively. The results show that the relative engine thrust enhances by 6.96% compared with the normal boiling point state in the condition of slush hydrogen with 50% solid content and enough liquid oxygen. The in‐orbit time of spacecraft can extend about 2–6.5 days and 24–95 days for slush hydrogen with 50% solid content and liquid oxygen in the triple point state in different cryogenic tanks respectively. Due to temperature rise during parking the existing adiabatic storage scheme and filling scheme for densification LH2 need to be redesigned and for densification LO2 are suitable. It is found that there is an optimal subcooling matching relation after densification of liquid hydrogen/liquid oxygen as propulsion fuel. In other words the subcooling temperature of liquid hydrogen/liquid oxygen is not the lower the bet‐ ter but the matching relationship between LH2 subcooling degree and LO2 subcooling degree needs to be considered at the same time. It is necessary that the LO2 was cooled to 69.2 K and 54.5 K when the LH2 of 13.9 K and SH2 with 45% was adopted respectively. This research provides theoretical support for the promotion and application of densification cryogenic propellants.
Converting Sewage Water into H2 Fuel Gas Using Cu/CuO Nanoporous Photocatalytic Electrodes
Feb 2022
Publication
This work reports on H2 fuel generation from sewage water using Cu/CuO nanoporous (NP) electrodes. This is a novel concept for converting contaminated water into H2 fuel. The preparation of Cu/CuO NP was achieved using a simple thermal combustion process of Cu metallic foil at 550 ◦C for 1 h. The Cu/CuO surface consists of island-like structures with an inter-distance of 100 nm. Each island has a highly porous surface with a pore diameter of about 250 nm. X-ray diffraction (XRD) confirmed the formation of monoclinic Cu/CuO NP material with a crystallite size of 89 nm. The prepared Cu/CuO photoelectrode was applied for H2 generation from sewage water achieving an incident to photon conversion efficiency (IPCE) of 14.6%. Further the effects of light intensity and wavelength on the photoelectrode performance were assessed. The current density (Jph) value increased from 2.17 to 4.7 mA·cm−2 upon raising the light power density from 50 to 100 mW·cm−2 . Moreover the enthalpy (∆H*) and entropy (∆S*) values of Cu/CuO electrode were determined as 9.519 KJ mol−1 and 180.4 JK−1 ·mol−1 respectively. The results obtained in the present study are very promising for solving the problem of energy in far regions by converting sewage water to H2 fuel.
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective
Jun 2021
Publication
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO formic acid and hydrogen. By contrast a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts which significantly governs the reactivity and selectivity of CO2R. However in biotic CO2R operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
Formation Criterion of Hydrogen-Induced Cracking in Steel Based on Fracture Mechanics
Nov 2018
Publication
A new criterion for hydrogen-induced cracking (HIC) that includes both the embrittlement effect and the loading effect of hydrogen was obtained theoretically. The surface cohesive energy and plastic deformation energy are reduced by hydrogen atoms at the interface; thus the fracture toughness is reduced according to fracture mechanics theory. Both the pressure effect and the embrittlement effect mitigate the critical condition required for crack instability extension. During the crack instability expansion the hydrogen in the material can be divided into two categories: hydrogen atoms surrounding the crack and hydrogen molecules in the crack cavity. The loading effect of hydrogen was verified by experiments and the characterization methods for the stress intensity factor under hydrogen pressure in a linear elastic model and an elastoplastic model were analyzed using the finite-element simulation method. The hydrogen pressure due to the aggregation of hydrogen molecules inside the crack cavity regularly contributed to the stress intensity factor. The embrittlement of hydrogen was verified by electrolytic charging hydrogen experiments. According to the change in the atomic distribution during crack propagation in a molecular dynamics simulation the transition from ductile to brittle fracture and the reduction in the fracture toughness were due to the formation of crack tip dislocation regions suppressed by hydrogen. The HIC formation mechanism is both the driving force of crack propagation due to the hydrogen gas pressure and the resisting force reduced by hydrogen atoms.
Towards Global Cleaner Energy and Hydrogen Production: A Review and Application ORC Integrality with Multigeneration Systems
Apr 2022
Publication
The current evidential effect of carbon emissions has become a societal challenge and the need to transition to cleaner energy sources/technologies has attracted wide research attention. Technologies that utilize low-grade heat like the organic Rankine cycle (ORC) and Kalina cycle have been proposed as viable approaches for fossil reduction/carbon mitigation. The development of renewable energy-based multigeneration systems is another alternative solution to this global challenge. Hence it is important to monitor the development of multigeneration energy systems based on low-grade heat. In this study a review of the ORC’s application in multigeneration systems is presented to highlight the recent development in ORC integrality/application. Beyond this a new ORC-CPVT (concentrated photovoltaic/thermal) integrated multigeneration system is also modeled and analyzed using the thermodynamics approach. Since most CPVT systems integrate hot water production in the thermal stem the proposed multigeneration system is designed to utilize part of the thermal energy to generate electricity and hydrogen. Although the CPVT system can achieve high energetic and exergetic efficiencies while producing thermal energy and electricity these efficiencies are 47.9% and 37.88% respectively for the CPVT-ORC multigeneration configuration. However it is noteworthy that the electricity generation from the CPVT-ORC configuration in this study is increased by 16%. In addition the hot water cooling effect and hydrogen generated from the multigeneration system are 0.4363 L/s 161 kW and 1.515 L/s respectively. The environmental analysis of the system also shows that the carbon emissions reduction potential is enormous.
Effect of Cementite on the Hydrogen Diffusion/Trap Characteristics of 2.25Cr-1Mo-0.25V Steel with and without Annealing
May 2018
Publication
Hydrogen embrittlement (HE) is a critical issue that affects the reliability of hydrogenation reactors. The hydrogen diffusivity/trap characteristics of 2.25Cr-1Mo-0.25V steel are important parameters mainly used to study the HE mechanism of steel alloys. In this work the hydrogen diffusivity/trap characteristics of heat-treated (annealed) and untreated 2.25Cr-1Mo-0.25V steel were studied using an electrochemical permeation method. The microstructures of both 2.25Cr-1Mo-0.25V steels were investigated by metallurgical microscopy. The effect of cementite on the hydrogen diffusivity/trap mechanisms was studied using thermodynamics-based and Lennard–Jones potential theories. The results revealed that the cementite located at the grain boundaries and at the interfaces of lath ferrite served as a kind of hydrogen trap (i.e. an irreversible hydrogen trap). In addition hydrogen was transported from ferrite to cementite via up-hill diffusion thereby supporting the hypothesis of cementite acting as a hydrogen trap.
Physicochemical Properties of Proton-conducting SmNiO3 Epitaxial Films
Mar 2019
Publication
Proton conducting SmNiO3 (SNO) thin films were grown on (001) LaAlO3 substrates for systematically investigating the proton transport properties. X-ray Diffraction and Atomic Force Microscopy studies reveal that the as-grown SNO thin films have good single crystallinity and smooth surface morphology. The electrical conductivity measurements in air indicate a peak at 473 K in the temperature dependence of the resistance of the SNO films probably due to oxygen loss on heating. A Metal-Insulator-Transition occurs at 373 K for the films after annealing at 873 K in air. In a hydrogen atmosphere (3% H2/97% N2) an anomalous peak in the resistance is found at 685 K on the first heating cycle. Electrochemical Impedance Spectroscopy studies as a function of temperature indicate that the SNO films have a high ionic conductivity (0.030 S/cm at 773 K) in a hydrogen atmosphere. The activation energy for proton conductivity was determined to be 0.23 eV at 473–773 K and 0.37 eV at 773–973 K respectively. These findings demonstrate that SNO thin films have good proton conductivity and are good candidate electrolytes for low temperature proton-conducting Solid Oxide Fuel Cells.
Electrochemical and Stress Corrosion Mechanism of Submarine Pipeline in Simulated Seawater in Presence of Different Alternating Current Densities
Jun 2018
Publication
In this study electrochemical measurements immersion tests and slow strain rate tensile (SSRT) tests were applied to investigate the electrochemical and stress corrosion cracking (SCC) behavior of X70 steel in simulated seawater with the interference of different alternating current (AC) densities. The results indicate that AC significantly strengthens the cathodic reaction especially the oxygen reduction reaction. Simultaneously hydrogen evolution reaction occurs when the limiting diffusion current density of oxygen reaches and thus icorr sharply increases with the increase in AC density. Additionally when AC is imposed the X70 steel exhibits higher SCC susceptibility in the simulated seawater and the susceptibility increases with the increasing AC density. The SCC mechanism is controlled by both anodic dissolution (AD) and hydrogen embrittlement (HE) with the interference of AC.
Study on Flake Formation Behavior and Its Influence Factors in Cr5 Steel
Apr 2018
Publication
A flake is a crack that is induced by trapped hydrogen within steel. To study its formation mechanism previous studies mostly focused on the formation process and magnitude of hydrogen pressure in hydrogen traps such as cavities and cracks. However according to recent studies the hydrogen leads to the decline of the mechanical properties of steel which is known as hydrogen embrittlement is another reason for flake formation. In addition the phenomenon of stress induced hydrogen uphill diffusion should not be neglected. All of the three behaviors are at work simultaneously. In order to further explore the formation mechanism of flakes in steel the process of flake initiation and growth were studied with the following three coupling factors: trap hydrogen pressure hydrogen embrittlement and stress induced hydrogen re-distribution. The analysis model was established using the finite element method and a crack whose radius is 0.5 mm was set in its center. The cohesive method and Bilinear Traction Separate Law (BTSL) were used to address the coupling effect. The results show that trap hydrogen pressure is the main driving force for flake formation. After the high hydrogen pressure was generated around the trap a stress field formed. In addition the trap is the center of stress concentration. Then hydrogen is concentrated in a distribution around this trap and most of the steel mechanical properties are reduced. The trap size is a key factor for defining the critical hydrogen content for flake formation and propagation. However when the trap size exceeds the specified value the critical hydrogen content does not change any more. As for the crack whose radius is 0.5 mm the critical hydrogen content of Cr5VMo steel is 2.2 ppm which is much closer to the maximum safe hydrogen concentration of 2.0 ppm used in China. The work presented in this article increases our understanding of flake formation and propagation mechanisms in steel.
Molybdenum Carbide Microcrystals: Efficient and Stable Catalyst for Photocatalytic H2 Evolution From Water in The Presence Of Dye Sensitizer
Sep 2016
Publication
Rod-like molybdenum carbide (Mo2C) microcrystals were obtained from the pyrolysis of Mo-containing organic-inorganic hybrid composite. We investigated the photocatalytic H2 evolution activity of Mo2C by constructing a Mo2C-dye sensitizer photocatalyst system. A high quantum efficiency of 29.7% was obtained at 480 nm. Moreover Mo2C catalyst can be easily recycled by simple filtration.
Recent Progress in Hydrogen Storage
Nov 2008
Publication
The ever-increasing demand for energy coupled with dwindling fossil fuel resources make the establishment of a clean and sustainable energy system a compelling need. Hydrogen-based energy systems offer potential solutions. Although in the long-term the ultimate technological challenge is large-scale hydrogen production from renewable sources the pressing issue is how to store hydrogen efficiently on board hydrogen fuel-cell vehicles.
Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell
May 2020
Publication
In the context of the current serious problems related to energy demand and climate change substantial progress has been made in developing a sustainable energy system. Electrochemical hydrogen–water conversion is an ideal energy system that can produce fuels via sustainable fossil-free pathways. However the energy conversion efficiency of two functioning technologies in this energy system—namely water electrolysis and the fuel cell—still has great scope for improvement. This review analyzes the energy dissipation of water electrolysis and the fuel cell in the hydrogen–water energy system and discusses the key barriers in the hydrogen- and oxygen-involving reactions that occur on the catalyst surface. By means of the scaling relations between reactive intermediates and their apparent catalytic performance this article summarizes the frameworks of the catalytic activity trends providing insights into the design of highly active electrocatalysts for the involved reactions. A series of structural engineering methodologies (including nanoarchitecture facet engineering polymorph engineering amorphization defect engineering element doping interface engineering and alloying) and their applications based on catalytic performance are then introduced with an emphasis on the rational guidance from previous theoretical and experimental studies. The key scientific problems in the electrochemical hydrogen–water conversion system are outlined and future directions are proposed for developing advanced catalysts for technologies with high energy-conversion efficiency.
Study on Temper Embrittlement and Hydrogen Embrittlement of a Hydrogenation Reactor by Small Punch Test
Jun 2017
Publication
The study on temper embrittlement and hydrogen embrittlement of a test block from a 3Cr1Mo1/4V hydrogenation reactor after ten years of service was carried out by small punch test (SPT) at different temperatures. The SPT fracture energy Esp (derived from integrating the load-displacement curve) divided by the maximum load (Fm) of SPT was used to fit the Esp/Fm versus-temperature curve to determine the energy transition temperature (Tsp) which corresponded to the ductile-brittle transition temperature of the Charpy impact test. The results indicated that the ratio of Esp/Fm could better represent the energy of transition in SPT compared with Esp. The ductile-to-brittle transition temperature of the four different types of materials was measured using the hydrogen charging test by SPT. These four types of materials included the base metal and the weld metal in the as-received state and the base metal and the weld metal in the de-embrittled state. The results showed that there was a degree of temper embrittlement in the base metal and the weld metal after ten years of service at 390 °C. The specimens became slightly more brittle but this was not obvious after hydrogen charging. Because the toughness of the material of the hydrogenation reactor was very good the flat samples of SPT could not characterize the energy transition temperature within the liquid nitrogen temperature. Additionally there was no synergetic effect of temper embrittlement and hydrogen embrittlement found in 3Cr1Mo1/4V steel.
Hydrogen-Assisted Brittle Fracture Behavior of Low Alloy 30CrMo Steel Based on the Combination of Experimental and Numerical Analyses
Jul 2021
Publication
Compact-tension (CT) specimens made of low alloy 30CrMo steels were hydrogen-charged and then subjected to the fracture toughness test. The experimental results revealed that the higher crack propagation and the lower crack growth resistance (CTOD-R curve) are significantly noticeable with increasing hydrogen embrittlement (HE) indexes. Moreover the transition in the microstructural fracture mechanism from ductile (microvoid coalescence (MVC)) without hydrogen to a mixed quasi-cleavage (QC) fracture and QC + intergranular (IG) fracture with hydrogen was observed. The hydrogen-enhanced decohesion (HEDE) mechanism was characterized as the dominant HE mechanism. According to the experimental testing the coupled problem of stress field and hydrogen diffusion field with cohesive zone stress analysis was employed to simulate hydrogen-assisted brittle fracture behavior by using ABAQUS software. The trapezoidal traction-separation law (TSL) was adopted and the initial TSL parameters from the best fit to the load-displacement and J-integral experimental curves without hydrogen were calibrated for the critical separation of 0.0393 mm and the cohesive strength of 2100 MPa. The HEDE was implemented through hydrogen influence in the TSL and to estimate the initial hydrogen concentration based on matching numerical and experimental load-line displacement curves with hydrogen. The simulation results show that the general trend of the computational CTOD-R curves corresponding to initial hydrogen concentration is almost the same as that obtained from the experimental data but in full agreement the computational CTOD values being slightly higher. Comparative analysis of numerical and experimental results shows that the coupled model can provide design and prediction to calculate hydrogen-assisted fracture behavior prior to extensive laboratory testing provided that the material properties and properly calibrated TSL parameters are known.
Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook
Feb 2022
Publication
The grand challenges in renewable energy lie in our ability to comprehend efficient energy conversion systems together with dealing with the problem of intermittency via scalable energy storage systems. Relatively little progress has been made on this at grid scale and two overriding challenges still need to be addressed: (i) limiting damage to the environment and (ii) the question of environmentally friendly energy conversion. The present review focuses on a novel route for producing hydrogen the ultimate clean fuel from the Sun and renewable energy source. Hydrogen can be produced by light-driven photoelectrochemical (PEC) water splitting but it is very inefficient; rather we focus here on how electric fields can be applied to metal oxide/water systems in tailoring the interplay with their intrinsic electric fields and in how this can alter and boost PEC activity drawing both on experiment and non-equilibrium molecular simulation.
Novel Fuzzy Control Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Considering State of Health
Oct 2021
Publication
Due to the low efficiency and high pollution of conventional internal combustion engine vehicles the fuel cell hybrid electric vehicles are expected to play a key role in the future of clean energy transportation attributed to the long driving range short hydrogen refueling time and environmental advantages. The development of energy management strategies has an important impact on the economy and durability but most strategies ignore the aging of fuel cells and the corresponding impact on hydrogen consumption. In this paper a rule-based fuzzy control strategy is proposed based on the constructed data-driven online estimation model of fuel cell health. Then a genetic algorithm is used to optimize this fuzzy controller where the objective function is designed to consider both the economy and durability by combining the hydrogen consumption cost and the degradation cost characterized by the fuel cell health status. Considering that the rule-based strategy is more sensitive to operating conditions this paper uses an artificial neural network for predictive control. The results are compared with those obtained from the genetic algorithm optimized fuzzy controller and are found to be very similar where the prediction accuracy is assessed using MAPE RMSE and 10-fold cross-validation. Experiments show that the developed strategy has a good generalization capability for variable driving cycles.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
Comparison Between Hydrogen Production by Alkaline Water Electrolysis and Hydrogen Production by PEM Electrolysis
Sep 2021
Publication
Hydrogen is an ideal clean energy source that can be used as an energy storage medium for renewable energy sources. The water electrolysis hydrogen production technology which is one of the mainstream hydrogen production methods can be used to produce high-purity hydrogen and other energy sources can be converted into hydrogen storage by electrolysis. Hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis are all water electrolysis hydrogen production technologies that have been industrially applied. From the application point of view the paper compares the working principle of the two kinds of electrolyzers the process flow of hydrogen production equipment advantages and disadvantages. This article provides a reference for relevant researchers.
Sustainable Offshore Oil and Gas Fields Development: Techno-economic Feasibility Analysis of Wind–hydrogen–natural Gas Nexus
Jul 2021
Publication
Offshore oil and gas field development consumes quantities of electricity which is usually provided by gas turbines. In order to alleviate the emission reduction pressure and the increasing pressure of energy saving governments of the world have been promoting the reform of oil and gas fields for years. Nowadays environmentally friendly alternatives to provide electricity are hotspots such as the integration of traditional energy and renewable energy. However the determination of system with great environmental and economic benefits is still controversial. This paper proposed a wind– hydrogen–natural gas nexus (WHNGN) system for sustainable offshore oil and gas fields development. Combining the optimization model with the techno-economic evaluation model a comprehensive evaluation framework is established for techno-economic feasibility analysis. In addition to WHNGN system another two systems are designed for comparison including the traditional energy supply (TES) system and wind–natural gas nexus (WNGN) system. An offshore production platforms in Bohai Bay in China is taken as a case and the results indicate that: (i) WNGN and WHNGN systems have significant economic benefits total investment is decreased by 5190 and 5020 million $ respectively and the WHNGN system increases 4174 million $ profit; (ii) WNGN and WHNGN systems have significant environmental benefits annual carbon emission is decreased by 15 and 40.2 million kg respectively; (iii) the system can be ranked by economic benefits as follows: WHNGN >WNGN > TES; and (iV) the WHNGN system is more advantageous in areas with high hydrogen and natural gas sales prices such as China Kazakhstan Turkey India Malaysia and Indonesia.
Hydrogen Production: State of Technology
May 2020
Publication
Presently hydrogen is for ~50% produced by steam reforming of natural gas – a process leading to significant emissions of greenhouse gas (GHG). About 30% is produced from oil/naphtha reforming and from refinery/chemical industry off-gases. The remaining capacity is covered for 18% from coal gasification 3.9% from water electrolysis and 0.1% from other sources. In the foreseen future hydrogen economy green hydrogen production methods will need to supply hydrogen to be used directly as fuel or to generate synthetic fuels to produce ammonia and other fertilizers (viz. urea) to upgrade heavy oils (like oil sands) and to produce other chemicals. There are several ways to produce H2 each with limitations and potential such as steam reforming electrolysis thermal and thermo-chemical water splitting dark and photonic fermentation; gasification and catalytic decomposition of methanol. The paper reviews the fundamentals and potential of these alternative process routes. Both thermo-chemical water splitting and fermentation are marked as having a long term but high "green" potential.
Hydrogen Production by Fluidized Bed Reactors: A Quantitative Perspective Using the Supervised Machine Learning Approach
Jul 2021
Publication
The current hydrogen generation technologies especially biomass gasification using fluidized bed reactors (FBRs) were rigorously reviewed. There are involute operational parameters in a fluidized bed gasifier that determine the anticipated outcomes for hydrogen production purposes. However limited reviews are present that link these parametric conditions with the corresponding performances based on experimental data collection. Using the constructed artificial neural networks (ANNs) as the supervised machine learning algorithm for data training the operational parameters from 52 literature reports were utilized to perform both the qualitative and quantitative assessments of the performance such as the hydrogen yield (HY) hydrogen content (HC) and carbon conversion efficiency (CCE). Seven types of operational parameters including the steam-to-biomass ratio (SBR) equivalent ratio (ER) temperature particle size of the feedstock residence time lower heating value (LHV) and carbon content (CC) were closely investigated. Six binary parameters have been identified to be statistically significant to the performance parameters (hydrogen yield (HY)) hydrogen content (HC) and carbon conversion efficiency (CCE) by analysis of variance (ANOVA). The optimal operational conditions derived from the machine leaning were recommended according to the needs of the outcomes. This review may provide helpful insights for researchers to comprehensively consider the operational conditions in order to achieve high hydrogen production using fluidized bed reactors during biomass gasification.
A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity
Mar 2020
Publication
Hydrogen as an energy carrier is very versatile in energy storage applications. Developments in novel sustainable technologies towards a CO2-free society are needed and the exploration of all-solid-state batteries (ASSBs) as well as solid-state hydrogen storage applications based on metal hydrides can provide solutions for such technologies. However there are still many technical challenges for both hydrogen storage material and ASSBs related to designing low-cost materials with low-environmental impact. The current materials considered for all-solid-state batteries should have high conductivities for Na+ Mg2+ and Ca2+ while Al3+-based compounds are often marginalised due to the lack of suitable electrode and electrolyte materials. In hydrogen storage materials the sluggish kinetic behaviour of solid-state hydride materials is one of the key constraints that limit their practical uses. Therefore it is necessary to overcome the kinetic issues of hydride materials before discussing and considering them on the system level. This review summarizes the achievements of the Marie Skłodowska-Curie Actions (MSCA) innovative training network (ITN) ECOSTORE the aim of which was the investigation of different aspects of (complex) metal hydride materials. Advances in battery and hydrogen storage materials for the efficient and compact storage of renewable energy production are discussed.
Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery
Mar 2020
Publication
Automobile exhaust heat recovery is considered to be an effective means to enhance fuel utilization. The catalytic production of hydrogen by methanol steam reforming is an attractive option for onboard mobile applications due to its many advantages. However the reformers of conventional packed bed type suffer from axial temperature gradients and cold spots resulting from severe limitations of mass and heat transfer. These disadvantages limit reformers to a low efficiency of catalyst utilization. A novel rib microreactor was designed for the hydrogen production from methanol steam reforming heated by automobile exhaust and the effect of inlet exhaust and methanol steam on reactor performance was numerically analyzed in detail with computational fluid dynamics. The results showed that the best operating parameters were the counter flow water-to-alcohol (W/A) of 1.3 exhaust inlet velocity of 1.1 m/s and exhaust inlet temperature of 773 K when the inlet velocity and inlet temperature of the reactant were 0.1 m/s and 493 K respectively. At this condition a methanol conversion of 99.4% and thermal efficiency of 28% were achieved together with a hydrogen content of 69.6%.
Hydrogen Safety Prediction and Analysis of Hydrogen Refueling Station Leakage Accidents and Process Using Multi-Relevance Machine Learning
Oct 2021
Publication
Hydrogen energy vehicles are being increasingly widely used. To ensure the safety of hydrogenation stations research into the detection of hydrogen leaks is required. Offline analysis using data machine learning is achieved using Spark SQL and Spark MLlib technology. In this study to determine the safety status of a hydrogen refueling station we used multiple algorithm models to perform calculation and analysis: a multi-source data association prediction algorithm a random gradient descent algorithm a deep neural network optimization algorithm and other algorithm models. We successfully analyzed the data including the potential relationships internal relationships and operation laws between the data to detect the safety statuses of hydrogen refueling stations.
Modulating Electronic Structure of Metal-organic Frameworks by Introducing Atomically Dispersed Ru for Efficient Hydrogen Evolution
Mar 2021
Publication
Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy yet still challenging. Herein we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH especially with a low overpotential of 36 mV at a current density of 10 mA cm−2 in 1 M phosphate buffered saline solution which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF leading to the optimization of binding strength for H2O and H* and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.
Earth Abundant Spinel for Hydrogen Production in a Chemical Looping Scheme at 550°C
Jun 2020
Publication
Operating chemical looping process at mid-temperatures (550-750 oC) presents exciting potential for the stable production of hydrogen. However the reactivity of oxygen carriers is compromised by the detrimental effect of the relatively low temperatures on the redox kinetics. Although the reactivity at mid-temperature can be improved by the addition of noble metals the high cost of these noble metal containing materials significantly hindered their scalable application. In the current work we propose to incorporate earth-abundant metals into the iron-based spinel for hydrogen production in a chemical looping scheme at mid-temperatures. Mn0.2Co0.4Fe2.4O4 shows a high hydrogen production rate at the average rate of ∼0.62 mmol.g-1.min-1 and a hydrogen yield of ∼9.29 mmol.g-1 with satisfactory stability over 20 cycles at 550 oC. The mechanism studies manifest that the enhanced hydrogen production performance is a result of the improved oxygen-ion conductivity to enhance reduction reaction and high reactivity of reduced samples with steam. The performance of the oxygen carriers in this work is comparable to those noble-metal containing materials enabling their potential for industrial applications.
Effect of Hydrogen on Very High Cycle Fatigue Behavior of a Low-strength Cr-Ni-Mo-V Steel Containing Micro-defects
Dec 2017
Publication
The role of hydrogen in fatigue failure of low strength steels is not as well understood as of high strength steels in very high cycle fatigue regime. In this work axially cyclic tests on a low strength Cr-Ni-Mo-V steel with charged hydrogen were carried out up to the very high cycle fatigue regime under ultrasonic frequency to examine the degradation of fatigue strength and associated failure mechanisms. Results show that the S-N curves show a continuously decreasing mode and hydrogen-charged specimens have lower fatigue strength and shorter fatigue lifetime as compared with as-received specimens. It is concluded that the hydrogen trapped by inclusions drives interior micro-defects as dominant crack initiation site and has a clear link to the initiation and early growth of interior fatigue cracks.
Discussion on the Feasibility of the Integration of Wind Power and Coal Chemical Industries for Hydrogen Production
Oct 2021
Publication
To improve the utilization rate of the energy industry and reduce high energy consumption and pollution caused by coal chemical industries in north western China a planning scheme of a wind‐coal coupling energy system was developed. This scheme involved the analysis method evaluation criteria planning method and optimization operation check for the integration of a comprehensive evaluation framework. A system was established to plan the total cycle revenue to maximize the net present value of the goal programming model and overcome challenges associated with the development of new forms of energy. Subsequently the proposed scheme is demonstrated using a 500‐MW wind farm. The annual capacity of a coal‐to‐methanol system is 50000. Results show that the reliability of the wind farm capacity and the investment subject are the main factors affecting the feasibility of the wind‐coal coupled system. Wind power hydrogen production generates O2 and H2 which are used for methanol preparation and electricity production in coal chemical systems respectively. Considering electricity price constraints and environmental benefits a methanol production plant can construct its own wind farm matching its output to facilitate a more economical wind‐coal coupled system. Owing to the high investment cost of wind power plants an incentive mechanism for saving energy and reducing emissions should be provided for the wind‐ coal coupled system to ensure economic feasibility and promote clean energy transformation.
Two-dimensional Vanadium Carbide for Simultaneously Tailoring the Hydrogen Sorption Thermodynamics and Kinetics of Magnesium Hydride
May 2021
Publication
Magnesium hydride (MgH2) is a potential material for solid-state hydrogen storage. However the thermodynamic and kinetic properties are far from practical application in the current stage. In this work two-dimensional vanadium carbide (V2C) MXene with layer thickness of 50−100 nm was fist synthesized by selectively HF-etching the Al layers from V2AlC MAX phase and then introduced into MgH2 to improve the hydrogen sorption performances of MgH2. The onset hydrogen desorption temperature of MgH2 with V2C addition is significantly reduced from 318 °C for pure MgH2 to 190 °C with a 128 °C reduction of the onset temperature. The MgH2+ 10 wt% V2C composite can release 6.4 wt% of H2 within 10 min at 300 °C and does not loss any capacity for up to 10 cycles. The activation energy for the hydrogen desorption reaction of MgH2 with V2C addition was calculated to be 112 kJ mol−1 H2 by Arrhenius's equation and 87.6 kJ mol−1 H2 by Kissinger's equation. The hydrogen desorption reaction enthalpy of MgH2 + 10 wt% V2C was estimated by van't Hoff equation to be 73.6 kJ mol−1 H2 which is slightly lower than that of the pure MgH2 (77.9 kJ mol−1 H2). Microstructure studies by XPS TEM and SEM showed that V2C acts as an efficient catalyst for the hydrogen desorption reaction of MgH2. The first-principles density functional theory (DFT) calculations demonstrated that the bond length of Mg−H can be reduced from 1.71 Å for pure MgH2 to 2.14 Å for MgH2 with V2C addition which contributes to the destabilization of MgH2. This work provides a method to significantly and simultaneously tailor the hydrogen sorption thermodynamics and kinetics of MgH2 by two-dimensional MXene materials.
Effect of Hydrogen-storage Pressure on the Detonation Characteristics of Emulsion Explosives Sensitized by Glass Microballoons
Mar 2021
Publication
In this study hydrogen-storage glass microballoons were introduced into emulsion explosives to improve the detonation performance of the explosives. The effect of hydrogen-storage pressure on the detonation characteristics of emulsion explosives was systematically investigated. Detonation velocity experiments shows that the change of sensitizing gas and the increase of hydrogen pressure have different effects on the detonation velocity. The experimental parameters of underwater explosion increase first and then decreases with the increase of hydrogen pressure. The decrease of these parameters indicates that the strength of glass microballoons is the limiting factor to improve the detonation performance of hydrogen-storage emulsion explosives. Compared with the traditional emulsion explosives the maximum peak pressure of shock wave of hydrogen-storage emulsion explosives increases by 10.6% at 1.0 m and 10.2% at 1.2 m the maximum values of shock impulse increase by 5.7% at 1.0 m and 19.4% at 1.2 m. The stored hydrogen has dual effects of sensitizers and energetic additives which can improve the energy output of emulsion explosives.
Warm Pre-Strain: Strengthening the Metastable 304L Austenitic Stainless Steel without Compromising Its Hydrogen Embrittlement Resistance
Nov 2017
Publication
Plastic pre-strains were applied to the metastable 304L austenitic stainless steel at both room temperature (20 °C) and higher temperatures (i.e. 50 80 and 100 °C) and then the hydrogen embrittlement (HE) susceptibility of the steel was evaluated by cathodically hydrogen-charging and tensile testing. The 20 °C pre-strain greatly strengthened the steel but simultaneously significantly increased the HE susceptibility of the steel since α′ martensite was induced by the pre-strain causing the pre-existence of α′ martensite which provided “highways” for hydrogen to transport deep into the steel during the hydrogen-charging. Although the warm pre-strains did not strengthen the steel as significantly as the 20 °C pre-strain they retained the HE resistance of the steel. This is because the higher temperatures particularly 80 and 100 °C suppressed the α′ martensite transformation during the pre-straining. Pre-strain at a temperature slightly higher than room temperature has a potential to strengthen the metastable 304L austenitic stainless steel without compromising its initial HE resistance.
Enhanced Hydrogen Storage Properties of Mg by the Synergistic Effect of Grain Refinement and NiTiO 3 Nanoparticles
May 2021
Publication
As a promising hydrogen storage material the practical application of magnesium is obstructed by the stable thermodynamics and sluggish kinetics. In this paper three kinds of NiTiO3 catalysts with different mole ratio of Ni to Ti were successfully synthesized and doped into nanocrystalline Mg to improve its hydrogen storage properties. Experimental results indicated that all the Mg-NiTiO3 composites showed prominent hydrogen storage performance. Especially the Mg-NiTiO3/TiO2 composite could take up hydrogen at room temperature and the apparent activation energy for hydrogen absorption was dramatically decreased from 69.8 ± 1.2 (nanocrystalline Mg) kJ/mol to 34.2 ± 0.2 kJ/mol. In addition the hydrogenated sample began to release hydrogen at about 193.2 °C and eventually desorbed 6.6 wt% H2. The desorption enthalpy of the hydrogenated Mg-NiTiO3 -C was estimated to be 78.6 ± 0.8 kJ/mol 5.3 kJ/mol lower compared to 83.9 ± 0.7 kJ/mol of nanocrystalline Mg. Besides the sample revealed splendid cyclic stability during 20 cycles. No obvious recession occurred in the absorption and desorption kinetics and only 0.3 wt% hydrogen capacity degradation was observed. Further structural analysis demonstrates that nanosizing and catalyst doping led to a synergistic effect on the enhanced hydrogen storage performance of Mg-NiTiO3 -C composite which might serve as a reference for future design of highly effective hydrogen storage materials.
Intelligent Natural Gas and Hydrogen Pipeline Dispatching Using the Coupled Thermodynamics-Informed Neural Network and Compressor Boolean Neural Network
Feb 2022
Publication
Natural gas pipelines have attracted increasing attention in the energy industry thanks to the current demand for green energy and the advantages of pipeline transportation. A novel deep learning method is proposed in this paper using a coupled network structure incorporating the thermodynamics-informed neural network and the compressor Boolean neural network to incorporate both functions of pipeline transportation safety check and energy supply predictions. The deep learning model is uniformed for the coupled network structure and the prediction efficiency and accuracy are validated by a number of numerical tests simulating various engineering scenarios including hydrogen gas pipelines. The trained model can provide dispatchers with suggestions about the number of phases existing during the transportation as an index showing safety while the effects of operation temperature pressure and compositional purity are investigated to suggest the optimized productions.
Empowering Hydrogen Storage Properties of Haeckelite Monolayers via Metal Atom Functionalization
Mar 2021
Publication
Using hydrogen as an energy carrier requires new technological solutions for its onboard storage. The exploration of two-dimensional (2D) materials for hydrogen storage technologies has been motivated by their open structures which facilitates fast hydrogen kinetics. Herein the hydrogen storage properties of lightweight metal functionalized r57 haeckelite sheets are studied using density functional theory (DFT) calculations. H2 molecules are adsorbed on pristine r57 via physisorption. The hydrogen storage capacity of r57 is improved by decorating it with alkali and alkaline-earth metals. In addition the in-plane substitution of r57 carbons with boron atoms (B@r57) both prevents the clustering of metals on the surface of 2D material and increases the hydrogen storage capacity by improving the adsorption thermodynamics of hydrogen molecules. Among the studied compounds B@r57-Li4 with its 10.0 wt% H2 content and 0.16 eV/H2 hydrogen binding energy is a promising candidate for hydrogen storage applications. A further investigation as based on the calculated electron localization functions atomic charges and electronic density of states confirm the electrostatic nature of interactions between the H2 molecules and the protruding metal atoms on 2D haeckelite sheets. All in all this work contributes to a better understanding of pure carbon and B-doped haeckelites for hydrogen storage.
Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications
Jul 2016
Publication
Fuel cells are the most clean and efficient power source for vehicles. In particular proton exchange membrane fuel cells (PEMFCs) are the most promising candidate for automobile applications due to their rapid start-up and low-temperature operation. Through extensive global research efforts in the latest decade the performance of PEMFCs including energy efficiency volumetric and mass power density and low temperature startup ability have achieved significant breakthroughs. In 2014 fuel cell powered vehicles were introduced into the market by several prominent vehicle companies. However the low durability and high cost of PEMFC systems are still the main obstacles for large-scale industrialization of this technology. The key materials and components used in PEMFCs greatly affect their durability and cost. In this review the technical progress of key materials and components for PEMFCs has been summarized and critically discussed including topics such as the membrane catalyst layer gas diffusion layer and bipolar plate. The development of high-durability processing technologies is also introduced. Finally this review is concluded with personal perspectives on the future research directions of this area.
Insights into the Principles, Design Methodology and Applications of Electrocatalysts Towards Hydrogen Evolution Reaction
Apr 2021
Publication
The electrolysis of water for sustainable hydrogen producing is a crucial segment of various emerging clean-energy technologies. However pursuing an efficient and cheap alternative catalyst to substitute state-of-the-art platinum-group electrocatalysts remains a prerequisite for the commercialization of this technology. Typically precious-metal-free catalysts have always much lower activities towards hydrogen production than that of Pt-group catalysts. To explore high-performance catalysts maximally exposed active sites rapid charge transfer ability and desirable electronic configuration are essentially demanded. Herein the fundamentals of hydrogen evolution reaction will be briefly described and the main focus will be on the interfacial engineering strategies by means of constructing defect structure creating heterojunction phase engineering lattice strain control designing hierarchical architecture and doping heteroatoms to effectively proliferate the catalytic active sites facilitate the electron diffusion and regulate the electronic configuration of numerous transition metals and their nitrides carbides sulfides phosphides as well as oxides achieving a benchmark performance of platinum-free electrocatalysts for the hydrogen evolution reaction. This review unambiguously offers proof that the conventional cheap and earth-abundant transition metal-based substances can be translated into an active water splitting catalyst by the rational and controllable interfacial designing.
Techno-economic Assessment of Electrolytic Hydrogen in China Considering Wind-solar-load Characteristic
Jan 2023
Publication
Hydrogen production by electrolysis is considered an essential means of consuming renewable energy in the future. However the current assessment of the potential of renewable energy electrolysis for hydrogen production is relatively simple and the perspective is not comprehensive. Here we established a Combined Wind and Solar Electrolytic Hydrogen system considering the influence of regional wind-solar-load characteristics and transmission costs to evaluate the hydrogen production potential of 31 provincial-level regions in China in 2050. The results show that in 2050 the levelized cost of hydrogen (LCOH) in China’s provincial regions will still be higher than 10 ¥/kg which is not cost-competitive compared to the current hydrogen production from fossil fuels. It is more cost-effective to deploy wind turbines than photovoltaic in areas with similar wind and solar resources or rich in wind resources. Wind-solar differences impact LCOH equipment capacity configuration and transmission cost composition while load fluctuation significantly impacts LCOH and electricity storage configuration. In addition the sensitivity analysis of 11 technical and economic parameters showed differences in the response performance of LCOH changes to different parameters and the electrolyzer conversion efficiency had the most severe impact. The analysis of subsidy policy shows that for most regions (except Chongqing and Xizang) subsidizing the unit investment cost of wind turbines can minimize LCOH. Nevertheless from the perspective of comprehensive subsidy effect subsidy cost and hydrogen energy development it is more cost-effective to take subsidies for electrolysis equipment with the popularization of hydrogen
Preparation, Performance and Challenges of Catalyst Layer for Proton Exchange Membrane Fuel Cell
Nov 2021
Publication
In this paper the composition function and structure of the catalyst layer (CL) of a proton exchange membrane fuel cell (PEMFC) are summarized. The hydrogen reduction reaction (HOR) and oxygen reduction reaction (ORR) processes and their mechanisms and the main interfaces of CL (PEM|CL and CL|MPL) are described briefly. The process of mass transfer (hydrogen oxygen and water) proton and electron transfer in MEA are described in detail including their influencing factors. The failure mechanism of CL (Pt particles CL crack CL flooding etc.) and the degradation mechanism of the main components in CL are studied. On the basis of the existing problems a structure optimization strategy for a high‐performance CL is proposed. The commonly used preparation processes of CL are introduced. Based on the classical drying theory the drying process of a wet CL is explained. Finally the research direction and future challenges of CL are pointed out hoping to provide a new perspective for the design and selection of CL materials and preparation equipment.
Optimization of Operating Hydrogen Storage System for Coal–Wind–Solar Power Generation
Jul 2022
Publication
To address the severity of the wind and light abandonment problem and the economics of hydrogen energy production and operation this paper explores the problem of multi-cycle resource allocation optimization of hydrogen storage systems for coal–wind–solar power generation. In view of the seriousness of the problem of abandoning wind and photovoltaic power and the economy of hydrogen production and operation the node selection and scale setting issues for hydrogen production and storage as well as decision-making problems such as the capacity of new transmission lines and new pipelines and route planning are studied. This research takes the satisfaction of energy supply as the basic constraint and constructs a multi-cycle resource allocation optimization model for an integrated energy system aiming to achieve the maximum benefit of the whole system. Using data from Inner Mongolia where wind abandonment and power limitation are severe and Beijing and Shanxi provinces where hydrogen demand is high this paper analyzes the benefits of the hydrogen storage system for coal–wind–solar power generation and explores the impact of national subsidy policies and technological advances on system economics.
Hydrogenation Production via Chemical Looping Reforming of Coke Oven Gas
Jun 2020
Publication
Coke oven gas (COG) is one of the most important by-products in the steel industry and the conversion of COG to value-added products has attracted much attention from both economic and environmental views. In this work we apply the chemical looping reforming technology to produce pure H2 from COG. A series of La1-xSrxFeO3 (x = 0 0.2 0.3 0.4 0.5 0.6) perovskite oxides were prepared as oxygen carriers for this purpose. The reduction behaviours of La1-xSrxFeO3 perovskite by different reducing gases (H2 CO CH4 and the mixed gases) are investigated to discuss the competition effect of different components in COG for reacting with the oxygen carriers. The results show that reduction temperatures of H2 and CO are much lower than that of CH4 and high temperatures (>800 °C) are requested for selective oxidation of methane to syngas. The co-existence of CO and H2 shows weak effect on the equilibrium of methane conversion at high temperatures but the oxidation of methane to syngas can inhibit the consumption of CO and H2. The doping of suitable amounts of Sr in LaFeO3 perovskite (e.g. La0.5Sr0.5FeO3) significantly promotes the reactivity for selective oxidation of methane to syngas and inhibits the formation of carbon deposition obtaining both high methane conversion in the COG oxidation step and high hydrogen yield in the water splitting step. The La0.5Sr0.5FeO3 shows the highest methane conversion (67.82%) hydrogen yield (3.34 mmol·g-1) and hydrogen purity (99.85%). The hydrogen yield in water splitting step is treble as high as the hydrogen consumption in reduction step. These results reveal that chemical looping reforming of COG to produce pure H2 is feasible and an O2-assistant chemical looping reforming process can further improve the redox stability of oxygen carrier.
Optimal Planning of Hybrid Electric-hydrogen Energy Storage Systems via Multi-objective Particle Swarm Optimization
Jan 2023
Publication
In recent years hydrogen is rapidly developing because it is environmentally friendly and sustainable. In this case hydrogen energy storage systems (HESSs) can be widely used in the distribution network. The application of hybrid electric-hydrogen energy storage systems can solve the adverse effects caused by renewable energy access to the distribution network. In order to ensure the rationality and effectiveness of energy storage systems (ESSs) configuration economic indicators of battery energy storage systems (BESSs) and hydrogen energy storage systems power loss and voltage fluctuation are chosen as the fitness function in this paper. Meanwhile multi-objective particle swarm optimization (MOPSO) is used to solve Pareto non-dominated set of energy storage systems’ optimal configuration scheme in which the technique for order preference by similarity to ideal solution (TOPSIS) based on information entropy weight (IEW) is used select the optimal solution in Pareto non-dominated solution set. Based on the extended IEEE-33 system and IEEE-69 system the rationality of energy storage systems configuration scheme under 20% and 35% renewable energy penetration rate is analyzed. The simulation results show that the power loss can be reduced by 7.9%–22.8% and the voltage fluctuation can be reduced by 40.0%–71% when the renewable energy penetration rate is 20% and 35% respectively in IEEE-33 and 69 nodes systems. Therefore it can be concluded that the locations and capacities of energy storage systems obtained by multi-objective particle swarm optimization can improve the distribution network stability and economy after accessing renewable generation.
China Progress on Renewable Energy Vehicles: Fuel Cells, Hydrogen and Battery Hybrid Vehicles
Dec 2018
Publication
Clean renewable energy for Chinese cities is a priority in air quality improvement. This paper describes the recent Chinese advances in Polymer Electrolyte Membrane (PEM) hydrogen-fuel-cell-battery vehicles including buses and trucks. Following the 2016 Chinese government plan for new energy vehicles bus production in Foshan has now overtaken that in the EU USA and Japan combined. Hydrogen infrastructure requires much advance to catch up but numbers of filling stations are now increasing rapidly in the large cities. A particular benefit in China is the large number of battery manufacturing companies which fit well into the energy storage plan for hybrid fuel cell buses. The first city to manufacture thousands of PEM-battery hybrid buses is Foshan where the Feichi (Allenbus) company has built a new factory next to a novel fuel cell production line capable of producing 500 MW of fuel cell units per year. Hundreds of these buses are running on local Foshan routes this year while production of city delivery trucks has also been substantial. Results for energy consumption of these vehicles are presented and fitted to the Coulomb theory previously delineated.
Ignition of Hydrogen-air Mixtures Under Volumetric Expansion Conditions
Sep 2017
Publication
A better understanding of chemical kinetics under volumetric expansion is important for a number of situations relevant to industrial safety including detonation diffraction and direct initiation reflected shock-ignition at obstacles ignition behind a decaying shock among others. The ignition of stoichiometric hydrogen-air mixtures was studied using 0D numerical simulations with time-dependent specific volume variations. The competition between chemical energy release and expansion-induced cooling was characterized for different cooling rates and mathematical forms describing the shock decay rate. The critical conditions for reaction quenching were systematically determined and the thermo-chemistry dynamics were analyzed near the critical conditions.
No more items...