Germany
Regime-driven Niches and Institutional Entrepreneurs: Adding Hydrogen to Regional Energy Systems in Germany
Nov 2023
Publication
In recent years production and supply of hydrogen has gained significant attention within the German energy transition. This is due to increasingly urgent pressures to mitigate climate change and geopolitical imperatives to substitute natural gas. Hydrogen is seen as an important cross-sectoral energy carrier serving multiple functions including heat production for industry and households fuel for transportation and energy storage for stabilization of electricity supply. In the context of various funding mechanisms on several administrative levels regional value chains for green hydrogen supply are emerging. To date however few studies analyzing regional hydrogen systems exist. Due to its high projected demand of energy sources for heating industrial processes and mobility Germany appears to be a very relevant research area in this emerging field. Situated within the concept of the multi-level perspective this article examines the way how regional “niches” of green hydrogen evolve and how they are organized. The study takes an evolutionary perspective in analyzing processes of embedding green hydrogen infrastructures in regional energy regimes which entered “re-configuration”-pathways. It argues that the congruence of available resources for renewable electricity established networks of institutional entrepreneurs and access to higher level funding are conditions which put incumbent regime-actors in favorable positions to implement green hydrogen niches. Conversely the embedding of green hydrogen infrastructures in regional energy systems is a case in point of how the attributes of niches in particular technological domains can be used to explain the transition pathway entered by a surrounding energy regime.
Challenges and Opportunities for Hydrogen Production from Microalgae
Nov 2015
Publication
The global population is predicted to increase from ~7.3 billion to over 9 billion people by 2050.Together with rising economic growth this is forecast to result in a 50% increase in fueldemand which will have to be met while reducing carbon dioxide (CO 2 ) emissions by 50–80%to maintain social political energy and climate security. This tension between rising fuel demandand the requirement for rapid global decarbonization highlights the need to fast-track thecoordinated development and deployment of efficient cost-effective renewable technologies forthe production of CO 2 neutral energy. Currently only 20% of global energy is provided aselectricity while 80% is provided as fuel. Hydrogen (H 2) is the most advanced CO 2 -free fuel andprovides a ‘common’ energy currency as it can be produced via a range of renewabletechnologies including photovoltaic (PV) wind wave and biological systems such as microalgaeto power the next generation of H 2 fuel cells. Microalgae production systems for carbon-basedfuel (oil and ethanol) are now at the demonstration scale. This review focuses on evaluating thepotential of microalgal technologies for the commercial production of solar-driven H2 fromwater. It summarizes key global technology drivers the potential and theoretical limits ofmicroalgal H2 production systems emerging strategies to engineer next-generation systems andhow these fit into an evolving H 2 economy.
Net Zero Fuel (Mixed Hydrogen and Biofuels) Cement Clinker: Characterisation, Microstructure, and Performance
Oct 2024
Publication
Over 35% of the CO2 associated with cement production comes from operational energy. The cement industry needs alternative fuels to meet its net zero emissions target. This study investigated the influence of hydrogen mixed with biofuels herein designated net zero fuel as an alternative to coal on the clinker quality and performance of cement produced in an industrial cement plant. Scanning electron microscopy X-ray diffraction and nuclear magnetic resonance were coupled to study the clinker mineralogy and polymorphs. Hydration and microstructure development in plain and slag blended cements based on the clinker were compared to commercial cement equivalent. The results revealed a lower alite/belite ratio but a significant proportion of the belite was of the α’H-C2S polymorph. These reacted faster and compensated for the alite/belite ratio. Gel and micro-capillary pores were densified which reduced total porosity and attained comparable strength to the reference plain and blended cement. This study demonstrates that the investigated net zero fuel-produced clinker meets compositional and strength requirements for plain and blended cement providing a feasible pathway for the cement industry to lower its operational carbon significantly.
Does the Public Want Green Hydrogen in Industry? Local and National Acceptance of Methanol and Steel Transitions in Germany
Feb 2025
Publication
Public perceptions might determine the ease of the transition from a fossil-based to a green hydrogen-based production pathway in the industrial sector. The primary objective of this paper is to empirically identify the antecedents of the acceptance of two relevant industrial applications of green hydrogen: green methanol and green steel. The analysis relying on linear regression models utilises survey data from samples of residents near a chemical park and a steel plant (509 and 502 participants respectively) contrasting them with a representative sample of 1502 individuals in Germany. The findings suggest that acceptance of the transitions to green methanol and green steel is high both locally and nationally. In all surveys >59 % of the participants are in favour while the share of those who are opposed to the respective transitions is below 9 %. Key antecedents of acceptance which are conducive in all models relate to individuals’ attitudes towards green hydrogen and perceptions of the legitimacy of the industry actors involved with varying results across legitimacy types. In general the findings were similar across industrial applications and across levels of observation but varied across regions. This study highlights the importance of civil society perceptions and suggests that relationship management efforts aimed at maintaining positive perceptions of industrial hydrogen applications should consider their broader physical and social contexts.
Considering Hydrogen Policies with a Focus on Incentive Compatibility Towards Electricity Grids
Sep 2025
Publication
A lot of countries have recently published updated hydrogen strategies with many of them increasing and renewing their commitment. In parallel corresponding policy mechanisms are increasingly coming into focus with the first ones already having awarded funding contracts to projects and construction being underway. However these policies are usually translated from renewable energy policy without considering the specific risks and uncertainties spillovers and positive externality of operating grid-conducive electrolyzers in electricity grids which are increasingly subjected to electricity supply volatility from renewables. This article details how different aspects of a dedicated hydrogen policy can address the technology’s specific issues from an economic perspective namely funding provision market and technology risk mitigation and the complex relationship with further actors in electricity markets. Results show that compared to renewable energy policy mechanisms need to emphasize the input side more strongly as price risks and intermittency from electricity markets are more prominent than from hydrogen markets. Also it proposes a targeted mechanism to capture the positive externality of mitigating excess electricity in the grid while keeping investment security high. Economic policy should consider such approaches before scaling support and avoiding the design shortcomings experienced with early RE policy.
Repurposing Natural Gas Pipelines for Hydrogen: Limits and Options from a Case Study in Germany
Jul 2024
Publication
We investigate the challenges and options for repurposing existing natural gas pipelines for hydrogen transportation. Challenges of re-purposing are mainly related to safety and due to the risk of hydrogen embrittlement of pipeline steels and the smaller molecular size of the gas. From an economic perspective the lower volumetric energy density of hydrogen compared to natural gas is a challenge. We investigate three pipeline repurposing options in depth: a) no modification to the pipeline but enhanced maintenance b) use of gaseous inhibitors and c) the pipe-in-pipe approach. The levelized costs of transportation of these options are compared for the case of the German Norddeutsche Erdgasleitung (NEL) pipeline. We find a similar cost range for all three options. This indicates that other criteria such as the sunk costs public acceptance and consumer requirements are likely to shape the decision making for gas pipeline repurposing.
Multilateral Governance in a Global Hydrogen Economy: An Overview of Main Actors and Institutions, Key Challenges and Future Pathways
Nov 2024
Publication
This paper explores the current scope and direction of the emerging global governance of hydrogen within the broader context of the energy transition where technological innovation and institutional change intersect. Hydrogen as a critical yet complex energy vector requires coordinated governance efforts to navigate its development effectively. To this end we critically engage with key challenges facing the hydrogen sector and examine how institutional frameworks are addressing these issues. Departing from the broader scholarship on global energy governance we conceptually leverage the socio-technical transition and innovation system liter ature to understand the complexities underpinning the development of the global hydrogen economy. We identify three overarching issue areas pertaining to the nature and role of hydrogen in the global energy system: end-use sector development infrastructure and trade and environmental and socio-economic sustainability. Each of these areas presents distinct challenges to hydrogen’s global governance from stimulating supply and demand to managing geo-economic challenges and establishing comprehensive certification and standards. Through mapping multilateral institutions at the global and regional levels and their main objectives we offer insights into the emerging institutional architecture related to hydrogen and identify potential gaps in current governance. Our findings suggest that while newer hydrogen-specific institutions complement the broader agenda of the main established international organizations the overall global hydrogen structure remains a patchwork of diverse actors and frameworks each addressing hydrogen-related challenges to varying degrees. Our research contributes to a nuanced understanding of global governance in the hydrogen sector and advances scholarly discussions on how institutional and actor dynamics shape the emergence and development of new technologies.
Stability, Change, Formation: Insights into the Media's Role in Shaping Attitudes Toward Green Hydrogen in Germany
Nov 2024
Publication
This study uses a multi-method design to investigate the media’s role in shaping Germans’ attitudes toward green hydrogen. It combines an automatized content analysis of 7649 German newspaper articles published between July 2021 and June 2024 and a three-wave panel survey of the German population conducted between June 2023 and June 2024 with an initial sample of 2701 participants. The findings show that the intensity of media reporting on hydrogen was low compared to other energy-related topics. Nevertheless participants’ assessments of relative topic presence are rather accurate (rho: 0.50–0.80). A considerable number of participants were unable to position themselves toward the potential and challenges of hydrogen (23%–35%). Overall the results indicate that media and communication tend to stabilize or change existing attitudes rather than contribute to the formation or loss of attitudes leading to implications for the communication of relevant stakeholders.
Liquid Hydrogen Pool Evaporation Above Four Different Substrates
Sep 2023
Publication
In the frame of the EC-funded project PRESLHY ten experiments on LH2-pool evaporation above four different substrates have been performed with the POOL-facility on a free field test site. Substrates to be investigated comprised concrete sand water and gravel. Four of the experiments were made with artificial side wind of known direction and known velocity to investigate the influence of side wind on hydrogen evaporation and cloud formation above the LH2-pool. The POOL-facility mainly consists of an insulated stainless-steel box with the dimensions 0.5 x 0.5 x 0.2 m³ that is filled up to half the height (0.1 m) with the respective substrate and LH2. The height of the LH2-pool that forms above the substrate can be determined using the weight of the complete facility which is positioned on a scale. Additionally six thermocouples are located in different heights above the substrate surface to indicate the LH2-level as soon as they are covered with LH2. Further measurement equipment used in the tests comprises temperature measurements inside the substrate and several thermocouples in the unconfined space above the pool where also H2-concentration measurements were performed. Using the sensor information pool evaporation rates for the different substrates were determined. The temperature and concentration measurements above the pool were mainly used to define promising ignition positions for subsequent combustion experiments in which the LH2-spills above the different substrates were ignited.
Numerical Investigations of Hydrogen Release and Dispersion Due to Silane Decomposition in a Ventilated Container
Sep 2023
Publication
In recent years new chemical release agents based on silane are being used in the tire industry. Silane is an inorganic chemical compound consisting of a silicon backbone and hydrogen. Silanes can be thermally decomposed into high-purity silicon and hydrogen. If silane is stored and transported in Intermediate Bulk Containers (IBCs) equipped with safety valves in vented semi-confined spaces such as ISO-Containers hydrogen can be accumulated and become explosive mixture with air. A conservative CFD analysis using the GASFLOW-MPI code has been carried out to assess the hydrogen risk inside the vented containers. Two types of containers with different natural ventilation systems were investigated under various hypothetical accident scenarios. A continuous release of hydrogen due to the chemical decomposition of silane from IBCs was studied as the reference case. The effect of the safety valves on hydrogen accumulation in the container which results in small pulsed releases of hydrogen was investigated. The external effects of the sun and wind on hydrogen distribution and ventilation were also evaluated. The results can provide detailed information on hydrogen dispersion and mixing within the vented enclosures and used to evaluate the hydrogen risks such as flammability. Based on the assumptions used in this study it indicates that the geometry of ventilation openings plays a key role in the efficiency of the indoor air exchange process. In addition the use of safety valves makes it possible to reduce the concentration of hydrogen by volume in air compared to the reference case. The effect of the sun which results in a temperature difference between two container walls allows a strong mixing of hydrogen and air which helps to obtain a concentration lower than both the base case and the case of the pulsed releases. But the best results for the venting process are obtained with the wind that can drive the mixture to the downwind wall vent holes.
Country Risks Analysis for the Development of Green Hydrogen and Synthetic Fuel Sectors in the MENA Region
Nov 2024
Publication
Hydrogen plays a pivotal role in global efforts to decarbonize energy and industrial sectors. The European Union particularly Germany anticipate a significant reliance on hydrogen imports in the medium to long term identifying the Middle East and North Africa (MENA) region as a key potential producer and exporter of green hydrogen and its downstream products. Yet investment risks pose significant challenges to advancing the region’s green hydrogen and synthetic fuel industries. However systematic comparative risk analyses for these sectors across MENA countries remain limited. This study addresses the research gap by conducting a comparative risk assessment for renewable energy and green hydrogen and synthetic fuel development in 17 MENA countries. A comprehensive framework evaluating macro and micro risks was applied along with two contrasting risk scenarios to explore future developments under different risk conditions. The findings reveal that while MENA countries hold promise most face at least moderate risks underscoring the complexity of fostering these industries regionally.
HyPLANT100: Industrialization from Assembly to the Construction Site for Gigawatt Electrolysis
Apr 2024
Publication
The global push for sustainable energy has heightened the demand for green hydrogen which is crucial for decarbonizing heavy industry. However current electrolysis plant capacities are insufficient. This research addresses the challenge through optimizing large-scale electrolysis construction via standardization modularization process optimization and automation. This paper introduces H2Giga a project for mass-producing electrolyzers and HyPLANT100 investigating largescale electrolysis plant structure and construction processes. Modularizing electrolyzers enhances production efficiency and scalability. The integration of AutomationML facilitates seamless information exchange. A digital twin concept enables simulations optimizations and error identification before assembly. While construction site automation provides advantages tasks like connection technologies and handling cables tubes and hoses require pre-assembly. This study identifies key tasks suitable for automation and estimating required components. The Enapter Multicore electrolyzer serves as a case study showcasing robotic technology for tube fittings. In conclusion this research underscores the significance of standardization modularization and automation in boosting the electrolysis production capacity for green hydrogen contributing to ongoing efforts in decarbonizing the industrial sector and advancing the global energy transition.
Advancing Renewable Energy: Strategic Modeling and Optimization of Flywheel and Hydrogen-based Energy System
Sep 2024
Publication
This study introduces a hybrid energy storage system that combines advanced flywheel technology with hydrogen fuel cells and electrolyzers to address the variability inherent in renewable energy sources like solar and wind. Flywheels provide quick energy dispatch to meet peak demand while hydrogen fuel cells offer sustained power over extended periods. The research explores the strategic integration of these technologies within a hybrid photovoltaic (PV)-flywheel‑hydrogen framework aiming to stabilize the power supply. To evaluate the impact of flywheel integration on system sizing and load fluctuations simulations were conducted both before and after the flywheel integration. The inclusion of the flywheel resulted in a more balanced energy production and consumption profile across different seasons notably reducing the required fuel cell capacity from 100 kW to 30 kW. Additionally the integration significantly enhanced system stability enabling the fuel cell and electrolyzer to operate at consistent power during load fluctuations. The system achieved efficiencies of 71.42 % for the PEM electrolyzer and 62.14 % for the PEM fuel cell. However the introduction of the flywheel requires a higher capacity of PV modules and a larger electrolyzer. The overall flywheel's efficiency was impacted by parasitic energy losses resulting in an overall efficiency of 46.41 %. The minimum efficiency observed across various scenarios of the model studied was 3.14 % highlighting the importance of considering these losses in the overall system design. Despite these challenges the hybrid model demonstrated a substantial improvement in the reliability and stability of renewable energy systems effectively bridging short-term and long-term energy storage solutions.
Experimental Study on the Ignition of Hydrogen Containing Atmospheres by Mechanical Impacts
Sep 2023
Publication
In international regulations on explosion protection mechanical friction impact or abrasion is usually named as one of 13 ignition sources that must be avoided in hazardous zones with explosive atmospheres. In different studies it is even identified as one of the most frequent ignition sources in practice. The effectiveness of mechanical impacts as ignition source is dependent from several parameters including the minimum ignition energy of the explosive atmosphere the properties of the material pairing the kinetic impact energy or the impact velocity. By now there is no standard procedure to determine the effectiveness of mechanical impacts as ignition source. In some previous works test procedures with poor reproducibility or undefined kinetic impact energy were applied for this purpose. In other works only homogeneous material pairings were considered. In this work the effectiveness of mechanical impacts with defined and reproducible kinetic impact energy as ignition source for hydrogen containing atmospheres was studied systematically in dependence from the inhomogeneous material pairing considering materials with practical relevance like stainless steel low alloy steel concrete and non-iron-metals. It was found that ignition can be avoided if non-iron metals are used in combination with different metallic materials but in combination with concrete even the impact of non-iron-metals can be an effective ignition source if the kinetic impact energy is not further limited. Moreover the consequence of hydrogen admixture to natural gas on the effectiveness of mechanical impacts as ignition source was studied. In many cases ignition of atmospheres containing natural gas by mechanical impacts is rather unlikely. No influence could be observed for admixtures up to 25% hydrogen and even more. The results are mainly relevant in the context of repurposing the natural gas grid or adding hydrogen to the natural gas grid. Based on the test results it can be evaluated under which circumstances the use of tools made of non-iron-metals or other non-sparking materials can be an effective measure to avoid ignition sources in hazardous zones containing hydrogen for example during maintenance work.
Conceptual Design and Aerostructural Trade-Offs in HydrogenPowered Strut-Braced Wing Aircraft: Insights into Dry and Wet Ultra-High Aspect Ratio Wings
Jan 2025
Publication
Stringent sustainability goals are set for the next generation of aircraft. A promising novel airframe concept is the ultra-high aspect ratio Strut-Braced Wing (SBW) aircraft. Hydrogen-based concepts are active contenders for sustainable propulsion. The study compares a medium-range Liquid Hydrogen (LH2) to a kerosene-based SBW aircraft designed with the same top-level requirements. For both concepts overall design operating costs and emissions are evaluated using the tool SUAVE. Furthermore aerostructural optimizations are performed for the wing mass of SBW aircraft with and without wing-based fuel tanks. Results show that the main difference in the design point definition results from a higher zero-lift drag due to an extended fuselage housing the LH2 tanks with a small reduction in the required wing loading. Structural mass increases of the LH2 aircraft due to additional tanks and fuselage structure are mostly offset by fuel mass savings. While the fuel mass accounts for nearly 25% of the kerosene design’s Maximum Take-Off Mass (MTOM) this reduces to 10% for the LH2 design. The LH2 aircraft has 16% higher operating costs with emission levels reduced to 57–82% of the kerosene aircraft depending on the LH2 production method. For static loads the absence of fuel acting as bending moment relief in the wing results in an increase in wing structural mass. However the inclusion of roll rate requirements causes large wing mass increases for both concepts significantly outweighing dry wing penalties.
Key Influencing Factors on Hydrogen Storage and Transportation Costs: A Systematic Literature Review
Jan 2025
Publication
Cost-effective hydrogen supply chains are crucial for accelerating hydrogen deployment and decarbonizing economies with the storage and transportation sectors representing major challenges. This study presents a systematic literature review of 81 papers to identify and analyze the main influencing factors on hydrogen storage and transportation costs with the aim of improving transparency across the hydrogen supply chain. The review identifies and assesses 25 technical nine economic and two environmental factors highlighting capital expenditure and capacity of storage and transport facilities as the primary drivers of storage and transportation costs. Furthermore transport distance for trucks and ships as well as the discount rate for pipelines are iden tified as additional critical cost-determining factors for the transportation sector.
A Perspective on Low-Temperature Water Electrolysis - Challenges in Alkaline and Acidic Technology
Dec 2017
Publication
Water electrolysis is considered as an important technology for an increased renewable energy penetration. This perspective on low-temperature water electrolysis joins the dots between the interdisciplinary fields of fundamental science describing physicochemical processes engineering for the targeted design of cell components and the development of operation strategies. Within this aim the mechanisms of ion conduction gas diffusion corrosion and electrocatalysis are reviewed and their influence on the optimum design of separators electrocatalysts electrodes and other cell components are discussed. Electrocatalysts for the water splitting reactions and metals for system components are critically accessed towards their stability and functionality. On the basis of the broad scientific analysis provided challenges for the design of water electrolyzers are elucidated with special regard to the alkaline or acidic media of the electrolyte.
The Geopolitics of Hydrogen, Volume 1: European Strategies in Global Perspective
Jan 2024
Publication
Rainer Quitzow,
Yana Zabanova,
Almudena Nunez,
Ines Bouacida,
Michał Smoleń,
Wojciech Żelisko,
John Szabo,
Ignacio Urbasos,
Gonzalo Escribano,
Andrea Prontera,
Roelof Stam,
Coby van der Linder,
Pier Stapersma,
Stefan Ćetković,
Janek Stockburger,
Jon Birger Skjærseth,
Per Ove Eikeland,
Tor Håkon Jackson Inderberg and
Mari Lie Larsen
Chapters:<br/>♦ Introduction by Rainer Quitzow and Yana Zabanova<br/>♦ The EU in the Global Hydrogen Race: Bringing Together Climate Action Energy Security and Industrial Policy by Yana Zabanova<br/>♦ Germany’s Hydrogen Strategy: Securing Industrial Leadership in a Carbon–Neutral Economy by Almudena Nunez and Rainer Quitzow<br/>♦ France’s Hydrogen Strategy: Focusing on Domestic Hydrogen Production to Decarbonise Industry and Mobility by Ines Bouacida<br/>♦ International Dimension of the Polish Hydrogen Strategy. Conditions and Potential for Future Development by Michał Smoleń and Wojciech Żelisko<br/>♦ Hydrogen Affairs in Hungary’s Politically Confined Ambition byJohn Szabo<br/>♦ Spain’s Hydrogen Ambition: Between Reindustrialisation and Export-Led Energy Integration with the EU by Ignacio Urbasos and Gonzalo Escribano<br/>♦ Italian Hydrogen Policy: Drivers Constraints and Recent Developments by Andrea Prontera<br/>♦ Hydrogen Policy in the Netherlands: Laying the Foundations for a Scalable Hydrogen Value Chain by Roelof Stam Coby van der Linde and Pier Stapersma<br/>♦ Hydrogen Strategy of Sweden: Unpacking the Multiple Drivers and Potential Barriers to Hydrogen Development by Stefan Ćetković and Janek Stockburger<br/>♦ Norway’s Hydrogen Strategy: Unveiling Green Opportunities and Blue Export Ambitions by Jon Birger Skjærseth Per Ove Eikeland Tor Håkon Jackson Inderberg and Mari Lie Larsen<br/>♦ The Geopolitics of Hydrogen in Europe: The Interplay between EU and Member State Policies by Rainer Quitzow and Yana Zabanova
Numerical Investigation and Simulation of Hydrogen Blending into Natural Gas Combustion
Aug 2024
Publication
This study reviews existing simulation models and describes a selected model for analysing combustion dynamics in hydrogen and natural gas mixtures specifically within non-ferrous melting furnaces. The primary objectives are to compare the combustion characteristics of these two energy carriers and assess the impact of hydrogen integration on furnace operation and efficiency. Using computational fluid dynamics (CFD) simulations incorporating actual furnace geometries and a detailed combustion and NOx emission prediction model this research aims to accurately quantify the effects of hydrogen blending. Experimental tests on furnaces using only natural gas confirmed the validity of these simulations. By providing precise predictions for temperature distribution and NOx emissions this approach reduces the need for extensive laboratory testing facilitates broader exploration of design modifications accelerates the design process and ultimately lowers product development costs.
New Development Paths through Green Hydrogen? An Ex-ante Assessment of Structure and Agency in Chile and Namibia
Jan 2025
Publication
Many developing countries seek to participate in the emerging global green hydrogen industry not only as exporters of green hydrogen and its derivatives to Europe and the Far East but also to use it for their own energy security and green transition. They hope that new development paths will lead to late-comer industrialisation. This article assesses corresponding prospects in Chile and Namibia two countries that pursue particularly ambitious plans on green hydrogen. To better understand the chances for path creation ex ante the authors draft an innovative framework that refers to context factors – that is structure – and three types of transformative agency. Against the backdrop of information from secondary sources and a series of expert interviews they uncover sound institutional reforms and initiatives of place-based leadership to promote the green hydrogen industry. However Chile and Namibia lack Schumpeterian entrepreneurship. It therefore remains to be seen whether new development paths will be inclusive contributing to in-country development. Typical downsides of extractive industries in resource peripheries might occur.
No more items...