Germany
Methane Pyrolysis for CO2-Free H2 Production: A Green Process to Overcome Renewable Energies Unsteadiness
Aug 2020
Publication
The Carbon2Chem project aims to convert exhaust gases from the steel industry into chemicals such as methanol to reduce CO2 emissions. Here H2 is required for the conversion of CO2 into methanol. Although much effort is put to produce H2 from renewables the use of fossil fuels especially natural gas seems to be fundamental in the short term. For this reason the development of clean technologies for the processing of natural gas with a low environmental impact has become a topic of utmost importance. In this context methane pyrolysis has received special attention to produce CO2-free H2.
Review of Power-to-X Demonstration Projects in Europe
Sep 2020
Publication
At the heart of most Power-to-X (PtX) concepts is the utilization of renewable electricity to produce hydrogen through the electrolysis of water. This hydrogen can be used directly as a final energy carrier or it can be converted into for example methane synthesis gas liquid fuels electricity or chemicals. Technical demonstration and systems integration are of major importance for integrating PtX into energy systems. As of June 2020 a total of 220 PtX research and demonstration projects in Europe have either been realized completed or are currently being planned. The central aim of this review is to identify and assess relevant projects in terms of their year of commissioning location electricity and carbon dioxide sources applied technologies for electrolysis capacity type of hydrogen post-processing and the targeted field of application. The latter aspect has changed over the years. At first the targeted field of application was fuel production for example for hydrogen buses combined heat and power generation and subsequent injection into the natural gas grid. Today alongside fuel production industrial applications are also important. Synthetic gaseous fuels are the focus of fuel production while liquid fuel production is severely under-represented. Solid oxide electrolyzer cells (SOECs) represent a very small proportion of projects compared to polymer electrolyte membranes (PEMs) and alkaline electrolyzers. This is also reflected by the difference in installed capacities. While alkaline electrolyzers are installed with capacities between 50 and 5000 kW (2019/20) and PEM electrolyzers between 100 and 6000 kW SOECs have a capacity of 150 kW. France and Germany are undertaking the biggest efforts to develop PtX technologies compared to other European countries. On the whole however activities have progressed at a considerably faster rate than had been predicted just a couple of years ago.
Assessing the Social Acceptance of Key Technologies for the German Energy Transition
Jan 2022
Publication
Background: The widespread use of sustainable energy technologies is a key element in the transformation of the energy system from fossil-based to zero-carbon. In line with this technology acceptance is of great importance as resistance from the public can slow down or hinder the construction of energy technology projects. The current study assesses the social acceptance of three energy technologies relevant for the German energy transition: stationary battery storage biofuel production plants and hydrogen fuel station. Methods: An online survey was conducted to examine the public’s general and local acceptance of energy technologies. Explored factors included general and local acceptance public concerns trust in relevant stakeholders and attitudes towards financial support. Results: The results indicate that general acceptance for all technologies is slightly higher than local acceptance. In addition we discuss which public concerns exist with regard to the respective technologies and how they are more strongly associated with local than general acceptance. Further we show that trust in stakeholders and attitudes towards fnancial support is relatively high across the technologies discussed. Conclusions: Taken together the study provides evidence for the existence of a “general–local” gap despite measuring general and local acceptance at the same level of specifcity using a public sample. In addition the collected data can provide stakeholders with an overview of worries that might need to be addressed when planning to implement a certain energy project.
Review and Harmonization of the Life-Cycle Global Warming Impact of PV-Powered Hydrogen Production by Electrolysis
Sep 2021
Publication
This work presents a review of life-cycle assessment (LCA) studies of hydrogen electrolysis using power from photovoltaic (PV) systems. The paper discusses the assumptions strengths and weaknesses of 13 LCA studies and identifies the causes of the environmental impact. Differences in assumptions of system boundaries system sizes evaluation methods and functional units make it challenging to directly compare the Global Warming Potential (GWP) resulting from different studies. To simplify this process 13 selected LCA studies on PV-powered hydrogen production have been harmonized following a consistent framework described by this paper. The harmonized GWP values vary from 0.7 to 6.6 kg CO2-eq/kg H2 which can be considered a wide range. The maximum absolute difference between the original and harmonized GWP results of a study is 1.5 kg CO2-eq/kg H2. Yet even the highest GWP of this study is over four times lower than the GWP of grid-powered electrolysis in Germany. Due to the lack of transparency of most LCAs included in this review full identification of the sources of discrepancies (methods applied assumed production conditions) is not possible. Overall it can be concluded that the environmental impact of the electrolytic hydrogen production process is mainly caused by the GWP of the electricity supply. For future environmental impact studies on hydrogen production systems it is highly recommended to 1) divide the whole system into well-defined subsystems using compression as the final stage of the LCA and 2) to provide energy inputs/GWP results for the different subsystems.
Methanol as a Renewable Energy Carrier: An Assessment of Production and Transportation Costs for Selected Global Locations
Jun 2021
Publication
The importing of renewable energy will be one part of the process of defossilizing the energy systems of countries and regions which are currently heavily dependent on the import of fossil-based energy carriers. This study investigates the possibility of importing renewable methanol comprised of hydrogen and carbon dioxide. Based on a methanol synthesis simulation model the net production costs of methanol are derived as a function of hydrogen and carbon dioxide expenses. These findings enable a comparison of the import costs of methanol and hydrogen. For this the hydrogen production and distribution costs for 2030 as reported in a recent study for four different origin/destination country combinations are considered. With the predicted hydrogen production costs of 1.35–2 €/kg and additional shipping costs methanol can be imported for 370–600 €/t if renewable or process-related carbon dioxide is available at costs of 100 €/t or below in the hydrogen-producing country. Compared to the current fossil market price of approximately 400 €/t renewable methanol could therefore become cost-competitive. Within the range of carbon dioxide prices of 30–100 €/t both hydrogen and methanol exhibit comparable energy-specific import costs of 18–30 €/GJ. Hence the additional costs for upgrading hydrogen to methanol are balanced out by the lower shipping costs of methanol compared to hydrogen. Lastly a comparison for producing methanol in the hydrogen’s origin or destination country indicates that carbon dioxide in the destination country must be 181–228 €/t less expensive than that in the origin country to balance out the more expensive shipping costs for hydrogen.
Determination of the Optimal Power Ratio between Electrolysis and Renewable Energy to Investigate the Effects on the Hydrogen Production Costs
Sep 2022
Publication
Green hydrogen via renewable powered electrolysis has a high relevance in decarbonization and supply security. Achieving economically competitive hydrogen production costs is a major challenge in times of an energy price crisis. Our objective is to show the economically optimal installed capacity of electrolysers in relation to wind and solar power so swift and credible statements can be made regarding the system design. The ratio between renewable generation and electrolysis power as well as scaling effects operating behaviour and development of costs are considered. Hydrogen production costs are calculated for four exemplary real PV and wind sites and different ratios of electrolysis to renewable power for the year 2020. The ideal ratio for PV systems is between 14% and 73% and for wind between 3.3% and 143% for low and high full load hours. The lowest hydrogen production costs are identified at 2.53 €/kg for 50 MW wind power and 72 MW electrolysis power. The results provide plant constructors the possibility to create a cost-optimized design via an optimum ratio of electrolysis to renewable capacity. Therefore the procedures for planning and dimensioning of selected systems can be drastically simplified.
Study of Attenuation Effect of Water Droplets on Shockwaves from Hydrogen Explosion
Sep 2021
Publication
The increasing demand for renewable energy storage may position hydrogen as one of the major players in the future energy system. However to introduce such technology high level of safety must be offered. In particular for the accident scenarios with combustion or explosion of the unintendedly released hydrogen in partially or fully confined volumes such as e.g. road tunnel the effective countermeasures preventing or reducing the risk of equipment damages and person injuries should be established. A mitigation strategy could be the use of existing fire suppression system which can inject water as a spray. The shock waves resulted from hydrogen explosion could be weakened by the water droplets met on the shock path. In the presented work an attenuation effect of water droplets presence on the strength of the passing shock was studied. The analysis of the different attenuation mechanisms was performed and estimation of the effect of spray parameters such as droplet size and spray density on the shock wave was carried out. For the quantitative evaluation of the attenuation potential a numerical model for the COM3D combustion code was developed. The novel model for the droplet behavior accounting for the realistic correlations for the fluid (water) particle drag force linked with the corresponding droplet breakup model describing droplet atomization is presented. The model was validated against literature experimental data and was used for the blind simulations of the hydrogen test facility in KIT.
Seasonal Hydrogen Storage for Residential On- and Off-grid Solar Photovoltaics Prosumer Applications: Revolutionary Solution or Niche Market for the Energy Transition until 2050?
Apr 2023
Publication
Appropriate climate change mitigation requires solutions for all actors of the energy system. The residential sector is a major part of the energy system and solutions for the implementation of a seasonal hydrogen storage system in residential houses has been increasingly discussed. A global analysis of prosumer systems including seasonal hydrogen storage with water electrolyser hydrogen compressor storage tank and a fuel cell studying the role of such a seasonal household storage in the upcoming decades is not available. This study aims to close this research gap via the improved LUT-PROSUME model which models a fully micro sector coupled residential photovoltaic prosumer system with linear optimisation for 145 regions globally. The modelling of the cost development of hydrogen storage components allows for the simulation of a residential system from 2020 until 2050 in 5-year steps in hourly resolution. The systems are cost-optimised for either on– or off-grid operation in eight scenarios including battery electric vehicles which can act as an additional vehicle-to-home electricity storage for the system. Results show that implementation of seasonal hydrogen systems only occurs in least cost solutions in high latitude countries when the system is forced to run in off-grid mode. In general a solar photovoltaic plus battery system including technologies that can cover the heat demand is the most economic choice and can even achieve lower cost than a full grid supply in off-grid operation for most regions until 2050. Additional parameters including the self-consumption ratio the demand cover ratio and the heat cover ratio can therefore not be improved by seasonal storage systems if economics is the main deciding factor for a respective system. Further research opportunities and possible limitations of the system are then identified.
Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool
Apr 2023
Publication
The use of fossil fuels has caused many environmental issues including greenhouse gas emissions and associated climate change. Several studies have focused on mitigating this problem. One dynamic direction for emerging sources of future renewable energy is the use of hydrogen energy. In this research we evaluate the sourcing decision for a hydrogen supply chain in the context of a case study in Thailand using group decision making analysis for policy implications. We use an integrative multi-criteria decision analysis (MCDA) tool which includes an analytic hierarchy process (AHP) fuzzy AHP (FAHP) and data envelopment analysis (DEA) to analyze weighted criteria and sourcing alternatives using data collected from a group of selected experts. A list of criteria related to sustainability paradigms and sourcing decisions for possible use of hydrogen energy including natural gas coal biomass and water are evaluated. Our results reveal that political acceptance is considered the most important criterion with a global weight of 0.514 in the context of Thailand. Additionally natural gas is found to be the foreseeable source for hydrogen production in Thailand with a global weight of 0.313. We also note that the analysis is based on specific data inputs and that an alternative with a lower score does not imply that the source is not worth exploring.
A Review of the Role of Hydrogen in the Heat Decarbonization of Future Energy Systems: Insights and Perspectives
Apr 2024
Publication
Hydrogen is an emerging technology changing the context of heating with cleaner combustion than traditional fossil fuels. Studies indicate the potential to repurpose the existing natural gas infrastructure offering consumers a sustainable economically viable option in the future. The integration of hydrogen in combined heat and power systems could provide residential energy demand and reduce environmental emissions. However the widespread adoption of hydrogen will face several challenges such as carbon dioxide emissions from the current production methods and the need for infrastructure modification for transport and safety. Researchers indicated the viability of hydrogen in decarbonizing heat while some studies also challenged its long-term role in the future of heating. In this paper a comprehensive literature review is carried out by identifying the following key aspects which could impact the conclusion on the overall role of hydrogen in heat decarbonization: (i) a holistic view of the energy system considering factors such as renewable integration and system balancing; (ii) consumer-oriented approaches often overlook the broader benefits of hydrogen in emission reduction and grid stability; (iii) carbon capture and storage scalability is a key factor for large-scale production of low-emission blue hydrogen; (iv) technological improvements could increase the cost-effectiveness of hydrogen; (v) the role of hydrogen in enhancing resilience especially during extreme weather conditions raises the potential of hydrogen as a flexible asset in the energy infrastructure for future energy supply; and finally when considering the UK as a basis case (vi) incorporating factors such as the extensive gas network and unique climate conditions necessitates specific strategies.
Refueling of LH2 Aircraft—Assessment of Turnaround Procedures and Aircraft Design Implication
Mar 2022
Publication
Green liquid hydrogen (LH2) could play an essential role as a zero-carbon aircraft fuel to reach long-term sustainable aviation. Excluding challenges such as electrolysis transportation and use of renewable energy in setting up hydrogen (H2) fuel infrastructure this paper investigates the interface between refueling systems and aircraft and the impacts on fuel distribution at the airport. Furthermore it provides an overview of key technology design decisions for LH2 refueling procedures and their effects on the turnaround times as well as on aircraft design. Based on a comparison to Jet A-1 refueling new LH2 refueling procedures are described and evaluated. Process steps under consideration are connecting/disconnecting purging chill-down and refueling. The actual refueling flow of LH2 is limited to a simplified Reynolds term of v · d = 2.35 m2/s. A mass flow rate of 20 kg/s is reached with an inner hose diameter of 152.4 mm. The previous and subsequent processes (without refueling) require 9 min with purging and 6 min without purging. For the assessment of impacts on LH2 aircraft operation process changes on the level of ground support equipment are compared to current procedures with Jet A-1. The technical challenges at the airport for refueling trucks as well as pipeline systems and dispensers are presented. In addition to the technological solutions explosion protection as applicable safety regulations are analyzed and the overall refueling process is validated. The thermodynamic properties of LH2 as a real compressible fluid are considered to derive implications for airport-side infrastructure. The advantages and disadvantages of a subcooled liquid are evaluated and cost impacts are elaborated. Behind the airport storage tank LH2 must be cooled to at least 19 K to prevent two-phase phenomena and a mass flow reduction during distribution. Implications on LH2 aircraft design are investigated by understanding the thermodynamic properties including calculation methods for the aircraft tank volume and problems such as cavitation and two-phase flows. In conclusion the work presented shows that LH2 refueling procedure is feasible compliant with the applicable explosion protection standards and hence does not impact the turnaround procedure. A turnaround time comparison shows that refueling with LH2 in most cases takes less time than with Jet A-1. The turnaround at the airport can be performed by a fuel truck or a pipeline dispenser system without generating direct losses i.e. venting to the atmosphere.
Aluminium Redox Cycle in Comparison to Pressurized Hydrogen for the Energy Supply of Multi-family Houses
Nov 2022
Publication
Power-to-X technologies that convert renewable electricity to chemically stored energy in “X” may provide a gaseous liquid or solid fuel that can be used in winter to provide both heat and electricity and thus replace fossil fuels that are currently used in many countries with cold winters. This contribution compares two options for power-to-X technologies for providing heat and electricity supply of buildings with high solar photovoltaic coverage at times of low solar availability. The option “compressed hydrogen” is based on water electrolysis that produces hydrogen on-site. This hydrogen is subsequently compressed and stored at high pressure (350 bar) for use in winter by a fuel cell. The option “aluminium redox-cycle” includes an inert electrode high temperature electrolysis process that is carried out at industrial scale. Produced aluminium is subseqeuntly transported to the site of use and converted to hydrogen and heat – and finally to electricity and heat - by aluminium-water reaction in combination with a fuel cell. Results of cost and LCA analysis show that the overall energetic efficiency of the compressed hydrogen process is slightly higher than for the aluminium redox cycle. However the aluminium redox-cycles needs far less on-site storage volume and is likely to become available at lower investment cost for the end user. Total annual cost of ownership and global warming potential of the two options are quite similar.
International Experience of Carbon Neutrality and Prospects of Key Technologies: Lessons for China
Feb 2023
Publication
Carbon neutrality (or climate neutrality) has been a global consensus and international experience exchange is essential. Given the differences in the degree of social development resource endowment and technological level each country should build a carbon-neutral plan based on its national conditions. Compared with other major developed countries (e.g. Germany the United States and Japan) China's carbon neutrality has much bigger challenges including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels. Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon near-zero carbon and negative carbon emissions. Technological innovations associated with coal oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed. Based on integrated analysis of international experience from the world's major developed countries in-depth knowledge of the current and future technologies and China's energy and ecological resources potential five lessons for the implementation of China's carbon neutrality are proposed: (1) transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern; (2) renewable power-to-X and large-scale underground energy storage; (3) integration of green hydrogen production storage transport and utilization; (4) construction of clean energy systems based on smart sector coupling (ENSYSCO); (5) improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China. This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.
Risk Assessment and Mitigation Evaluation for Hydrogen Vehicles in Private Garages. Experiments and Modelling
Sep 2021
Publication
Governments and local authorities introduce new incentives and regulations for cleaner mobility as part of their environmental strategies to address energy challenges. Fuel cell electric vehicles (FCEVs) are becoming increasingly important and will extend beyond captive fleets reaching private users. Research on hydrogen safety issues is currently led in several projects in order to highlight and manage risks of FCEVs in confined spaces such as tunnels underground parkings repair garages etc. But what about private garages - that involve specific geometries volumes congestion ventilation? This study has been carried out in the framework of PRHyVATE JIP project which aims at better understanding hydrogen build-up and distribution in a private garage. The investigation went through different rates and modes of ventilation. As first step an HAZID (Hazard Identification) has been realized for a generic FCEV. This preliminary work allowed to select and prioritize accidental release scenarios to be explored experimentally with helium in a 40-m3 garage. Several configurations of release ventilation modes and congestion – in transient regime and at steady state – have been tested. Then analytical and numerical calculation approaches have been applied and adjusted to develop a simplified methodology. This methodology takes into account natural ventilation for assessment of hydrogen accumulation and mitigation means optimization. Finally a global risk evaluation – including ignition of a flammable hydrogen-air mixture – has been performed to account for the mostly feared events and to evaluate their consequences in a private garage. Thus preliminary recommendations good practices and safety features for safely parking FCEVs in private garages can be proposed.
Just Energy Transition: Learning from the Past for a More Just and Sustainable Hydrogen Transition in West Africa
Dec 2022
Publication
The rising demand for energy and the aim of moving away from fossil fuels and to low-carbon power have led many countries to move to alternative sources including solar energy wind geothermal energy biomass and hydrogen. Hydrogen is often considered a “missing link” in guaranteeing the energy transition providing storage and covering the volatility and intermittency of renewable energy generation. However due to potential injustice with regard to the distribution of risks benefits and costs (i.e. in regard to competing for land use) the large-scale deployment of hydrogen is a contested policy issue. This paper draws from a historical analysis of past energy projects to contribute to a more informed policy-making process toward a more just transition to the hydrogen economy. We perform a systematic literature review to identify relevant conflict factors that can influence the outcome of hydrogen energy transition projects in selected Economic Community of West African States countries namely Nigeria and Mali. To better address potential challenges policymakers must not only facilitate technology development access and market structures for hydrogen energy policies but also focus on energy access to affected communities. Further research should monitor hydrogen implementation with a special focus on societal impacts in producing countries.
Simulation of Hydrogen Mixing and Par Operation During Accidental Release in an LH2 Carrier Engine Room
Sep 2021
Publication
Next-generation LH2 carriers may use the boil-off gas from the cargo tanks as additional fuel for the engine. As a consequence hydrogen pipes will enter the room of the ship’s propulsion system and transport hydrogen to the main engine. The hydrogen distribution resulting from a postulated hydrogen leak inside the room of the propulsion system has been analyzed by means of Computational Fluid Dynamics (CFD). In a subsequent step simulations with passive auto-catalytic recombiners (PARs) were carried out in order to investigate if the recombiners can increase the safety margins during such accident scenarios. CFD enables a 3D prediction of the transient distribution with a high resolution allowing to identify local accumulation of hydrogen and consequently to identify optimal PAR positions as well as to demonstrate the efficiency of the PARs. The simulation of the unmitigated reference case reveals a strong natural circulation driven by the density difference of hydrogen and the incoming cold air from the ventilation system. Globally this natural circulation dilutes the hydrogen and removes a considerable amount from the room of the ship’s propulsion system via the ventilation ducts. However a hydrogen accumulation beyond the flammability limit is identified below the first ceiling above the leak position and the back-side wall of the engine room. Based on these findings suitable positions for recombiners were identified. The design objectives of the PAR system were on the one hand to provide both high instantaneous and integral removal rate and on the other hand to limit build-up of flammable clouds by means of depletion and PAR induced mixing processes. The simulations performed with three different PAR arrangements (variation of large and<br/>small PAR units at different positions) confirm that the PARs reduce efficiently the hydrogen<br/>accumulations.
Effect of Heat Transfer through the Release of Pipe on Simulations of Cryogenic Hydrogen Jet Fires and Hazard Distances
Sep 2021
Publication
Jet flames originated by cryo-compressed ignited hydrogen releases can cause life-threatening conditions in their surroundings. Validated models are needed to accurately predict thermal hazards from a jet fire. Numerical simulations of cryogenic hydrogen flow in the release pipe are performed to assess the effect of heat transfer through the pipe walls on jet parameters. Notional nozzle exit diameter is calculated based on the simulated real nozzle parameters and used in CFD simulations as a boundary condition to model jet fires. The CFD model was previously validated against experiments with vertical cryogenic hydrogen jet fires with release pressures up to 0.5 MPa (abs) release diameter 1.25 mm and temperatures as low as 50 K. This study validates the CFD model in a wider domain of experimental release conditions - horizontal cryogenic jets at exhaust pipe temperature 80 K pressure up to 2 MPa abs and release diameters up to 4 mm. Simulation results are compared against experimentally measured parameters as hydrogen mass flow rate flame length and radiative heat flux at several locations from the jet fire. The CFD model reproduces well experiments with reasonable engineering accuracy. Jet fire hazard distances established using three different criteria - temperature thermal radiation and thermal dose - are compared and discussed based on CFD simulation results.
Hydrogen Research: Technology First, Society Second?
Jul 2021
Publication
Hydrogen futures are in the making right in front of our eyes and will determine socio-ecological path dependencies for decades to come. However expertise on the societal effects of the hydrogen transition is in its infancy. Future energy research needs to include the social sciences humanities and interdisciplinary studies: energy cultures have to be examined as well as power relations and anticipation processes since the need for (green) hydrogen is likely to require a massive expansion of renewable energy plants.
Economically Viable Large-scale Hydrogen Liquefaction
Mar 2016
Publication
The liquid hydrogen demand particularly driven by clean energy applications will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection a dimensioning of key equipment for large scale liquefiers such as turbines and compressors as well as heat exchangers must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction e.g. fluid properties ortho-para hydrogen conversion and coldbox configuration must be analysed in detail. This paper provides an overview on the approach challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.
On Capital Utilization in the Hydrogen Economy: The Quest to Minimize Idle Capacity in Renewables-rich Energy Systems
Oct 2020
Publication
The hydrogen economy is currently experiencing a surge in attention partly due to the possibility of absorbing variable renewable energy (VRE) production peaks through electrolysis. A fundamental challenge with this approach is low utilization rates of various parts of the integrated electricity-hydrogen system. To assess the importance of capacity utilization this paper introduces a novel stylized numerical energy system model incorporating the major elements of electricity and hydrogen generation transmission and storage including both “green” hydrogen from electrolysis and “blue” hydrogen from natural gas reforming with CO2 capture and storage (CCS). Concurrent optimization of all major system elements revealed that balancing VRE with electrolysis involves substantial additional costs beyond reduced electrolyzer capacity factors. Depending on the location of electrolyzers greater capital expenditures are also required for hydrogen pipelines and storage infrastructure (to handle intermittent hydrogen production) or electricity transmission networks (to transmit VRE peaks to electrolyzers). Blue hydrogen scenarios face similar constraints. High VRE shares impose low utilization rates of CO2 capture transport and storage infrastructure for conventional CCS and of hydrogen transmission and storage infrastructure for a novel process (gas switching reforming) that enables flexible power and hydrogen production. In conclusion all major system elements must be considered to accurately reflect the costs of using hydrogen to integrate higher VRE shares.
No more items...