France
Circular Economy for the Energy System as a Leverage for Low-carbon Transition: Long-Ter, Analysis of the Case of the South-East Region of France
Mar 2024
Publication
The circular economy is a decisive strategy for reconciling economic development and the environment. In France the CE was introduced into the law in 2015 with the objective of closing the loop. The legislation also delegates energy policy towards the French regions by granting them the jurisdiction to directly plan the energy–climate issues on their territory and to develop local energy resources. Thereby the SUD PACA region has redefined its objectives and targeted carbon neutrality and the transition to a CE by 2050. To study this transition we developed a TIMESPACA optimization model. The results show that following a CE perspective to develop a local energy system could contribute to reducing CO2 emissions by 50% in final energy consumption and reaching almost free electricity production. To obtain greater reductions the development of the regional energy systems should follow a careful policy design favoring the transition to low energy-consuming behavior and the strategical allocation of resources across the different sectors. Biomethane should be allocated to the buildings and industrial sector while hydrogen should be deployed for buses and freight transport vehicles.
An Insight into Underground Hydrogen Storage in Italy
Apr 2023
Publication
Hydrogen is a key energy carrier that could play a crucial role in the transition to a low-carbon economy. Hydrogen-related technologies are considered flexible solutions to support the large-scale implementation of intermittent energy supply from renewable sources by using renewable energy to generate green hydrogen during periods of low demand. Therefore a short-term increase in demand for hydrogen as an energy carrier and an increase in hydrogen production are expected to drive demand for large-scale storage facilities to ensure continuous availability. Owing to the large potential available storage space underground hydrogen storage offers a viable solution for the long-term storage of large amounts of energy. This study presents the results of a survey of potential underground hydrogen storage sites in Italy carried out within the H2020 EU Hystories “Hydrogen Storage In European Subsurface” project. The objective of this work was to clarify the feasibility of the implementation of large-scale storage of green hydrogen in depleted hydrocarbon fields and saline aquifers. By analysing publicly available data mainly well stratigraphy and logs we were able to identify onshore and offshore storage sites in Italy. The hydrogen storage capacity in depleted gas fields currently used for natural gas storage was estimated to be around 69.2 TWh.
Hydrogenization of Underground Storage of Natural Gas
Aug 2015
Publication
The intermittent production of the renewable energy imposes the necessity to temporarily store it. Large amounts of exceeding electricity can be stored in geological strata in the form of hydrogen. The conversion of hydrogen to electricity and vice versa can be performed in electrolyzers and fuel elements by chemical methods. The nowadays technical solution accepted by the European industry consists of injecting small concentrations of hydrogen in the existing storages of natural gas. The progressive development of this technology will finally lead to the creation of underground storages of pure hydrogen. Due to the low viscosity and low density of hydrogen it is expected that the problem of an unstable displacement including viscous fingering and gravity overriding will be more pronounced. Additionally the injection of hydrogen in geological strata could encounter chemical reactivity induced by various species of microorganisms that consume hydrogen for their metabolism. One of the products of such reactions is methane produced from Sabatier reaction between H2 and CO2. Other hydrogenotrophic reactions could be caused by acetogenic archaea sulfate-reducing bacteria and iron-reducing bacteria. In the present paper a mathematical model is presented which is capable to reflect the coupled hydrodynamic and bio-chemical processes in UHS. The model has been numerically implemented by using the open source code DuMuX developed by the University of Stuttgart. The obtained bio-chemical version of DuMuX was used to model the evolution of a hypothetical underground storage of hydrogen. We have revealed that the behavior of an underground hydrogen storage is different than that of a natural gas storage. Both the hydrodynamic and the bio-chemical effects contribute to the different characteristics.
Fast Sizing Methodology and Assessment of Energy Storage Configuration on the Flight Time of a Multirotor Aerial Vehicle
Apr 2023
Publication
Urban air mobility (UAM) defined as safe and efficient air traffic operations in a metropolitan area for manned aircraft and unmanned aircraft systems is being researched and developed by industry academia and government. This kind of mobility offers an opportunity to construct a green and sustainable sub-sector building upon the lessons learned over decades by aviation. Thanks to their non-polluting operation and simple air traffic management electric vertical take-off and landing (eVTOL) aircraft technologies are currently being developed and experimented with for this purpose. However to successfully complete the certification and commercialization stage several challenges need to be overcome particularly in terms of performance such as flight time and endurance and reliability. In this paper a fast methodology for sizing and selecting the propulsion chain components of an eVTOL multirotor aerial vehicle was developed and validated on a reduced-scale prototype of an electric multirotor vehicle with a GTOW of 15 kg. This methodology is associated with a comparative study of energy storage system configurations in order to assess their effect on the flight time of the aerial vehicle. First the optimal pair motor/propeller was selected using a global nonlinear optimization in order to maximize the specific efficiency of these components. Second five energy storage technologies were sized in order to evaluate their influence on the aerial vehicle flight time. Finally based on this sizing process the optimized propulsion chain gross take-off weight (GTOW) was evaluated for each energy storage configuration using regression-based methods based on propulsion chain supplier data.
A Comprehensive Survey of Alkaline Electrolyzer Modeling: Electrical Domain and Specific Electrolyte Conductivity
May 2022
Publication
Alkaline electrolyzers are the most widespread technology due to their maturity low cost and large capacity in generating hydrogen. However compared to proton exchange membrane (PEM) electrolyzers they request the use of potassium hydroxide (KOH) or sodium hydroxide (NaOH) since the electrolyte relies on a liquid solution. For this reason the performances of alkaline electrolyzers are governed by the electrolyte concentration and operating temperature. Due to the growing development of the water electrolysis process based on alkaline electrolyzers to generate green hydrogen from renewable energy sources the main purpose of this paper is to carry out a comprehensive survey on alkaline electrolyzers and more specifically about their electrical domain and specific electrolytic conductivity. Besides this survey will allow emphasizing the remaining key issues from the modeling point of view.
Proton Exchange Membrane Electrolyzer Modeling for Power Electronics Control: A Short Review
May 2020
Publication
The main purpose of this article is to provide a short review of proton exchange membrane electrolyzer (PEMEL) modeling used for power electronics control. So far three types of PEMEL modeling have been adopted in the literature: resistive load static load (including an equivalent resistance series-connected with a DC voltage generator representing the reversible voltage) and dynamic load (taking into consideration the dynamics both at the anode and the cathode). The modeling of the load is crucial for control purposes since it may have an impact on the performance of the system. This article aims at providing essential information and comparing the different load modeling.
Hydrogen Storage as a Key Energy Vector for Car Transportation: A Tutorial Review
Oct 2023
Publication
Hydrogen storage is a key enabling technology for the extensive use of hydrogen as energy carrier. This is particularly true in the widespread introduction of hydrogen in car transportation. Indeed one of the greatest technological barriers for such development is an efficient and safe storage method. So in this tutorial review the existing hydrogen storage technologies are described with a special emphasis on hydrogen storage in hydrogen cars: the current and the ongoing solutions. A particular focus is given on solid storage and some of the recent advances on plasma hydrogen ion implantation which should allow not only the preparation of metal hydrides but also the imagination of a new refluing circuit. From hydrogen discovery to its use as an energy vector in cars this review wants to be as exhaustive as possible introducing the basics of hydrogen storage and discussing the experimental practicalities of car hydrogen fuel. It wants to serve as a guide for anyone wanting to undertake such a technology and to equip the reader with an advanced knowledge on hydrogen storage and hydrogen storage in hydrogen cars to stimulate further researches and yet more innovative applications for this highly interesting field.
Global Hydrogen Review 2023
Sep 2023
Publication
The Global Hydrogen Review is an annual publication by the International Energy Agency that tracks hydrogen production and demand worldwide as well as progress in critical areas such as infrastructure development trade policy regulation investments and innovation. The report is an output of the Clean Energy Ministerial Hydrogen Initiative and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while also informing discussions at the Hydrogen Energy Ministerial Meeting organised by Japan. Focusing on hydrogen’s potentially major role in meeting international energy and climate goals the Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies at the same time as creating demand for hydrogen and hydrogen-based fuels. It compares real-world developments with the stated ambitions of government and industry. This year’s report includes a focus on demand creation for low-emission hydrogen. Global hydrogen use is increasing but demand remains so far concentrated in traditional uses in refining and the chemical industry and mostly met by hydrogen produced from unabated fossil fuels. To meet climate ambitions there is an urgent need to switch hydrogen use in existing applications to low-emission hydrogen and to expand use to new applications in heavy industry or long-distance transport.
Renewable Hydrogen Production Processes for the Off-Gas Valorization in Integrated Steelworks through Hydrogen Intensified Methane and Methanol Syntheses
Nov 2020
Publication
Within integrated steelmaking industries significant research efforts are devoted to the efficient use of resources and the reduction of CO2 emissions. Integrated steelworks consume a considerable quantity of raw materials and produce a high amount of by-products such as off-gases currently used for the internal production of heat steam or electricity. These off-gases can be further valorized as feedstock for methane and methanol syntheses but their hydrogen content is often inadequate to reach high conversions in synthesis processes. The addition of hydrogen is fundamental and a suitable hydrogen production process must be selected to obtain advantages in process economy and sustainability. This paper presents a comparative analysis of different hydrogen production processes from renewable energy namely polymer electrolyte membrane electrolysis solid oxide electrolyze cell electrolysis and biomass gasification. Aspen Plus® V11-based models were developed and simulations were conducted for sensitivity analyses to acquire useful information related to the process behavior. Advantages and disadvantages for each considered process were highlighted. In addition the integration of the analyzed hydrogen production methods with methane and methanol syntheses is analyzed through further Aspen Plus®-based simulations. The pros and cons of the different hydrogen production options coupled with methane and methanol syntheses included in steelmaking industries are analyzed
Safe Design for Large Scale H2 Production Facilities
Sep 2023
Publication
To contribute to a more diverse and efficient energy infrastructure large quantities of hydrogen are requested for industries (e.g. mining refining fertilizers…). These applications need large scale facilities such as dozens of electrolyzer stacks from atmospheric pressure to 30 bar with a total capacity ranging from 100 up to 400 MW and associated hydrogen storage from a few to 50 tons.
Local use can be fed by electrolyzer in 20 feet container and stored in bundles with small volumes. Nevertheless industrial applications can request much bigger capacity of production which are generally located in buildings. The different technologies available for the production of hydrogen at large scale are alkaline or PEM electrolyzer with for example 100 MW capacity in a building of 20000 m3 and hydrogen stored in tube trailers or other fixed hydrogen storage solution with large volumes.
These applications led to the use of hydrogen inside large but confined spaces with the risk of fire and explosion in case of loss of containment followed by ignition. This can lead to severe consequences on asset workers and public due to the large inventories of hydrogen handled.
This article aims to provide an overview of the strategy to safely design large scale hydrogen production facilities in buildings through benchmarks based on projects and literature reviews best practices & standards regulations. It is completed by a risk assessment taking into consideration hydrogen behavior and influence of different parameters in dispersion and explosion in large buildings.
This article provides recommendations for hydrogen project stakeholders to perform informed-based decisions for designing large scale production buildings. It includes safety measures as reducing hydrogen inventories inside building allocating clearance around electrolyzer stacks implementing early detection and isolation devices and building geometry to avoid hydrogen accumulation.
Local use can be fed by electrolyzer in 20 feet container and stored in bundles with small volumes. Nevertheless industrial applications can request much bigger capacity of production which are generally located in buildings. The different technologies available for the production of hydrogen at large scale are alkaline or PEM electrolyzer with for example 100 MW capacity in a building of 20000 m3 and hydrogen stored in tube trailers or other fixed hydrogen storage solution with large volumes.
These applications led to the use of hydrogen inside large but confined spaces with the risk of fire and explosion in case of loss of containment followed by ignition. This can lead to severe consequences on asset workers and public due to the large inventories of hydrogen handled.
This article aims to provide an overview of the strategy to safely design large scale hydrogen production facilities in buildings through benchmarks based on projects and literature reviews best practices & standards regulations. It is completed by a risk assessment taking into consideration hydrogen behavior and influence of different parameters in dispersion and explosion in large buildings.
This article provides recommendations for hydrogen project stakeholders to perform informed-based decisions for designing large scale production buildings. It includes safety measures as reducing hydrogen inventories inside building allocating clearance around electrolyzer stacks implementing early detection and isolation devices and building geometry to avoid hydrogen accumulation.
Electricity Supply Configurations for Green Hydrogen Hubs: A European Case Study on Decarbonizing Urban Transport
Aug 2024
Publication
In this study a techno-economic analysis tool for conducting detailed feasibility studies on the deployment of green hydrogen hubs for fuel cell bus fleets is developed. The study evaluates and compares five green hydrogen hub configurations’ operational and economic performance under a typical metropolitan bus fleet refuelling schedule. Each configuration differs based on its electricity sourcing characteristics such as the mix of energy sources capacity sizing financial structure and grid interaction. A detailed comparative analysis of distinct green hydrogen hub configurations for decarbonising a fleet of fuel-cell buses is conducted. Among the key findings is that a hybrid renewable electricity source and hydrogen storage are essential for cost-optimal operation across all configurations. Furthermore bi-directional grid-interactive configurations are the most costefficient and can benefit the electricity grid by flattening the duck curve. Lastly the paper highlights the potential for cost reduction when the fleet refuelling schedule is co-optimized with the green hydrogen hub electricity supply configuration.
Optimization of Hydrogen Gas Storage in PEM Fuel Cell mCHP System for Residential Applications using Numerical and Machine Learning Modeling
May 2025
Publication
This study explores the integration and optimization of a hydrogen-based energy system emphasizing the use of metal hydride (MH) storage coupled with Proton Exchange Membrane Fuel Cell Micro Combined Heat and Power (PEMFC MCHP) system for residential applications. MH storage coupled to a heat pump operates at charging and discharging pressures of 10 bar. COMSOL model in 6.1 version using heat transfer in solids and fluids in brinkman equations modules is validated by experimental data and uses machine learning (Feedforward Neural Networks) for predictive modeling of MH dynamics. Smaller 500 NL tanks were found to have high mass-specific heat demand but faster hydrogen gas kinetics reaching (~77 % capacity in one hour) whereas larger 6500 NL (~57 %/hour) absorb hydrogen gas more gradually but reduce thermal management intensities. Using 13 × 500 NL tanks reach ~25 % discharge in 1 h but require ~2170 Wh heating whereas one 6500 NL tank only attains ~48.5 % discharge yet uses ~1750 Wh illustrating a trade-off between faster kinetics and lower thermal load. A genetic algorithm identified an optimal configuration of two 6500 NL tanks that covered ~68 % of total hydrogen gas consumption and 65 % of production at a maximum of 2.4 kW heating and 2.45 kW cooling. Additional comparisons with 170 bar compressed storage revealed lower instantaneous thermal requirements for high-pressure gas tanks. Adding a 170 bar compressed H2 alongside the 10 bar MH system hydrogen gas coverage rose from ~70 % to ~97 % when storage expanded to 200 Nm3 but at the cost of higher compression energy. The proposed MH-based approach especially at moderate pressures with carefully planned tank geometries achieves enhanced operational flexibility for a residential 120 m2 building’s space heating and hot water while machine learning optimizations further refine charge–discharge performance.
Hydrogen Embrittlement as a Conspicuous Material Challenge - Comprehensive Review and Future Directions
May 2024
Publication
Hydrogen is considered a clean and efficient energy carrier crucial for shapingthe net-zero future. Large-scale production transportation storage and use of greenhydrogen are expected to be undertaken in the coming decades. As the smallest element inthe universe however hydrogen can adsorb on diffuse into and interact with many metallicmaterials degrading their mechanical properties. This multifaceted phenomenon isgenerically categorized as hydrogen embrittlement (HE). HE is one of the most complexmaterial problems that arises as an outcome of the intricate interplay across specific spatialand temporal scales between the mechanical driving force and the material resistancefingerprinted by the microstructures and subsequently weakened by the presence of hydrogen. Based on recent developments in thefield as well as our collective understanding this Review is devoted to treating HE as a whole and providing a constructive andsystematic discussion on hydrogen entry diffusion trapping hydrogen−microstructure interaction mechanisms and consequencesof HE in steels nickel alloys and aluminum alloys used for energy transport and storage. HE in emerging material systems such ashigh entropy alloys and additively manufactured materials is also discussed. Priority has been particularly given to these lessunderstood aspects. Combining perspectives of materials chemistry materials science mechanics and artificial intelligence thisReview aspires to present a comprehensive and impartial viewpoint on the existing knowledge and conclude with our forecasts ofvarious paths forward meant to fuel the exploration of future research regarding hydrogen-induced material challenges.
Fuel Cells: A Technical, Environmental, and Economic Outlook
Dec 2024
Publication
In the pursuit of establishing a sustainable fuel cell (FC) energy system this review highlights the necessity of examining the operational principles technical details environmental consequences and economic concerns collectively. By adopting an integrated approach the review research into various fuel cells types extending their applications beyond transportation and evaluating their potential for seamless integration into sustainable practices. A detailed analysis of the technical aspects including FC membranes performance and applications is presented. The environmental impact of hydrogen generation through fuel cell/electrolyzer is quantitatively assessed emphasizing a comparative emission footprint against traditional hydrogen generation methods. Economic considerations of fuel cell technology adoption are explored through an extensive examination of market growth and forecasts and investments into the FC systems. Some flagship commercial projects of FC technology are also discussed along with their future prospective. The article concludes with a thorough analysis of challenges associated with FC adoption encompassing membrane research performance hurdles infrastructure development and application-specific challenges. This all-round review serves as an indispensable tool for academicians and policymakers providing a directed and comprehensive FC perspective.
Natural Hydrogen in Uruguay: Catalog of H2-Generating Rocks, Prospective Exploration Areas, and Potential Systems
Feb 2025
Publication
The increasing demand for carbon-free energy in recent years has positioned hydrogen as a viable option. However its current production remains largely dependent on carbon-emitting sources. In this context natural hydrogen generated through geological processes in the Earth’s subsurface has emerged as a promising alternative. The present study provides the first national-scale assessment of natural dihydrogen (H2) potential in Uruguay by developing a catalog of potential H2-generating rocks identifying prospective exploration areas and proposing H2 systems there. The analysis includes a review of geological and geophysical data from basement rocks and onshore sedimentary basins. Uruguay stands out as a promising region for natural H2 exploration due to the significant presence of potential H2-generating rocks in its basement such as large iron formations (BIFs) radioactive rocks and basic and ultrabasic rocks. Additionally the Norte Basin exhibits potential efficient cap rocks including basalts and dolerites with geological analogies to the Mali field. Indirect evidence of H2 in a free gas phase has been observed in the western Norte Basin. This suggests the presence of a potential H2 system in this area linked to the Arapey Formation basalts (seal) and Mesozoic sandstones (reservoir). Furthermore the proposed H2 system could expand exploration opportunities in northeastern Argentina and southern Brazil given the potential presence of similar play/tramp.
Global-scale AI-powered Prediction of Hydrogen Seeps
Oct 2025
Publication
Natural hydrogen (H2) holds promising potential as a clean energy source but its exploration remains challenging due to limited knowledge and a lack of quantitative tools. In this context identifying active H2 seepage areas is crucial for advancing exploration efforts. Here we focus on sub-circular depressions (SCDs) that often mark high H2 concentration in soils thought to correspond to deeper fluxes seeping at the surface making them promising targets for exploration. Coupling open-access Google Earth© images and in-field H2 measurement data an artificial intelligence model was trained to detect seepage zones. The model achieves an average precision of 95 % detects and maps seepage zones in new regions like Kazakhstan and South Africa highlighting its potential for global application. Moreover preliminary spatial analyses show that geological features control the distribution of H2-SCDs that can emit billions of tons of H2 at the scale of a sedimentary basin. This study paves the way for a faster and more efficient methodology for selecting H2 exploration targets. Plain Language Summary. Natural hydrogen is a promising clean energy source but it remains difficult to explore due to a lack of accessible tools. In this study we used free satellite images (Google Earth©) and in-field hydrogen measurements to identify specific surface features - small sub-circular depressions (SCDs) - that often mark areas where hydrogen is seeping from underground. We trained an artificial intelligence model to detect these depressions using a dataset of confirmed hydrogen-emitting SCDs collected across five countries. Thanks to this diversity in the training data the model can be applied at a global scale having learned to recognize a wide variety of structures associated with hydrogen seepage. To validate its effectiveness the model was tested on two random regions - in Kazakhstan and South Africa - and successfully identified over a thousand new potential hydrogen-emitting depressions. With an average precision of 95 % this tool offers a fast and reliable way to map natural hydrogen seepage zones helping guide future exploration efforts worldwide.
Optimization of Hydrogen Combustion in Diesel Engines: A CFD-Based Approach for Efficient Hydrogen Mixing and Emission Reduction
Apr 2025
Publication
Hydrogen internal combustion engines (ICEs) have gained significant attention as a promising solution for achieving zero-carbon emissions in the transportation sector. This study investigates the conversion of a 2 L Diesel ICE into a lean hydrogen-powered ICE focusing on key challenges such as hydrogen mixing pre-ignition combustion flame development and NOx emissions. The novelty of this research lies in the specific modifications made to optimize engine performance and reduce emissions while utilizing the existing Diesel engine infrastructure. The study identifies several important design changes for the successful conversion of a Diesel engine to hydrogen including the following: Intake port design: transitioning from a swirl to a tumble design to enhance hydrogen mixing; Injection and spark plug configuration: using a lateral injection system combined with a central spark plug to improve combustion; Piston design: employing a lenticular piston shape with adaptable depth to enhance mixing; Mitigating Coanda effect: preventing hydrogen issues at the spark plug using deflectors or caps; and Head design: maintaining a flat head design for efficient mixing while ensuring adequate cooling to avoid pre-ignition. These findings highlight the importance of specific modifications for converting Diesel engines to hydrogen providing a solid foundation for further research in hydrogen-powered ICEs which could contribute to carbon emission reduction and a more sustainable energy transition.
Literature Review: State-of-the-art Hydrogen Storage Technologies and Liquid Organic Hydrogen Carrier (LOHC) Development
Sep 2023
Publication
Greenhouse gas anthropogenic emissions have triggered global warming with increasingly alarming consequences motivating the development of carbon-free energy systems. Hydrogen is proposed as an environmentally benign energy vector to implement this strategy but safe and efficient large-scale hydrogen storage technologies are still lacking to develop a competitive Hydrogen economy. LOHC (Liquid Organic Hydrogen Carrier) improves the storage and handling of hydrogen by covalently binding it to a liquid organic framework through catalytic exothermic hydrogenation and endothermic dehydrogenation reactions. LOHCs are oil-like materials that are compatible with the current oil and gas infrastructures. Nevertheless their high dehydrogenation enthalpy platinoid-based catalysts and thermal stability are bottlenecks to the emergence of this technology. In this review hydrogen storage technologies and in particular LOHC are presented. Moreover potential reactivities to design innovative LOHC are discussed.
A Review on Machine Learning Applications in Hydrogen Energy Systems
Feb 2025
Publication
Adopting machine learning (ML) in hydrogen systems is a promising approach that enhances the efficiency reliability and sustainability of hydrogen power systems and revolutionizes the hydrogen energy sector to optimize energy usage/management and promote sustainability. This study explores hydrogen energy systems including production storage and applications while establishing a connection between machine learning solutions and the challenges these systems face. The paper provides an in-depth review of the literature examining not only ML techniques but also optimization algorithms evaluation methods explainability techniques and emerging technologies. By addressing these aspects we highlight the key factors of new technologies and their potential benefits across the three stages of the hydrogen value chain. We also present the advantages and limitations of applying ML models in this field offering recommendations for their optimal use. This comprehensive and precise work serves as the most current and complete examination of ML applications within the hydrogen value chain providing a solid foundation for future research across all stages of the hydrogen industry.
Open-Circuit Switch Fault Diagnosis and Accommodation of a Three-Level Interleaved Buck Converter for Electrolyzer Applications
Mar 2023
Publication
This article proposes a novel open-circuit switch fault diagnosis method (FDM) for a three-level interleaved buck converter (TLIBC) in a hydrogen production system based on the water electrolysis process. The control algorithm is suitably modified to ensure the same hydrogen production despite the fault. The TLIBC enables the interfacing of the power source (i.e. low-carbon energy sources) and electrolyzer while driving the hydrogen production of the system in terms of current or voltage. On one hand the TLIBC can guarantee a continuity of operation in case of power switch failures because of its interleaved architecture. On the other hand the appearance of a power switch failure may lead to a loss of performance. Therefore it is crucial to accurately locate the failure in the TLIBC and implement a fault-tolerant control strategy for performance purposes. The proposed FDM relies on the comparison of the shape of the input current and the pulse width modulation (PWM) gate signal of each power switch. Finally an experimental test bench of the hydrogen production system is designed and realized to evaluate the performance of the developed FDM and fault-tolerant control strategy for TLIBC during post-fault operation. It is implemented with a real-time control based on a MicroLabBox dSPACE (dSPACE Paderborn Germany) platform combined with a TI C2000 microcontroller. The obtained simulation and experimental results demonstrate that the proposed FDM can detect open-circuit switch failures in one switching period and reconfigure the control law accordingly to ensure the same current is delivered before the failure.
Silicon Nanostructures for Hydrogen Generation and Storage
Oct 2025
Publication
Today hydrogen is already widely regarded as up-and-coming source of energy. It is essential to meet energy needs while reducing environmental pollution since it has a high energy capacity and does not emit carbon oxide when burned. However for the widespread application of hydrogen energy it is necessary to search new technical solutions for both its production and storage. A promising effective and cost-efficient method of hydrogen generation and storage can be the use of solid materials including nanomaterials in which chemical or physical adsorption of hydrogen occurs. Focusing on the recommendations of the DOE the search is underway for materials with high gravimetric capacity more than 6.5% wt% and in which sorption and release of hydrogen occurs at temperatures from −20 to +100 ◦C and normal pressure. This review aims to summarize research on hydrogen generation and storage using silicon nanostructures and silicon composites. Hydrogen generation has been observed in Si nanoparticles porous Si and Si nanowires. Regardless of their size and surface chemistry the silicon nanocrystals interact with water/alcohol solutions resulting in their complete oxidation the hydrolysis of water and the generation of hydrogen. In addition porous Si nanostructures exhibit a large internal specific surface area covered by SiHx bonds. A key advantage of porous Si nanostructures is their ability to release molecular hydrogen through the thermal decomposition of SiHx groups or in interaction with water/alkali. The review also covers simulations and theoretical modeling of H2 generation and storage in silicon nanostructures. Using hydrogen with fuel cells could replace Li-ion batteries in drones and mobile gadgets as more efficient. Finally some recent applications including the potential use of Si-based agents as hydrogen sources to address issues associated with new approaches for antioxidative therapy. Hydrogen acts as a powerful antioxidant specifically targeting harmful ROS such as hydroxyl radicals. Antioxidant therapy using hydrogen (often termed hydrogen medicine) has shown promise in alleviating the pathology of various diseases including brain ischemia–reperfusion injury Parkinson’s disease and hepatitis.
What is Next in Anion-Exchange Membrane Water Electrolyzers? Bottlenecks, Benefits, and Future
Mar 2022
Publication
As highlighted by the recent roadmaps from the European Union and the United States water electrolysis is the most valuable high-intensity technology for producing green hydrogen. Currently two commercial low-temperature water electrolyzer technologies exist: alkaline water electrolyzer (A-WE) and proton-exchange membrane water electrolyzer (PEM-WE). However both have major drawbacks. A-WE shows low productivity and efficiency while PEM-WE uses a significant amount of critical raw materials. Lately the use of anion-exchange membrane water electrolyzers (AEM-WE) has been proposed to overcome the limitations of the current commercial systems. AEM-WE could become the cornerstone to achieve an intense safe and resilient green hydrogen production to fulfill the hydrogen targets to achieve the 2050 decarbonization goals. Here the status of AEM-WE development is discussed with a focus on the most critical aspects for research and highlighting the potential routes for overcoming the remaining issues. The Review closes with the future perspective on the AEM-WE research indicating the targets to be achieved.
Operating Solutions to Improve the Direct Reduction of Iron Ore by Hydrogen in a Shaft Furnace
Aug 2025
Publication
The production of iron and steel plays a significant role in the anthropogenic carbon footprint accounting for 7% of global GHG emissions. In the context of CO2 mitigation the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based direct reduction of iron ore in shaft furnaces. Before industrialization detailed modeling and parametric studies were needed to determine the proper operating parameters of this promising technology. The modeling approach selected here was to complement REDUCTOR a detailed finite-volume model of the shaft furnace which can simulate the gas and solid flows heat transfers and reaction kinetics throughout the reactor with an extension that describes the whole gas circuit of the direct reduction plant including the top gas recycling set up and the fresh hydrogen production. Innovative strategies (such as the redirection of part of the bustle gas to a cooling inlet the use of high nitrogen content in the gas and the introduction of a hot solid burden) were investigated and their effects on furnace operation (gas utilization degree and total energy consumption) were studied with a constant metallization target of 94%. It has also been demonstrated that complete metallization can be achieved at little expense. These strategies can improve the thermochemical state of the furnace and lead to different energy requirements.
Techno-economic Evaluation of Retrofitting Power-to-methanol: Grid-connected Energy Arbitrage vs Standalone Renewable Energy
Aug 2025
Publication
The power-to-methanol (PtMeOH) will play a crucial role as a form of renewable chemical energy storage. In this paper PtMeOH techno-economics are assessed using the promising configuration from the previous work (Mbatha et al. [1]). This study evaluated the effect of parameters such as the CO2 emission tax electricity price and CAPEX reduction on the product methanol economic parity with respect to a reference case. Superior to previous economic studies a scenario where an existing methanol synthesis infrastructure is 100 % retrofitted with the promising electrolyser is assessed in terms of its economics and the associated economic parity. The volatile South African electricity market is considered as a case study. The sensitivity of the PtMeOH and green H2 profitability are checked. Grid-connected and standalone renewable energy PtMeOH scenarios are assessed. Foremost generalisable effect trends of these parameters on the net present value (NPV) and the levelized cost of methanol(LCOMeOH) and H2 (LCOH2) are discussed. The results show that economic parity of H2 (LCOH2 = current selling price = 4.06 €/kg) can be reached with an electricity price of 30 €/MWh and 70 % of the CAPEX. While the LCOMeOH will still be above 2 €/kg at 80 % of the CAPEX and electricity price of 20 €/MWh. This indicates that even if the CAPEX reduces to 20 % of its original in this study and the electricity price reduces to about 20 €/MWh the LCOMEOH will still not reach economic parity (LCOMeOH > current selling price = 0.44 €/kg). The results show that to make the retrofitted plant with a minimum of 20 years of life span profitable a feasible reduction in the electricity price to below 10 €/MWh along with favourable incentives such as CO2 credit and reduction in CAPEX particularly that of the electrolyser and treatment of the PtMeOH as a multiproduct plant will be required.
Integrating Scenario-based Stochastic-model Predictive Control and Load Forecasting for Energy Management of Grid-connected Hybrid Energy Storage Systems
Jun 2023
Publication
In the context of renewable energy systems microgrids (MG) are a solution to enhance the reliability of power systems. In the last few years there has been a growing use of energy storage systems (ESSs) such as hydrogen and battery storage systems because of their environmentally-friendly nature as power converter devices. However their short lifespan represents a major challenge to their commercialization on a large scale. To address this issue the control strategy proposed in this paper includes cost functions that consider the degradation of both hydrogen devices and batteries. Moreover the proposed controller uses scenarios to reflect the stochastic nature of renewable energy resources (RESs) and load demand. The objective of this paper is to integrate a stochastic model predictive control (SMPC) strategy for an economical/environmental MG coupled with hydrogen and battery ESSs which interacts with the main grid and external consumers. The system's participation in the electricity market is also managed. Numerical analyses are conducted using RESs profiles and spot prices of solar panels and wind farms in Abu Dhabi UAE to demonstrate the effectiveness of the proposed controller in the presence of uncertainties. Based on the results the developed control has been proven to effectively manage the integrated system by meeting overall constraints and energy demands while also reducing the operational cost of hydrogen devices and extending battery lifetime.
Zone Negligible Extent: Example of Specific Detailed Risk Assessment for Low Pressure Equipment in a Hydrogen Refuelling Station
Sep 2023
Publication
The MultHyFuel project aims to develop evidence-based guidelines for the safe implementation of Hydrogen Refueling Stations (HRS) in a multi-fuel context. As a part of the generation of good practice guidelines for HRS Hazardous Area Classification (HAC) methodologies were analyzed and applied to case studies representing example configurations of HRS. It has been anticipated that Negligible Extent (NE) classifications might be applicable for sections of the HRS for instance a hydrogen generator. A NE zone requires that an ignition of a flammable cloud would result in negligible consequences. In addition depending on the pressure of the system IEC 60079-10-1:2020 establishes specific requirements in order to classify the hazardous area as being of NE. One such requirement is that a zone of NE shall not be applied for releases from flammable gas systems at pressures above 2000 kPag (20 barg) unless a specific detailed risk assessment is documented. However there is no definition within the standard as to the requirements of the specific detailed risk assessment. In this work an example for a specific detailed risk assessment for the NE classification is presented:<br/>• Firstly the requirements of cloud volume dilution and background concentration for a zone of NE classification from IEC 60079-10-1:2020 are analyzed for hydrogen releases from equipment placed in a mechanically ventilated enclosure.<br/>• Secondly the consequences arising from the ignition of the localized cloud are estimated and compared to acceptable harm criteria in order to assess if negligible consequences are obtained from the scenario.<br/>• In addition a specific qualitative risk assessment for the ignition of the cloud in the enclosure was considered incorporating the estimated consequences and analyzing the available safeguards in the example system.<br/>Recommendations for the specific detailed risk assessment are proposed for this scenario with the intention to support improved definition of the requirement in future revisions of IEC 60079-10-1.
Hydrogen Sampling Systems Adapted to Heavy-duty Refuelling Stations' Current and Future Specifications - A Review
Sep 2024
Publication
To meet the new regulation for the deployment of alternative fuels infrastructure which sets targets for electric recharging and hydrogen refuelling infrastructure by 2025 or 2030 a large infrastructure comprising trucksuitable hydrogen refuelling stations will soon be required. However further standardisation is required to support the uptake of hydrogen for heavy-duty transport for Europe’s green energy future. Hydrogen-powered vehicles require pure hydrogen as some contaminants can reduce the performance of the fuel cell even at very low levels. Even if previous projects have paved the way for the development of the European quality infrastructure for hydrogen conformity assessment sampling systems and methods have yet to be developed for heavy-duty hydrogen refuelling stations (HD-HRS). This study reviews different aspects of the sampling of hydrogen at heavy-duty hydrogen refuelling stations for purity assessment with a focus on the current and future specifications and operations at HD-HRS. This study describes the state-of-the art of sampling systems currently under development for use at HD-HRS and highlights a number of aspects which must be taken into consideration to ensure safe and accurate sampling: risk assessment for the whole sampling exercise selection of cylinders methods to prepare cylinders before the sampling filling pressure and venting of the sampling systems.
A Prospective Approach to the Optimal Deployment of a Hydrogen Supply Chain for Sustainable Mobility in Island Territories: Application to Corsica
Oct 2024
Publication
This study develops a framework for designing hydrogen supply chains (HSC) in island territories using Mixed Integer Linear Programming (MILP) with a multi-period approach. The framework minimizes system costs greenhouse gas emissions and a risk-based index. Corsica is used as a case study with a Geographic Information System (GIS) identifying hydrogen demand regions and potential sites for production storage and distribution. The results provide an optimal HSC configuration for 2050 specifying the size location and technology while accounting for techno-economic factors. This work integrates the unique geographical characteristics of islands using a GIS-based approach incorporates technology readiness levels and utilizes renewable electricity from neighboring regions. The model proposes decentralized configurations that avoid hydrogen transport between grids achieving a levelized cost of hydrogen (LCOH) of €8.54/kg. This approach offers insight into future options and incentive mechanisms to support the development of hydrogen economies in isolated territories.
Deflagration-to-detonation Transition Due to a Pressurised Release of a Hydrogen Jet. First Results of the Ongoing TAU_NRCN-CEA Project
Sep 2023
Publication
A sudden release of compressed gases and the formation of a jet flow can occur in nature and various engineering applications. In particular high-pressure hydrogen jets can spontaneously ignite when released into an environment that contains oxygen. For some scenarios these high-pressure hydrogen jets can be released into a mixture containing hydrogen and oxygen. This scenario can possibly lead to a wide range of combustion regimes such as jet flames slow or fast deflagrations or even hazardous detonations. Each combustion regime is characterized by typical pressures and temperatures however fast transition between regimes is also possible.<br/>A common project between Tel Aviv University (TAU) Nuclear Research Center Negev (NRCN) and Commissariat à l’Energie Atomique et aux énergies alternatives (CEA) has been recently launched in order to understand these phenomena from experimental modelling and numerical points of view. The main goal is to investigate the dynamics and combustion regimes that arise once a pressurized hydrogen jet is released into a reactive environment that contains inhomogeneous concentrations of hydrogen steam and air.<br/>In this paper we present the first numerical results describing high-pressure hydrogen release obtained using a massively parallel compressible structured-grid flow solver. The experimental arrangements devoted to this phenomenon will also be described.
Experimental Study of the Mitigation of Hydrogen-Air Explosions by Aqueous Foam
Sep 2023
Publication
The development of hydrogen production technologies as well as new uses represents an opportunity both to accelerate the ecological transition and to create an industrial sector. However the risks associated with the use of hydrogen must not be overlooked. The mitigation of a hydrogen explosion in an enclosure is partly based on prevention strategies such as detection and ventilation but also on protection strategies such as explosion venting. However in several situations such as in highly constrained urban environments the discharge of the explosion through blast walls could generate significant overpressure effects outside the containment which are unacceptable. Thus having alternative mitigation solutions can make the effects of the explosion acceptable by reducing the flame speed and the overpressure loading or suppressing the secondary explosion. The objective of this paper is to present the experimental study of the mitigation of hydrogen-air deflagration in a 4 m3 vented enclosure by injection of aqueous foam. After a description of the experimental set-up the main experimental results are presented showing the influence of aqueous foam on flame propagation (Fig. 1). Different foam expansion ratios were investigated. An interpretation of the mitigating effect of foam on the explosion effects is proposed based on the work of Kichatov [5] and Zamashchikov [2].
SSEXHY Experimental Results on Pressure Dynamics from Head-on Reflections of Hydrogen Flames
Sep 2023
Publication
In the past few years CEA has been fully involved at both experimental and modeling levels in projects related to hydrogen safety in nuclear and chemical industries and has carried out a test program using the experimental bench SSEXHY (Structure Submitted to an EXplosion of HYdrogen) in order to build a database of the deformations of simple structures following an internal hydrogen explosion. Different propagation regimes of explosions were studied varying from detonations to slow deflagrations.<br/>During the experimental campaign it was found that high-speed deflagrations corresponding to relatively poor hydrogen-air mixtures resulted in higher specimen deformation compared to those related to detonations of nearly stoichiometric mixtures. This paper explains this counter-intuitive result from qualitative and quantitative points of view. It is shown that the overpressure and impulse from head-on reflections of hydrogen flames corresponding to poor mixtures of specific concentrations could have very high values at the tube end.
Hydrogen Fuel Quality for Transport - First Sampling and Analysis Comparison in Europe on Hydrogen Refuelling Station (70 Mpa) According to ISO 14687 and EN 17124
Jan 2021
Publication
Fuel cell electric vehicles are getting deployed exponentially in Europe. Hydrogen fuel quality regulations are getting into place in order to protect customers and ensure end-users satisfactory experiences. It became critical to have the capability to sample and analyse accurately hydrogen fuel delivered by hydrogen refuelling stations in Europe. This study presents two separate comparisons: the first bilateral comparison between two sampling systems (H2 Qualitizer) and (“H2 Sampling System” of Air Liquide) and the interlaboratory comparison between NPL and Air Liquide on hydrogen fuel quality testing according to EN 17124. The two sampling systems showed equivalent results for all contaminants for sampling at 70 MPa hydrogen refuelling stations. The two laboratories showed good agreement at 95% confidence level. Even if the study is limited due to the low number of samples it demonstrates the equivalence of two sampling strategies and the ability of two laboratories to perform accurate measurement of hydrogen fuel quality.
European Hydrogen Train the Trainer Programme for Responders: The Impact of HyResponder on Training Across Europe
Jan 2025
Publication
Síle Brennan,
Christian Brauner,
Dennis Davis,
Natalie DeBacker,
Alexander Dyck,
César García Hernández,
André Vagner Gaathaug,
Petr Kupka,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Laurent Lecomte,
Eric Maranne,
Pippa Steele,
Paola Russo,
Adolfo Pinilla,
Gerhard Schoepf,
Tom Van Esbroeck and
Vladimir V. Molkov
The impact of the HyResponder project on the training of responders in 10 European countries is described. An overview is presented of training activities undertaken within the project in Austria Belgium Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. National leads with training expertise are given and the longer-term plans in each region are mentioned. Responders from each region took part in a specially tailored “train the trainer” programme and then delivered training within their regions. A flexible approach to training within the HyResponder network has enabled fit for purpose region appropriate activities to be delivered impacting over 1250 individuals during the project and many more beyond. Teaching and learning materials in hydrogen safety for responders have been made available in 8 languages: English Czech Dutch French German Italian Norwegian Spanish. They are being used to inform training within each of the partner countries. Dedicated national working groups focused on hydrogen safety training for responders have been established in Belgium the Czech Republic Italy and Switzerland.
A Multi-model Assessment of the Global Warming Potential of Hydrogen
Jun 2023
Publication
With increasing global interest in molecular hydrogen to replace fossil fuels more attention is being paid to potential leakages of hydrogen into the atmosphere and its environmental consequences. Hydrogen is not directly a greenhouse gas but its chemical reactions change the abundances of the greenhouse gases methane ozone and stratospheric water vapor as well as aerosols. Here we use a model ensemble of five global atmospheric chemistry models to estimate the 100-year time-horizon Global Warming Potential (GWP100) of hydrogen. We estimate a hydrogen GWP100 of 11.6 ± 2.8 (one standard deviation). The uncertainty range covers soil uptake photochemical production of hydrogen the lifetimes of hydrogen and methane and the hydroxyl radical feedback on methane and hydrogen. The hydrogeninduced changes are robust across the different models. It will be important to keep hydrogen leakages at a minimum to accomplish the benefits of switching to a hydrogen economy.
Modeling and Technical-Economic Analysis of a Hydrogen Transport Network for France
Feb 2025
Publication
This work aims to study the technical and economical feasibility of a new hydrogen transport network by 2035 in France. The goal is to furnish charging stations for fuel cell electrical vehicles with hydrogen produced by electrolysis of water using low-carbon energy. Contrary to previous research works on hydrogen transport for road transport we assume a more realistic assumption of the demand side: we assume that only drivers driving more than 20000 km per year will switch to fuel cell electrical vehicles. This corresponds to a total demand of 100 TWh of electricity for the production of hydrogen by electrolysis. To meet this demand we primarily use surplus electricity production from wind power. This surplus will satisfy approximately 10% of the demand. We assume that the rest of the demand will be produced using surplus from nuclear power plants disseminated in regions. We also assume a decentralized production namely that 100 MW electrolyzers will be placed near electricity production plants. Using an optimization model we define the hydrogen transport network by considering decentralized production. Then we compare it with more centralized production. Our main conclusion is that decentralized production makes it possible to significantly reduce distribution costs particularly due to significantly shorter transport distances.
Large Eddy Simulations of a Hydrogen-Air Explosion in an Obstructed Chamber Using Adaptive Mesh Refinement
Sep 2023
Publication
Following the growing use of hydrogen in the industry gas explosions have become a critical safety issue. Computational Fluid Dynamic (CFD) and in particular the Large Eddy Simulation (LES) approach have already shown their great potential to reproduce such scenarios with high fidelity. However the computational cost of this approach is an obvious limiting factor since fine grid resolutions are often required in the whole computational domain to ensure a correct numerical resolution of the deflagration front all along its propagation. In this context Adaptive Mesh Refinement (AMR) is of great interest to reduce the computational cost as it allows to dynamically refine the mesh throughout the explosion scenario only in regions where Quantities of Interest (QoI) are detected. This study aims to demonstrate the strong potential of AMR for the LES of explosions. The target scenario is a hydrogen-air explosion in the GraVent explosion channel [1]. Using the massively parallel Navier- Stokes compressible solver AVBP a reference simulation is first obtained on a uniform and static unstructured mesh. The comparison with the experiments shows a good agreement in terms of absolute flame front speed overpressure and flow visualisation. Then an AMR simulation is performed targeting the same resolution as the reference simulation only in regions where QoI are detected i.e. inside the reaction zones and vortical structures. Results show that the accuracy of the reference simulation is recovered with AMR for only 12% of its computational cost.
Advances in Hospital Energy Systems: Genetic Algorithm Optimization of a Hybrid Solar and Hydrogen Fuel Cell Combined Heat and Power
Sep 2024
Publication
This paper presents an innovative Fuel Cell Combined Heat and Power (FC–CHP) system designed to enhance energy efficiency in hospital settings. The system primarily utilizes solar energy captured through photovoltaic (PV) panels for electricity generation. Excess electricity is directed to an electrolyzer for water electrolysis producing hydrogen which is stored in high-pressure tanks. This hydrogen serves a dual purpose: it fuels a boiler for heating and hot water needs and powers a fuel cell for additional electricity when solar production is low. The system also features an intelligent energy management system that dynamically allocates electrical energy between immediate consumption hydrogen production and storage while also managing hydrogen release for energy production. This study focuses on optimization using genetic algorithms to optimize key components including the peak power of photovoltaic panels the nominal power of the electrolyzer fuel cell and storage tank sizes. The objective function minimizes the sum of investment and electricity costs from the grid considering a penalty coefficient. This approach ensures optimal use of renewable energy sources contributing to energy efficiency and sustainability in healthcare facilities.
Optimal Multi-layer Economical Schedule for Coordinated Multiple Mode Operation of Wind-solar Microgrids with Hybrid Energy Storage Systems
Nov 2023
Publication
The aim of this paper is the design and implementation of an advanced model predictive control (MPC) strategy for the management of a wind–solar microgrid (MG) both in the islanded and grid-connected modes. The MG includes energy storage systems (ESSs) and interacts with external hydrogen and electricity consumers as an extra feature. The system participates in two different electricity markets i.e. the daily and real-time markets characterized by different time-scales. Thus a high-layer control (HLC) and a low-layer control (LLC) are developed for the daily market and the real-time market respectively. The sporadic characteristics of renewable energy sources and the variations in load demand are also briefly discussed by proposing a controller based on the stochastic MPC approach. Numerical simulations with real wind and solar generation profiles and spot prices show that the proposed controller optimally manages the ESSs even when there is a deviation between the predicted scenario determined at the HLC and the real-time one managed by the LLC. Finally the strategy is tested on a lab-scale MG set up at Khalifa University Abu Dhabi UAE.
Numerical Study of Highly Turbulent Under-expanded Hydrogen Jet Flames Impinging Walls
Sep 2023
Publication
Heat flux on walls from under-expanded H2/AIR jet flames have been numerically investigated. The thermal behaviour of a plate close to different under-expanded jet flames has been compared with rear-face plate temperature measurements. In this study two straight nozzles with millimetric diameter were selected with H2 reservoir pressure in a range from 2 to 10 bar. The CFD study of these two quite different horizontal jet flames employs the Large Eddy Simulation (LES) formalism to capture the turbulent flame-wall interaction. The results demonstrated a good agreement with experimental wall heat fluxes computed from plate temperature measurements. The present study assesses the prediction capability of LES for flame-wall heat transfer.
Techno-Economic Analysis of Combined Production of Wind Energy and Green Hydrogen on the Northern Coast of Mauritania
Sep 2024
Publication
Green hydrogen is becoming increasingly popular with academics institutions and governments concentrating on its development efficiency improvement and cost reduction. The objective of the Ministry of Petroleum Mines and Energy is to achieve a 35% proportion of renewable energy in the overall energy composition by the year 2030 followed by a 50% commitment by 2050. This goal will be achieved through the implementation of feed-in tariffs and the integration of independent power generators. The present study focused on the economic feasibility of green hydrogen and its production process utilizing renewable energy resources on the northern coast of Mauritania. The current investigation also explored the wind potential along the northern coast of Mauritania spanning over 600 km between Nouakchott and Nouadhibou. Wind data from masts Lidar stations and satellites at 10 and 80 m heights from 2022 to 2023 were used to assess wind characteristics and evaluate five turbine types for local conditions. A comprehensive techno-economic analysis was carried out at five specific sites encompassing the measures of levelized cost of electricity (LCOE) and levelized cost of green hydrogen (LCOGH) as well as sensitivity analysis and economic performance indicators. The results showed an annual average wind speed of 7.6 m/s in Nouakchott to 9.8 m/s in Nouadhibou at 80 m. The GOLDWIND 3.0 MW model showed the highest capacity factor of 50.81% due to its low cut-in speed of 2.5 m/s and its rated wind speed of 10.5 to 11 m/s. The NORDEX 4 MW model forecasted an annual production of 21.97 GWh in Nouadhibou and 19.23 GWh in Boulanoir with the LCOE ranging from USD 5.69 to 6.51 cents/kWh below the local electricity tariff and an LCOGH of USD 1.85 to 2.11 US/kg H2 . Multiple economic indicators confirmed the feasibility of wind energy and green hydrogen projects in assessed sites. These results boosted the confidence of the techno-economic model highlighting the resilience of future investments in these sustainable energy infrastructures. Mauritania’s north coast has potential for wind energy aiding green hydrogen production for energy goals.
Comparison of Battery Electric Vehicles and Fuel Cell Vehicles
Sep 2023
Publication
In the current context of the ban on fossil fuel vehicles (diesel and petrol) adopted by several European cities the question arises of the development of the infrastructure for the distribution of alternative energies namely hydrogen (for fuel cell electric vehicles) and electricity (for battery electric vehicles). First we compare the main advantages/constraints of the two alternative propulsion modes for the user. The main advantages of hydrogen vehicles are autonomy and fast recharging. The main advantages of battery-powered vehicles are the lower price and the wide availability of the electricity grid. We then review the existing studies on the deployment of new hydrogen distribution networks and compare the deployment costs of hydrogen and electricity distribution networks. Finally we conclude with some personal conclusions on the benefits of developing both modes and ideas for future studies on the subject.
Experimental Characterization of the Operational Behavior of a Catalytic Recombiner for Hydrogen Mitigation
Sep 2023
Publication
One of the significant safety concerns in large-scale storage and transportation of liquefied (cryogenic) hydrogen (LH2) is the formation of flammable hydrogen/air mixtures after leakages during storage or transportation. Especially in maritime transportation hydrogen accumulations could occur within large and congested geometries. The installation of passive auto-catalytic recombiners (PARs) is a suitable mitigation measure for local areas where venting is insufficient or even impossible. Numerical models describing the operational behavior of PARs are required to allow for optimizing the location and assessing the efficiency of the mitigation measure. In the present study the operational behavior of a PAR with a compact design has been experimentally investigated. In order to obtain data for model validation an experimental program has been performed in the REKO-4 facility a 5.5 m³ vessel. The test procedure includes two phases steady-state and dynamic. The results provide insights into the hydrogen recombination rates and catalyst temperatures under different boundary conditions.
Simulations of Hydrogen Dispersion from Fuel Cell Vehicles' Leakages Inside Full-scale Tunnel
Sep 2023
Publication
In this work real scale experiments involving hydrogen dispersion inside a road tunnel have been modelled using the Computational Fluid Dynamics (CFD) methodology. The aim is to assess the performance of the ADREA-HF CFD tool against full-scale tunnel dispersion data resulting from high-pressure hydrogen leakage through Thermal Pressure Relief Device (TPRD) of a vehicle. The assessment was performed with the help of experiments conducted by the French Alternative Energies and Atomic Energy Commission (CEA) in a real inclined tunnel in France. In the experiments helium as hydrogen surrogate has been released from 200 bar storage pressure. Several tests were carried out examining different TPRD sizes and release directions (upwards and downwards). For the CFD evaluation two tests were considered: one with downwards and one with upwards release both through a TPRD with a diameter of 2 mm. The comparison between the CFD results and the experiments shows the good predictive capabilities of the ADREA-HF code that can be used as a safety tool in hydrogen dispersion studies. The comparison reveals some of the strengths and weaknesses of both the CFD and the experiments. It is made clear that CFD can contribute to the design of the experiments and to the interpretation of the experimental results.
Instances of Safety-Related Advances in Hydrogen as Regards Its Gaseous Transport and Buffer Storage and Its Solid-State Storage
Jul 2024
Publication
As part of the ongoing transition from fossil fuels to renewable energies advances are particularly expected in terms of safe and cost-effective solutions. Publicising instances of such advances and emphasising global safety considerations constitute the rationale for this communication. Knowing that high-strength steels can prove economically relevant in the foreseeable future for transporting hydrogen in pipelines by limiting the pipe wall thickness required to withstand high pressure one advance relates to a bench designed to assess the safe transport or renewableenergy-related buffer storage of hydrogen gas. That bench has been implemented at the technology readiness level TRL 6 to test initially intact damaged or pre-notched 500 mm-long pipe sections with nominal diameters ranging from 300 to 900 mm in order to appropriately validate or question the use of reputedly satisfactory predictive models in terms of hydrogen embrittlement and potential corollary failure. The other advance discussed herein relates to the reactivation of a previously fruitful applied research into safe mass solid-state hydrogen storage by magnesium hydride through a new public–private partnership. This latest development comes at a time when markets have started driving the hydrogen economy bearing in mind that phase-change materials make it possible to level out heat transfers during the absorption/melting and solidification/desorption cycles and to attain an overall energy efficiency of up to 80% for MgH2 -based compacts doped with expanded natural graphite.
Risk Management in a Containerized Metal Hydride Storage System
Sep 2023
Publication
HyCARE project supported by the Clean Hydrogen Partnership of the European Union deals with a prototype of hydrogen storage tank using a solid-state hydrogen carrier. Up to 40 kilograms of hydrogen are stored in twelve tanks at less than 50 barg and less than 100 °C. The innovative design is based on a standard twenty-foot container including twelve TiFe-based metal hydride (MH) hydrogen storage tanks coupled with a thermal energy storage in phase change materials (PCM). This article aims at showing the main risks related to hydrogen storage in a MH system and the safety barriers considered based on HyCARE’s specific risk analysis.<br/>Regarding the TiFe MH material used to store hydrogen experimental tests showed that the exposure of the MH to air or water did not cause spontaneous ignition. Furthermore an explosion within the solid MH cannot propagate due to internal pore size. Additionally in case of leakage the speed of hydrogen desorption from the MH is self-limited which is an important safety characteristic since it reduces the potential consequences from the hydrogen release scenario.<br/>Regarding the integrated system the critical scenarios identified during the risk analysis were: explosion due to release of hydrogen inside or outside the container internal explosion inside MH tanks due to accidental mix of hydrogen and air and asphyxiation due to inert gas accumulation in the container. This identification phase of the risk analysis allowed to pinpoint the most relevant safety barriers already in place and recommend additional ones if needed to further reduce the risk that were later implemented.<br/>The main safety barriers identified were: material and component selection (including the MH selected) safety interlocks safety valves ventilation gas detection and safety distances.<br/>The risk management process based on risk identification and assessment contributed to coherently integrate inherently safe design features and safety barriers.
Decarbonization with Induced Technical Change: Exploring the Niche Potential of Hydrogen in Heavy Transportation
Jan 2024
Publication
Fuel cells and electric batteries are competing technologies for the energy transition in heavy transportation. We explore the conditions for the survival of a unique technology in the long term. Learning by doing suggests focusing on a single technology while differentiation and decreasing return to scale (cost convexity) favor diversification. Exogenous technical change also plays a role. The interaction between these factors is analyzed in a general model. It is proved that in absence of convexity and exogenous technical change only one technology is used for the whole transition. We then apply this framework to analyze the competition between fuel-cell electric buses (FCEBs) and battery electric buses (BEB) in the European bus sector. There are both learning by doing and exogenous technical change. The model is calibrated and solved. It is shown that the existence of a niche for FCEBs critically depends on the speed at which cost reductions are achieved. The speed depends both on the size of the niche and the rate of learning by doing for FCEBs. Public policies to decentralize the socially optimal trajectory in terms of taxes (carbon) and subsidies (learning by doing) are derived.
Experimental Investigation of Fluid-structure Interaction in the Case of Hydrogen/Air Detonation Impacting a Thin Plate
Sep 2023
Publication
In recent years the use and development of hydrogen as a carbon-free energy carrier have grown. However as hydrogen is flammable with air safety issues are raised. In the case of ignition especially in confined space the flame can accelerate and reach the detonation regime causing severe structural damage [1].<br/>To assess these safety issues it is required to understand the fluid-structure interaction in the case of a detonation impacting a deformable structure and to quantify and model this interaction [2]. At the CEA (Commissariat à l’énergie atomique et aux energies alternatives) a combustion tube experimental facility [3] for studying the fluid-structure interaction in the case of hydrogen combustion has been developed. Several Photomultipliers and Pressure sensors are placed along the tube to monitor the flame acceleration and the detonation location. A fluid-structure interaction (FSI) module or a non-deformable flange can be placed at the end of the tube. Post-processing of the sensor’s signal will provide insight into the occurring phenomena inside the tube.<br/>Several experimental campaigns have been conducted with various initial conditions and configurations at the end of the tube. In this contribution the experiments resulting in a detonation are presented. First the recorded pressure and velocities will be compared to theoretical values coming from combustion models [4] [5]. Secondly the impulse before and after reflection for thin plate and non-deformable flange will be compared to quantify the energy transmitted to the plate and the influence of the fluid-structure interaction on the reflected shock.
The Regulatory Framework of Geological Storage of Hydrogen in Salt Caverns
Sep 2023
Publication
A growing share of renewable energy production in the energy supply systems is key to reaching the European political goal of zero CO2 emission in 2050 highlighted in the green deal. Linked to the irregular production of solar and wind energies which have the highest potential for development in Europe massive energy storage solutions are needed as energy buffers. The European project HyPSTER [1] (Hydrogen Pilot STorage for large Ecosystem Replication) granted by the Clean Hydrogen Partnership addresses this topic by demonstrating a cyclic test in an experimental salt cavern filled with hydrogen up to 3 tons using hydrogen that is produced onsite by a 1 MW electrolyser. One specific objective of the project is the assessment of the risks and environmental impacts of cyclic hydrogen storage in salt caverns and providing guidelines for safety regulations and standards. This paper highlights the first outcome of the task WP5.5 of the HyPSTER project addressing the regulatory and normative frameworks for the safety of hydrogen storage in salt caverns from some selected European Countries which is dedicated to defining recommendations for promoting the safe development of this industry within Europe.
Safety Margin on the Ductile to Brittle Transition Temperature after Hydrogen Embrittlement on X65 Steel
Jan 2022
Publication
Hydrogen embrittlement is a phenomenon that affects the mechanical properties of steels intended for hydrogen transportation. One affected by this embrittlement is the Ductile to Brittle Transition Temperature (DBTT) which characterizes the change in the failure mode of the steel from ductile to brittle. This temperature is conventionally defined and compared to the operating temperature as an acceptability criterion for codes. Transition temperature does not depend only on the material but also on specimen geometry particularly the thickness. Generally the transition temperature is defined for the conservative reason by Charpy impact test. Standard Charpy specimens are straight beams with a thickness of 10 mm. For thin pipes it is impossible to extract these standard specimens. One uses in this case Mini-Charpy specimens with a reduced thickness due to pipe curvature. This paper aims to quantify the effect of hydrogen embrittlement on the transition temperature of pipe steel (API 5L X65) using two types of Charpy specimens.
Hydrogen and ICEs: Validation of a 3D-CFD Approach for In-cylinder Combustion Simulations of Ultra-lean Mixture with a focus on the combustion regime
Sep 2025
Publication
This paper proposes a numerical setup for 3D-CFD in-cylinder simulations of H2-fuelled internal combustion engines. The flamelet G-equation model based on Verhelst and Damkohler-like ¨ correlations for laminar and turbulent flame speeds respectively is used to reproduce the flame propagation. The validation against experimental data from a homogeneous-mixture port-injection engine enables a focus on combustion simulation by minimising stratification uncertainties. Accurate flame propagation modelling is identified as the main challenge. The results on different operating conditions confirm the predictive capabilities of the framework thanks to the agreement with the experimental pressure traces combustion indicators and flame imaging. Notably combustion rate predictions remain accurate even without considering the flame thermo-diffusive instability as the turbulence effect dominates at the investigated conditions. The combustion regime is analysed by a modified Borghi-Peters diagram and it ranges from flamelet to thin reaction zones. This highlights the numerical setup flexibility which accurately simulates combustion across different regimes.
Risk Management in a Containerized Metal Hydride Storage System
Sep 2024
Publication
HyCARE project supported by the Clean Hydrogen Partnership of the European Union deals with a prototype hydrogen storage tank using a solid-state hydrogen carrier. Up to 40 kilograms of hydrogen are stored in 12 tanks at less than 50 barg and less than 100°C. The innovative design is based on a standard 20-foot container including 12 TiFe-based metal hydride (MH) hydrogen storage tanks coupled with a thermal energy storage in phase change materials (PCM). This article aims at showing the main risks related to hydrogen storage in a MH system and the safety barriers considered based on HyCARE’s specific risk analysis. Regarding the TiFe MH material used to store hydrogen experimental tests showed that the exposure of the MH to air or water did not cause spontaneous ignition. Furthermore an explosion within the solid MH cannot propagate due to internal pore size. Additionally in case of leakage the speed of hydrogen desorption from the MH is self-limited which is an important safety characteristic since it reduces the potential consequences from the hydrogen release. Regarding the integrated system the critical scenarios identified during the risk analysis were explosion due to release of hydrogen inside or outside the container internal explosion inside MH tanks due to accidental mix of hydrogen and air and asphyxiation due to inert gas accumulation in the container. The identification phase of risk analysis identified the most relevant safety barriers already in place and recommended additional ones if needed which were later implemented to further reduce the risk. The main safety barriers identified were material and component selection (including the MH selected) safety interlocks safety valves ventilation gas detection and safety distances. The risk management process based on risk identification and assessment contributed to coherently integrate inherently safe design features and safety barriers.
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
Fuzzy Logic-Based Energy Management Strategy for Hybrid Fuel Cell Electric Ship Power and Propulsion System
Oct 2024
Publication
The growing use of proton-exchange membrane fuel cells (PEMFCs) in hybrid propulsion systems is aimed at replacing traditional internal combustion engines and reducing greenhouse gas emissions. Effective power distribution between the fuel cell and the energy storage system (ESS) is crucial and has led to a growing emphasis on developing energy management systems (EMSs) to efficiently implement this integration. To address this goal this study examines the performance of a fuzzy logic rule-based strategy for a hybrid fuel cell propulsion system in a small hydrogenpowered passenger vessel. The primary objective is to optimize fuel efficiency with particular attention on reducing hydrogen consumption. The analysis is carried out under typical operating conditions encountered during a river trip. Comparisons between the proposed strategy with other approaches—control based optimization based and deterministic rule based—are conducted to verify the effectiveness of the proposed strategy. Simulation results indicated that the EMS based on fuzzy logic mechanisms was the most successful in reducing fuel consumption. The superior performance of this method stems from its ability to adaptively manage power distribution between the fuel cell and energy storage systems.
Hydrogen Refuelling Station Calibration with a Traceable Gravimetric Standard
Apr 2020
Publication
Of all the alternatives to hydrocarbon fuels hydrogen offers the greatest long-term potential to radically reduce the many problems inherent in fuel used for transportation. Hydrogen vehicles have zero tailpipe emissions and are very efficient. If the hydrogen is made from renewable sources such as nuclear power or fossil sources with carbon emissions captured and sequestered hydrogen use on a global scale would produce almost zero greenhouse gas emissions and greatly reduce air pollutant emissions. The aim of this work is to realise a traceability chain for hydrogen flow metering in the range typical for fuelling applications in a wide pressure range with pressures up to 875 bar (for Hydrogen Refuelling Station - HRS with Nominal Working Pressure of 700 bar) and temperature changes from −40 °C (pre-cooling) to 85 °C (maximum allowed vehicle tank temperature) in accordance with the worldwide accepted standard SAE J2601. Several HRS have been tested in Europe (France Netherlands and Germany) and the results show a good repeatability for all tests. This demonstrates that the testing equipment works well in real conditions. Depending on the installation configuration some systematic errors have been detected and explained. Errors observed for Configuration 1 stations can be explained by pressure differences at the beginning and end of fueling in the piping between the Coriolis Flow Meter (CFM) and the dispenser: the longer the distance the bigger the errors. For Configuration 2 where this distance is very short the error is negligible.
Green Hydrogen Cooperation between Egypt and Europe: The Perspective of Locals in Suez and Port Said
Jun 2024
Publication
Hydrogen produced by renewable energy sources (green hydrogen) is at the centrepiece of European decarbonization strategies necessitating large imports from third countries. Egypt potentially stands out as major production hub. While technical and economic viability are broadly discussed in literature analyses of local acceptance are absent. This study closes this gap by surveying 505 locals in the Suez Canal Economic Zone (Port Said and Suez) regarding their attitudes towards renewable energy development and green hydrogen production. We find overall support for both national deployment and export to Europe. Respondents see a key benefit in rising income thereby strongly underlying the economic argument. Improved trade relationships or improved political relationships are seen as potential benefits of export but as less relevant for engaging in cooperation putting a spotlight on local benefits. Our study suggests that the local population is more positive than negative towards the development and scaling up of green hydrogen projects in Egypt.
Identification of Safety Critical Scenarios of Hydrogen Refueling Stations in a Multifuel Context
Sep 2023
Publication
The MultHyFuel Project funded by the Clean Hydrogen Partnership aims to achieve the effective and safe deployment of hydrogen as a carbon-neutral fuel by developing a common strategy for implementing Hydrogen Refueling Stations (HRS) in a multifuel context. The project hopes to contribute to the harmonisation of existing regulations codes and standards (RCS) by generating practical theoretical and experimental data related to HRS.<br/>This paper presents how a set of safety critical scenarios have been identified from the initial preliminary as well as detailed risk analysis of three different hydrogen refueling station configurations. To achieve this a detailed examination of each potential hazardous phenomenon (DPh) or major accident event at or near the hydrogen dispenser was carried out. Particular attention is paid to the scenarios which could affect third parties external to the refueling station.<br/>The paper presents a methodology subdivided into the following steps:<br/>♦ determination of the consequence level and likelihood of each hazardous phenomenon<br/>♦ the classification of major hazard scenarios for the 3 HRS configurations specifically those arising on the dispensing forecourt;<br/>♦ proposal of example preventative control and/or mitigation barriers that could potentially reduce the probability of occurrence and/ or consequences of safety critical scenarios and hence reducing risks to a tolerable level or to as low as reasonably practicable.
Techno-Economic Potential of Wind-Based Green Hydrogen Production in Djibouti: Literature Review and Case Studies
Aug 2023
Publication
Disputed supply chains inappropriate weather and low investment followed by the Russian invasion of Ukraine has led to a phenomenal energy crisis especially in the Horn of Africa. Accordingly proposing eco-friendly and sustainable solutions to diversify the access of electricity in the Republic of Djibouti which has no conventional energy resources and is completely energy dependent on its neighboring countries has become a must. Therefore the implementation of sustainable renewable and energy storage systems is nationally prioritized. This paper deals for the first time with the exploitation of such an affordable and carbon-free resource to produce hydrogen from wind energy in the rural areas of Nagad and Bara Wein in Djibouti. The production of hydrogen and the relevant CO2 emission reduction using different De Wind D6 Vestas and Nordex wind turbines are displayed while using Alkaline and Proton Exchange Membrane (PEM) electrolyzers. The Bara Wein and Nagad sites had a monthly wind speed above 7 m/s. From the results the Nordex turbine accompanied with the alkaline electrolyzer provides the most affordable electricity production approximately 0.0032 $/kWh for both sites; this cost is about one per hundred the actual imported hydroelectric energy price. Through the ecological analysis the Nordex turbine is the most suitable wind turbine with a CO2 emission reduction of 363.58 tons for Bara Wein compared to 228.76 tons for Nagad. While integrating the initial cost of wind turbine implementation in the capital investment the mass and the levelized cost of the produced green hydrogen are estimated as (29.68 tons and 11.48 $/kg) for Bara Wein with corresponding values of (18.68 tons and 18.25 $/kg) for Nagad.
The Evolution of Green Hydrogen in Renewable Energy Research: Insights from a Bibliometric Perspective
Dec 2024
Publication
Green hydrogen generated from water through renewable energies like solar and wind is a key player in sus tainable energy. It only produces water when used making it a clean energy source. However the inconsistent nature of solar and wind energy highlights the need for storage solutions where green hydrogen is promising. This study uniquely combines green hydrogen (GH) and renewable energy (RE) domains using a comprehensive bibliometric approach covering 2018–2022. It identifies emerging trends collaboration networks and key contributors that shape the global landscape of GH research. Our findings show a significant yearly growth in this research field averaging 93.56 %. The study also identifies China Germany India and Italy as leaders among 76 countries involved in this area. Research trends have shifted from technical details to social and economic factors. Given the increasing global commitment to achieving carbon neutrality understanding the evolution and integration of GH within RE systems is essential for guiding future research policy-making and technology development. The analysis categorizes the research into seven main themes focusing on green hydrogen’s role in energy transition and storage. Other vital topics include improving hydrogen production methods assessing its climate impact examining its environmental benefits and exploring various production techniques like water electrolysis and photocatalysis. Our analysis reveals a 93.56 % annual growth rate in GH research highlighting key challenges in storage integration and policy development and offering a roadmap for future studies. The study highlights areas needing more exploration such as better storage methods integration with existing energy infrastructures risk management and policy development. The advancement of green hydrogen as a sustainable energy solution depends on innovative research international collaboration and supportive policy frameworks.
Engineering Models for Refueling Protocol Development: Validation and Recommendations
Sep 2023
Publication
Fouad Ammouri,
Nicola Benvenuti,
Elena Vyazmina,
Vincent Ren,
Guillaume Lodier,
Quentin Nouvelot,
Thomas Guewouo,
Dorine Crouslé,
Rony Tawk,
Nicholas Hart,
Steve Mathison,
Taichi Kuroki,
Spencer Quong,
Antonio Ruiz,
Alexander Grab,
Alexander Kvasnicka,
Benoit Poulet,
Christopher Kutz and
Martin Zerta
The PRHYDE project (PRotocol for heavy duty HYDrogEn refueling) funded by the Clean Hydrogen partnership aims at developing recommendations for heavy-duty refueling protocols used for future standardization activities for trucks and other heavy duty transport systems applying hydrogen technologies. Development of a protocol requires a validated approach. Due to the limited time and budget the experimental data cannot cover the whole possible ranges of protocol parameters such as initial vehicle pressure and temperature ambient and precooling temperatures pressure ramp refueling time hardware specifications etc. Hence a validated numerical tool is essential for a safe and efficient protocol development. For this purpose engineering tools are used. They give good results in a very reasonable computation time of several seconds or minutes. These tools provide the heat parameters estimation in the gas (volume average temperature) and 1D temperature distribution in the tank wall. The following models were used SOFIL (Air Liquide tool) HyFill (by ENGIE) and H2Fills (open access code by NREL). The comparison of modelling results and experimental data demonstrated a good capability of codes to predict the evolution of average gas temperature in function of time. Some recommendations on model validation for the future protocol development are given.
LES of Turbulent Under-expanded Hydrogen Jet Flames
Sep 2023
Publication
In the frame of hydrogen-powered aircraft Airbus wants to understand all the H2 physics and explore every scenario in order to develop and manufacture safe products operated in a safe environment. Within the framework of a Large Eddy Simulation (LES) methodology for modeling turbulence a comparative numerical study of free under-expanded jet H2/AIR flame is conducted. The investigated geometry consists of straight nozzles with a millimetric diameter fed with pure H2 at upstream pressures ranging from 2 to 10 bar. Numerical results are compared with available experimental measurements such as; temperature signals using thermocouples. LES confirms its prediction capability in terms of shock jet structure and flame length. A particular attention is paid for capturing experimental unstable flame when upstream pressure decreases. Furthermore flame stabilization and flame anchoring are analyzed. Mechanisms of flame stabilization are highlighted for case 1 and stabilization criteria are tested. Finally an ignition map to reach flame stabilization is proposed for each case regarding the literature.
Overview of International Activities in Hydrogen System Safety in IEA Hydrogen TCP Task 43
Sep 2023
Publication
Safety and reliability have long been recognized as key issues for the development commercialization and implementation of new technologies and infrastructure and hydrogen systems are no exception to this rule. Reliability engineering quantitative risk assessment (QRA) and knowledge exchange each play a key role in proactive addressing safety – before problems happen – and help us learn from problems if they happen. Many international research activities are focusing on both reliability and risk assessment for hydrogen systems. However the element of knowledge exchange is sometimes less visible. To support international collaboration and knowledge exchange the International Energy Agency (IEA) convened a new Technology Collaboration Program “Task 43: Safety and Regulatory Aspects of Emerging Large Scale Hydrogen Energy Applications” started in June 2022. Within Task 43 Subtask E focuses on Hydrogen Systems Safety. This paper discusses the structure of the Hydrogen Systems Safety subtask and the aligned activities and introduces opportunities for future work.
A New Dimensionless Number for Type IV Composite Pressure Vessel Designer to Increase Efficiency and Reduce Cost
Sep 2023
Publication
A new dimensionless number (DN) is proposed in order to evaluate the performance of a high-pressure vessel composite structure. It shows that very few composite part is used at its maximum loading potential during bursting. Today for 70 MPa on-board type IV composite tanks DN values close to 20%. The suggested DN will be a useful indicator for an industrial application. By maximizing the DN at the design phase it is possible to minimize the mass of the composite structure of a CPV to reduce the manufacturing time and cost. To increase the DN as close as possible to 100% it is necessary to succeed in increasing the overall loading of the composite structure to have better oriented fibre. For this it seems necessary to find new processes which make it possible to better orient the fibre.
Simulation of DDT in Obstructed Channels: Wavy Channels vs. Fence-type Obstacles
Sep 2023
Publication
The capabilities of an OpenFOAM solver to reproduce the transition of stoichiometric H2-air mixtures to detonation in obstructed 2-D channels were tested. The process is challenging numerically as it involves the ignition of a flame kernel its subsequent propagation and acceleration interaction with obstacles formation of shock waves ahead and detonation onset (DO). Two different obstacle configurations were considered in 10-mm high × 1-m long channels: (i) wavy walls (WW) that mimic the behavior of fencetype obstacles but prevent abrupt area changes. In this case flame acceleration (FA) is strongly affected by shock-flame interactions and DO often results from the compression of the gas present between the accelerating flame front and a converging section of the channel. (ii) Fence-type (FT) obstacles. In this case FA is driven by the increase in flame surface area as a result of the interaction of the flame front with the unburned gas flow field ahead particularly downstream of obstacles; shock-flame interactions play a role at the later stages of FA and DO takes place upon reflection of precursor shocks from obstacles. The effect of initial pressure p0 = 25 50 and 100 kPa at constant blockage ratio (BR = 0.6) was investigated and compared for both configurations. Results show that for the same initial pressure (p0 = 50 kPa) the obstacle configurations could lead to different final propagation regimes: a quasi-detonation for WW and a choked-flame for FT due to the increased losses for the latter. At p0 = 25 kPa however while both configurations result in choked flames WW seem to exhibit larger velocity deficits than FT due to longer flame-precursor shock distances during quasi-steady propagation and to the increased presence of unburnt mixture downstream of the tip of the flame that homogeneously explodes providing additional support to the propagation of the flame.
Designing an Inherently Safe H2 Infrastructure: Combining Analytical, Experimental, and Numerical Investigations to Optimize H2 Refuelling Stations Safety by Passive Mitigation
Sep 2023
Publication
Natural ventilation is a well-known passive mitigation method to limit hydrogen build-up in confined spaces in case of accidental release [1-3]. In most cases a basic design of H2 infrastructure is adopted and vents installed for natural ventilation are adjusted according to safety targets and constraints of the considered structure. With the growing H2 mobility market the demand for H2 refueling infrastructure in our urban environment is on the rise. In order to meet both safety requirements and societal acceptance the design of such infrastructure is becoming more important. In this study a novel design concept is proposed for the hydrogen refueling station (HRS) by modifying physical structure while keeping safety consideration as the top priority of the concept. In this collaborative project between Air Liquide and the University of Delaware an extensive evaluation was performed on new structures of the processing container and dispenser of HRS by integrating safety protocols via passive means. Through a SWOT analysis combined with the most relevant approaches including analytical engineering models numerical simulations [4] and dedicated experimental trials an optimized design was obtained and its safety enhancement was fully evaluated. A small-scale processing container and an almost full-scale dispenser were built and tested to validate the design concepts by simulating accidental H2 release scenarios and assessing the associated consequences in terms of accumulation and potential flammable volumes formation. A conical dispenser and a V-shaped roof-top processing container which were easy to build and implement were designed and tested for this proof-of-concept study. This unique methodology from conception fundamental analysis investigation and validation through experimental design execution and evaluation is fully described in this study.
Safety Challenges Related to the Use of Hydrogen-Natural Gas Blends in Gas Turbines
Sep 2023
Publication
In a context of the decarbonization of the power sector the gas turbine manufacturers are expected tohandle and burn hydrogen or hydrogen/natural gas mixtures. This evolution is conceptually simple in order to displace CO2 emissions by H2O in the combustion exhaust but raises potential engineering andsafety related questions. Concerning the safety aspect the flammability domain is wider and the laminar flame speed is higher for hydrogen than for natural gas. As a result handling fuels with increased hydrogen concentration should a priori lead to an increased the risk of flammable cloud formation with air and also increase the potential explosion violence.<br/>A central topic for the gas turbine manufacturer is the quantification of the hydrogen fuel content from which the explosion risk increases significantly when compared with the use of natural gas. This work will be focused on a risk study of the fuel supply piping of a gas turbine in a scenario where mixing between fuel and air would occur. The pipes are a few dozens of meters long and show singularities: elbows connections with other lines … They are operated at high temperature and atmospheric or high pressure.<br/>The paper will first highlight through CFD modelling the impact of increasing hydrogen content in the fuel on the explosion risk based on a geometry representative of a realistic system. Second the quantification of the explosion effects will be addressed. Some elements of the bibliography relative to flame propagation in pipes will be recalled and put in sight of the characteristics of the industrial case. Finally a CFD model proposed recently for accounting for methane or hydrogen flames propagating in long open steel tubes was used to assess a hydrogen fuel content from which the flame can strongly accelerate and generate significative pressure effects for a flammable mixture initially at atmospheric conditions.
Design of Gravimetric Primary Standards for Field-testing of Hydrogen Refuelling Stations
Apr 2020
Publication
The Federal Institute of Metrology METAS developed a Hydrogen Field Test Standard (HFTS) that can be used for field verification and calibration of hydrogen refuelling stations. The testing method is based on the gravimetric principle. The experimental design of the HFTS as well as the description of the method are presented here.
A Comparative Study on Energy Efficiency of the Maritime Supply Chains for Liquefied Hydrogen, Ammonia, Methanol and Natural Gas
Jun 2023
Publication
To cope with climate change emerging fuels- hydrogen ammonia and methanol- have been proposed as promising energy carriers that will replace part of the liquefied natural gas (LNG) in future maritime scenarios. Energy efficiency is an important indicator for evaluating the system but the maritime supply system for emerging fuels has yet to be revealed. In this study the energy efficiency of the maritime supply chain of hydrogen ammonia methanol and natural gas is investigated considering processes including production storage loading transport and unloading. A sensitivity analysis of parameters such as ambient temperature storage time pipeline length and sailing time is also carried out. The results show that hydrogen (2.366%) has the highest daily boil-off gas (BOG) rate and wastes more energy than LNG (0.413%) with ammonia and methanol both being lower than LNG. The recycling of BOG is of great importance to the hydrogen supply chain. When produced from renewable energy sources methanol (98.02%) is the most energy efficient followed by ammonia with hydrogen being the least (89.10%). This assessment shows from an energy efficiency perspective that ammonia and methanol have the potential to replace LNG as the energy carrier of the future and that hydrogen requires efficient BOG handling systems to increase competitiveness. This study provides some inspirations for the design of global maritime supply systems for emerging fuels.
Experiments and Simulations of Large Scale Hydrogen-Nitrogen-Air Gas Explosions for Nuclear and Hydrogen Safety Applications
Sep 2023
Publication
Hydrogen safety is a general concern because of the high reactivity compared to hydrocarbon-based fuels. The strength of knowledge in risk assessments related to the physical phenomena and the ability of models to predict the consequence of accidental releases is a key aspect for the safe implementation of new technologies. Nuclear safety considers the possibility of accidental leakages of hydrogen gas and subsequent explosion events in risk analysis. In many configurations the considered gaseous streams involve a large fraction of nitrogen gas mixed with hydrogen. This work presents the results of a large scale explosion experimental campaign for hydrogen-nitrogen-air mixtures. The experiments were performed in a 50 m3 vessel at Gexcon’s test site in Bergen Norway. The nitrogen fraction the equivalence ratio and the congestion level were investigated. The experiments are simulated in the FLACS-CFD software to inform about the current level of conservatism of the predictions for engineering application purposes. The study shows the reduced overpressure with nitrogen added to hydrogen mixtures and supports the use of FLACS-CFD-based risk analysis for hydrogen-nitrogen scenarios.
Knowledge Production in Technological Innovation System: A Comprehensive Evaluation using a Multi-criteria Framework based on Patent Data - A Case Study on Hydrogen Storage
Jan 2025
Publication
Knowledge production activity is central within a technological innovation system. The number of patent ap plications is commonly used to evaluate this activity. However it is subject to bias and inaccurate evaluations can occur. This article proposes a multi-criteria framework based on seven complementary patent indicators taking into account the persistence commitment and coherence of knowledge production activities for a more comprehensive evaluation. We demonstrate the value of our proposal through a case study on hydrogen storage comparing patent data since 2000 about three technological solutions: physical chemical and adsorption technologies. Our framework clearly shows that physical hydrogen storage is the most advanced in terms of knowledge production despite not having the highest number of patent applications.
The Impact of Methane Leakage on the Role of Natural Gas in the European Energy Transition
Sep 2023
Publication
Decarbonising energy systems is a prevalent topic in the current literature on climate change mitigation but the additional climate burden caused by methane emissions along the natural gas value chain is rarely discussed at the system level. Considering a two-basket greenhouse gas neutrality objective (both CO2 and methane) we model cost-optimal European energy transition pathways towards 2050. Our analysis shows that adoption of best available methane abatement technologies can entail an 80% reduction in methane leakage limiting the additional environmental burden to 8% of direct CO2 emissions (vs. 35% today). We show that while renewable energy sources are key drivers of climate neutrality the role of natural gas strongly depends on actions to abate both associated CO2 and methane emissions. Moreover clean hydrogen (produced mainly from renewables) can replace natural gas in a substantial proportion of its end-uses satisfying nearly a quarter of final energy demand in a climate-neutral Europe.
IEA TCP Task 43 - Subtask Safety Distances: State of the Art
Sep 2023
Publication
The large deployment of hydrogen technologies for new applications such as heat power mobility and other emerging industrial utilizations is essential to meet targets for CO2 reduction. This will lead to an increase in the number of hydrogen installations nearby local populations that will handle hydrogen technologies. Local regulations differ and provide different safety and/or separation distances in different geographies. The purpose of this work is to give an insight on different methodologies and recommendations developed for hydrogen (mainly) risk management and consequences assessment of accidental scenarios. The first objective is to review available methodologies and to identify the divergent points on the methodology. For this purpose a survey has been launched to obtain the needed inputs from the subtask participants. The current work presents the outcomes of this survey highlighting the gaps and suggesting the prioritization of the actions to take to bridge these gaps.
Detailed Assessment of Dispersion for High-pressure H2 in Multi-fuel Environment
Sep 2023
Publication
The MultHyFuel project notably aims to produce the data missing for usable risk analysis and mitigation activity for Hydrogen Refuelling Stations (HRS) in a multi-fuel context. In this framework realistic releases of hydrogen that could occur in representative multi-fuel forecourts were studied. These releases can occur inside or outside fuel dispensers and they can interact with a complex environment notably made of parked cars and trucks. This paper is focused on the most critical scenarios that were addressed by a sub-group through the use of Computational Fluid Dynamics (CFD) modelling. Once the corresponding source terms for hydrogen releases were known two stages are followed:<br/>♦ Model Validation – to evaluate the CFD models selected by the task partners and to evaluate their performance through comparison to experimental data.<br/>♦ Realistic Release Modelling – to perform demonstration simulations of a range of critical scenarios.<br/>The CFD models selected for the Model Validation have been tested against measured data for a set of experiments involving hydrogen releases. Each experiment accounts for physical features that are encountered in the realistic cases. The selected experiments include an under-expanded hydrogen jet discharging into the open atmosphere with no obstacles or through an array of obstacles. Additionally a very different set-up was studied with buoyancy-driven releases inside a naturally ventilated enclosure. The results of the Model Validation exercise show that the models produce acceptable solutions when compared to measured data and give confidence in the ability of the models and the modellers to capture the behaviour of the realistic releases adequately. The Realistic Release Modelling phase will provide estimation of the flammable gas cloud volume for a set of critical scenarios and will be described at the second stage.
Hydrogen Energy Storage: New Techno-economic Emergence Solution Analysis
Aug 2015
Publication
The integration of various renewable energy sources as well as the liberalization of electricity markets are established facts in modern electrical power systems. The increased share of renewable sources within power systems intensifies the supply variability and intermittency. Therefore energy storage is deemed as one of the solutions for stabilizing the supply of electricity to maintain generation-demand balance and to guarantee uninterrupted supply of energy to users. In the context of sustainable development and energy resources depletion the question of the growth of renewable energy electricity production is highly linked to the ability to propose new and adapted energy storage solutions. The purpose of this multidisciplinary paper is to highlight the new hydrogen production and storage technology its efficiency and the impact of the policy context on its development. A comprehensive techno/socio/economic study of long term hydrogen based storage systems in electrical networks is addressed. The European policy concerning the different energy storage systems and hydrogen production is explicitly discussed. The state of the art of the techno-economic features of the hydrogen production and storage is introduced. Using Matlab-Simulink for a power system of rated 70 kW generator the excess produced hydrogen during high generation periods or low demand can be sold either directly to the grid owners or as filled hydrogen bottles. The affordable use of Hydrogen-based technologies for long term electricity storage is verified.
A New Method to Quantify the Leakage Scenarios (Frequencies and Flowrates) on Hydrogen High Pressure Components
Sep 2023
Publication
This work is part of the MULTHYFUEL E.U. research program [1] aiming at enabling the implementation of hydrogen dispersers in refuelling stations. One important challenge is the severity of accidents due to a leakage of hydrogen from a dispenser in the forecourt. The work presented in this paper deals with the quantification of the leakage scenarios in terms of frequencies and severities. The risk analysis exercise although performed by experts showed very large discrepancies between the frequencies of leakages of the same categories and even between the consequences. A large part of the disagreement comes from the failure databases chosen as shown in the paper. The mismatch between the components on which the databases have been settled and the actual hydrogen components may be responsible for this situation. However as it stands limited confidence can be laid on the outcome of the risk analysis.<br/>A new method is being developed to calculate the frequencies of the leakage and the flowrate based on an accurate description of each component and of each hazardous situation. For instance the possibility for a fitting to become untight due to pressure cycling is modelled based on the contact mechanics. Human errors can also be introduced by describing the tasks. In addition of the description of the method the application to a disperser is proposed with some comparison to experiments. One of the outcomes is that leakage cross sections can be much larger than expected.
Assessing the Impacts of Net Zero Transport Scenarios in France on Biomass Resources, Hydrogen and Electricity Consumption
May 2025
Publication
The transport sector in France accounts for 30% of national emissions and will require significant decarbonization effort to achieve carbon neutrality in 2050. Various technological solutions from electric vehicles to renewable fuel such as biofuels and e-fuels as well as changes in demand are envisioned to reach this target. We build three technological foresight scenarios and two sufficiency variants mainly based on different readings of the European regulations banning the sale of internalcombustion-engine vehicles and setting Sustainable Aviation Fuel incorporation rates. The transport hydrogen and biomass sectors are modeled in system dynamics to assess the detail impacts of these scenarios on biomass resources and energy consumption. In all scenarios the total electricity demand increases drastically regardless of the technological choices made for the vehicle fleets mainly due to the production of e-fuels for aviation. None of the technological scenarios studied suggest that biomass supply is unfeasible. However in a scenario with low electrification there is a potentially increased dependence on imports for waste oils and fats and competing uses or tensions with other demand sectors may arise over some biomass for anaerobic digestion and lignocellulosic resources. To reduce these potential tensions and the demand for electricity sufficiency measures seem necessary in addition to technological advancements.
A Thermodynamically Consistent Methodology to Develop Predictive Simplified Kinetics for Detonation Simulations
Sep 2023
Publication
The number of species and elementary reactions needed for describing the oxidation of fuels increases with the size of the molecule and in turn the complexity of detailed mechanisms. Although the kinetics for conventional fuels (H2 CH4 C3H8...) are somewhat well-established chemical integration in detonation applications remains a major challenge. Significant efforts have been made to develop reduction techniques that aim to keep the predictive capabilities of detailed mechanisms intact while minimizing the number of species and reactions required. However as their starting point of development is based on homogeneous reactors or ZND profiles reduced mechanisms comprising a few species and reactions are not predictive. The methodology presented here relies on defining virtual chemical species such that the thermodynamic equilibrium of the ZND structure is properly recovered thereby circumventing the need to account for minor intermediate species. A classical asymptotic expression relating the ignition delay time with the reaction rate constant is then used to fit the Arrhenius coefficients targeting computations carried out with detailed kinetics. The methodology was extended to develop a three-step mechanism in which the Arrhenius coefficients were optimized to accurately reproduce the one-dimensional laminar ZND structure and the D−κ curves for slightly-curved quasi-steady detonation waves. Two-dimensional simulations performed with the three-step mechanism successfully reproduce the spectrum of length scales present in soot foils computed with detailed kinetics (i.e. cell regularity and size). Results attest for the robustness of the proposed methodology/approximation and its flexibility to be adapted to different configurations.
Experimental Study of the Mitigation of Hydrogen-Air Explosions by Inhibiting Powder
Sep 2023
Publication
The development of hydrogen production technologies and new uses represents an opportunity to accelerate the ecological transition and create a new industrial sector. However the risks associated with the use of hydrogen must be considered. Mitigation of a hydrogen explosion in an enclosure is partly based on prevention strategies such as detection and ventilation and protection strategies such as explosion venting. Even if applications involving hydrogen probably are most interesting for vented explosions in weak structures the extreme reactivity of hydrogen-air mixtures often excludes the use of regular venting devices such as in highly constrained urban environments. Thus having alternative mitigation solutions can make the effects of the explosion acceptable by reducing the flame speed and the overpressure loading or suppressing the secondary explosion. The objective of this paper is to present experimental studies of the mitigation of hydrogen-air deflagration in a 4 m3 vented enclosure by injection of inhibiting powder (NaHCO₃). After describing the experimental set-up the main experimental results are presented for several trial configurations showing the influence of inhibiting powder in the flammable cloud on flame propagation. An interpretation of the mitigating effect of inhibiting powder on the explosion effects is proposed based on the work of Proust et al.
Performance Comparison of Hydrogen Dispersion Models in Enclosure Adapted to Forced Ventilation
Sep 2023
Publication
In confined spaces hydrogen released with low momentum tends to accumulate in a layer below the ceiling; the concentration in this layer rises and can rapidly enter the flammability range. In this context ventilation is a key safety equipment to prevent the formation of such flammable volumes. To ensure its well-sizing to each specific industrial context it is necessary to dispose of reliable engineering models. Currently the existing engineering models dealing with the buoyancy-driven H2 dispersion in a ventilated enclosure mainly focus on the natural-ventilation phenomenon. However forced ventilation is in some situations more adapted to the industrial context as the wind direction and intensity remains constant and under control. Therefore two existing wind-assisted ventilation models elaborated by Hunt and Linden [1] and Lowesmith et al. [2] were tested on forced ventilation applications. The main assumption consists in assuming a blowing ventilation system rather than a suction system as the composition and velocity of the entering air are known. The fresh air enters the down opening and airhydrogen mixture escapes through the upper one. The adapted models are then validated with experimental data releasing helium rather than hydrogen. Experiments are conducted on a 1-m3 ventilated box controlling the release and ventilation rates. The agreement between both analytical and experimental results is discussed from the different comparisons performed.
Power and Green Hydrogen Trade Potential between North African and European Countries: Conditions, Challenges, and Sustainability Prospects
Dec 2024
Publication
This study investigates the implications of hydrogen demand and trade between Europe and North Africa emphasizing how renewable energy system (RES) capacity limitations impact both regions. Growing hydrogen demand for decarbonization has fueled interest in North Africa’s potential to export green hydrogen to Europe. Using the eTIMES-EUNA model this study examines how demand trade and RES development challenges shape the energy landscapes of both regions. The findings indicate that hydrogen demand amplifies renewable electricity requirements in both regions with Europe particularly benefiting from importing hydrogen to alleviate additional RES capacity installation. Hydrogen trade reduces overall costs by 1 % yet it shifts a considerable financial burden onto North Africa demanding a rapid RES capacity expansion at a rate significantly higher than the current pace. Slower RES development in North Africa could hinder the region’s ability to meet both domestic and export targets thereby complicating Europe’s hydrogen sourcing strategies which are also challenged by social acceptance issues that limit RES deployment. These constraints in Europe necessitate adjustments to the technological mix and place additional pressure on North Africa to increase production. Furthermore the varying implications and stakes at the national level highlight the need for further analysis as individual countries may prioritize their own interests potentially leading to conflicts with neighboring nations under different development schemes. Consequently the results underscore the importance of coordinated financial and policy support to ensure equitable trade that aligns with both regions’ sustainability goals.
Hydrogen Production by Catalytic Supercritical Water Gasification of Black Liquor-Based Wastewater
Apr 2025
Publication
In this work the wastewater obtained from the hydrothermal liquefaction of black liquor was treated and valorized for hydrogen production by supercritical water gasification (SCWG). The influence of the main process parameters on the conversion yield was studied. The experiments were conducted at three different temperatures (below and above the critical point of water): 350 ◦C 450 ◦C and 600 ◦C. The results showed that by increasing the temperature from 350 ◦C to 600 ◦C the total gas yield was highly improved (from 1.9 mol gas/kg of dried feedstock to 13.1 mol gas/kg of dried feedstock). The H2 composition was higher than that of CH4 and CO2 at 600 ◦C and the HHV of the obtained gas was 61.2 MJ/kg. The total organic carbon (TOC) removal efficiency was also improved by increasing the temperature indicating that the SCWG process could be used for both applications: (i) for wastewater treatment; (ii) for producing a high calorific gas. The experiments with the Raney-nickel catalyst were performed in order to study the catalyst’s influence on the conversion yield. The results indicated that the catalyst enhances carbon conversion and gas production from mild to higher temperatures. The maximum total gas yield obtained with this catalyst was 32.4 mol gas/kg of dried feedstock at 600 ◦C which is 2.5 times higher than that obtained at the same operating conditions without a catalyst. The H2 yield and the HHV of the obtained gas with the catalyst were 20.98 mol gas/kg dried feedstock and 80.2 MJ/kg respectively. However the major contribution of the catalytic SCWG process was the improvement of the total gas yield at mild operating temperatures (450 ◦C) and the obtained performance was even higher than that obtained at 600 ◦C without catalyst (17.81 mol gas/kg dried feedstock and 13.1 mol gas/kg dried feedstock respectively). This is a sustainable approach for treating wastewater at mild temperatures by catalytic SCWG.
A Techno-economic Assessment of the Viability of a Photovoltaic-wind-battery Storage-hydrogen Energy System for Electrifying Primary Healthcare Centre in Sub-Saharan Africa
Jun 2024
Publication
Healthcare facilities in isolated rural areas of sub-Saharan Africa face challenges in providing essential health services due to unreliable energy access. This study examines the use of hybrid renewable energy systems consisting of solar PV wind turbines batteries and hydrogen storage for the electrification of rural healthcare facilities in Nigeria and South Africa. The study deployed the efficacy of Hybrid Optimization of Multiple Energy Resources software for techno-economic analysis and the Evaluation based on the Distance from Average Solution method for multicriteria decision-making for sizing optimizing and selecting the optimal energy system. Results show that the optimal configurations achieve cost-effective levelized energy costs ranging from $0.336 to $0.410/kWh for both countries. For the Nigeria case study the optimal energy system includes 5 kW PV 10 kW fuel cell 10 kW inverter 10 kW electrolyzer and 16 kg hydrogen tank. South Africa's optimal configuration has 5 kW PV 10 kW battery 10 kW inverter and 7.5 kW rectifier. Solar PV provides more than 90% of energy with dual axis tracking yielding the highest output: 8889kWh/yr for Nigeria and 10470kWh/yr for South Africa. The multi-criteria decisionmaking analysis reveals that Nigeria's preferred option is the hybrid system without tracking. In contrast the horizontal axis weekly adjustment tracking configuration is optimal for South Africa considering technical economic and environmental criteria. The findings highlight the importance of context-specific optimization for hybrid renewable energy systems in rural healthcare facilities to accelerate Sustainable Development Goals 3 and 7.
Power Ultrasound as Performance Enhancer for Alkaline Water Electrolysis: A Review
Dec 2024
Publication
The industry is advancing decarbonization in hydrogen production through water splitting technologies like water electrolysis which involves the hydrogen evolution reaction (HER) at the cathode and oxygen evolution reaction (OER) at the anode. Alkaline water electrolyser (AWE) is particularly suited for industrial applications due to its use of cost-effective and abundant nickel-based electrodes. However AWE faces significant challenges including energy losses from gas bubble coverage and poor detachment known as “bubble resistance”. Recent research highlights the role of power ultrasound in mitigating these issues by leveraging Bjerknes forces. These forces facilitate the ejection of larger bubbles and the coalescence of smaller ones enhancing gas removal. Additionally ultrasound improves mass transfer from the electrolyte to electrodes and boosts heat transfer via acoustic streaming and acoustic cavitation which the latter also enhances electrocatalytic properties for both HER and OER. However employing ultrasonic fields presents both benefits and challenges for scaling the system.
Advancing Energy Management Strategies for Hybrid Fuel Cell Vehicles: A Comparative Study of Deterministic and Fuzzy Logic Approaches
Aug 2025
Publication
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries these vehicles offer greater efficiency and zero emissions. However their energy management remains a challenge requiring advanced strategies. This paper presents a comparative study of two developed energy management strategies: a deterministic rule-based approach and a fuzzy logic approach. The proposed system consists of a proton exchange membrane fuel cell (PEMFC) as the primary energy source and a lithium-ion battery as the secondary source. A comprehensive model of the hybrid powertrain is developed to evaluate energy distribution and system behaviour. The control system includes a model predictive control (MPC) method for fuel cell current regulation and a PI controller to maintain DC bus voltage stability. The proposed strategies are evaluated under standard driving cycles (UDDS and NEDC) using a simulation in MATLAB/Simulink. Key performance indicators such as fuel efficiency hydrogen consumption battery state-of-charge and voltage stability are examined to assess the effectiveness of each approach. Simulation results demonstrate that the deterministic strategy offers a structured and computationally efficient solution while the fuzzy logic approach provides greater adaptability to dynamic driving conditions leading to improved overall energy efficiency. These findings highlight the critical role of advanced control strategies in improving FCHEV performance and offer valuable insights for future developments in hybrid-vehicle energy management.
Hydrogen Revolution: Artificial Intelligence and Machine Learning Driven Policies, Feasibility, Challenges and Opportunities: Insights from Asian Countries
Aug 2025
Publication
Green hydrogen a zero-carbon emission fuel has become a real competitor to transform the energy market thanks to improvements in the electrolysis process decreased costs and the presence of renewable energy resources. Energy industries have shown considerable progress in hydrogen production due to the incorporation of artificial intelligence (AI) knowledge through algorithms AI-based models and data programs. These techniques can greatly enhance the production storage and transportation of hydrogen fuel. The main goal of this article is to demonstrate the recent technological advancements and the influence of various AI techniques algorithms and models on the hydrogen energy sector along with this further examination of the energy policies of countries like China Japan India and South Korea. The key challenges related to these energy policies are addressed through standardized datasets AI models and optimized environmental conditions. This paper serves as a valuable resource for researchers engineers and practitioners interested in applying cutting-edge technologies to enhance hydrogen safety systems. AI-based models contribute to the overall shift towards a sustainable energy future by enhancing efficiency reducing costs and facilitating hydrogen energy commerce for Asian countries. This study accelerates the global investigation and tremendous applications of sophisticated machine-learning methodologies for producing renewable green hydrogen.
Impacts of Intermittency on Low-temperature Electrolysis Technologies: A Comprehensive Review
May 2024
Publication
By offering promising solutions to two critical issues – the integration of renewable energies into energy systems and the decarbonization of existing hydrogen applications – green hydrogen production through water electrolysis is set to play a crucial role in addressing the major challenges of the energy transition. However the successful integration of renewable energy sources relies on gaining accurate insights into the impacts that intermittent electrical supply conditions induce on electrolyzers. Despite the rising importance of addressing intermittency issues to accelerate the widespread adoption of renewable energy sources the state-of-the-art lacks research providing an in-depth understanding of these concerns. This paper endeavors to offer a comprehensive review of existing research focusing on proton exchange membrane (PEM) and alkaline electrolysis technologies operating under intermittent operation. Despite growing interest over the last ten years the review underscores the scarcity of industrial-scale databases for quantifying these impacts.
Comparison of Large Eddy Simulation with Local Species, Temperature and Velocity Measurements in Dual Swirl Confined Hydrogen Flames
Oct 2025
Publication
Developing new injection systems and combustion chambers for hydrogen is a central topic for the new generation of engines. In this effort simulations take a central role but methods developed for conventional hydrocarbons (methane kerosene) must be revisited for hydrogen. Validation then becomes an essential part and clean well documented experiments are needed to guaranty that computational fluid dynamics solvers are as predictive and accurate as expected. In this framework the HYLON case is a swirled hydrogen/air burner used by multiple groups worldwide to validate simulation methods for hydrogen combustion in configurations close to gas turbine burners with experimental data available through the TNF web site. The present study compares recent Raman spectroscopy and Particle Image Velocimetry measurements and Large Eddy Simulations (LES). The LES results are evaluated against a dataset comprising mean and RMS measurements of H2 N2 O2 H2O molar fractions temperature and velocity fields offering new insights into flame stabilization mechanisms. The simulations incorporate conjugate heat transfer to predict the combustor wall temperatures and are conducted for two atmospheric-pressure operating conditions each representing distinct combustion regimes diffusion and partially premixed. Novelty and significance statement Data on confined hydrogen flames in burner similar as industrial ones are limited. This work aims to fill this gap by performing multiple and simultaneous diagnostics on the swirled hydrogen-air flame called HYLON. For the first time in such a swirled configuration mean and RMS fields of temperature main species and velocities are compared to LES allowing new insight into the potential and limits of the models as well as the physics of these flames. These experimental results will be made available on TNF as over 30 research groups worldwide have expressed interest in using them.
Hydrogen Mole Fraction Distributions Inferred from Inverse-LIF Measurements on High-pressure Hydrogen Injections
Oct 2025
Publication
The mixing of fuel and ambient in a compression-igniting combustion engine is a critical process affecting ignition delay burn duration and cycle efficiency. This study aims to visualize and quantify hydrogen mole fraction distributions resulting from high-pressure (10 MPa) hydrogen injections into an inert pressurized (1 MPa) nitrogen ambient at room temperature. Using inverse planar laser-induced fluorescence in which the ambient rather than the jet is seeded with a fluorescent tracer two different injectors (nozzle hole sizes of 0.55 and 0.65 mm) and two different tracers (toluene and acetone) are compared. It is concluded that a non-intensified CCD camera for fluorescence detection is superior to the use of an intensified one due to the linear behavior on contrast. The two injectors produce similar jets in terms of jet penetration and angle. Jet penetration derived from inverse-LIF measurements agree with Schlieren data on nominally the same jets but the hydrogen mole fractions are generally 2.5-5 percent lower than those obtained by planar Rayleigh scattering. Quasi-steadiness and self-similarity were found for ensemble-averaged mole fraction distributions of both injectors which aligns with theory and highlights the importance of using RANS simulations or time-averaged experiments for future comparisons.
Modeling and Simulation of Coupled Biochemical and Two-phase Compositional Flow in Underground Hydrogen Storage
Aug 2025
Publication
Integrating microbial activity into underground hydrogen storage models is crucial for simulating longterm reservoir behavior. In this work we present a coupled framework that incorporates bio-geochemical reactions and compositional flow models within the Matlab Reservoir Simulation Toolbox (MRST). Microbial growth and decay are modeled using a double Monod formulation with populations influenced by hydrogen and carbon dioxide availability. First a refined Equation of State (EoS) is employed to accurately capture hydrogen dissolution thereby improving phase behavior and modeling of microbial activity. The model is then discretized using a cell-centered finite-volume method with implicit Euler time discretization. A fully coupled fully implicit strategy is considered. Our implementation builds upon MRST’s compositional module by incorporating the Søreide–Whitson EoS microbial reaction kinetics and specific effects such as bio-clogging and molecular diffusion. Through a series of 1D 2D and 3D simulations we analyze the effects of microbialinduced bio-geochemical transformations on underground hydrogen storage in porous media.These results highlight that accounting for bio-geochemical effects can substantially impact hydrogen loss purity and overall storage performance.
AI-driven Advances in Composite Materials for Hydrogen Storage Vessels: A Review
Sep 2025
Publication
This review provides a comprehensive examination of artificial intelligence methods applied to the design optimization and performance prediction of composite-based hydrogen storage vessels with a focus on composite overwrapped pressure vessels. Targeted at researchers engineers and industrial stakeholders in materials science mechanical engineering and renewable energy sectors the paper aims to bridge traditional mechanical modeling with evolving AI tools while emphasizing alignment with standardization and certification requirements to enhance safety efficiency and lifecycle integration in hydrogen infrastructure. The review begins by introducing HSV types their material compositions and key design challenges including high-pressure durability weight reduction hydrogen embrittlement leakage prevention and environmental sustainability. It then analyzes conventional approaches such as finite element analysis multiscale modeling and experimental testing which effectively address aspects like failure modes fracture strength liner damage dome thickness winding angle effects crash behavior crack propagation charging/discharging dynamics burst pressure durability reliability and fatigue life. On the other hand it has been shown that to optimize and predict the characteristics of hydrogen storage vessels it is necessary to combine the conventional methods with artificial intelligence methods as conventional methods often fall short in multi-objective optimization and rapid predictive analytics due to computational intensity and limitations in handling uncertainty or complex datasets. To overcome these gaps the paper evaluates hybrid frameworks that integrate traditional techniques with AI including machine learning deep learning artificial neural networks evolutionary algorithms and fuzzy logic. Recent studies demonstrate AI’s efficacy in failure prediction design optimization to mitigate structural risks structural health monitoring material property evaluation burst pressure forecasting crack detection composite lay-up arrangement weight minimization material distribution enhancement metal foam ratio optimization and optimal material selection. By synthesizing these advancements this work underscores AI’s potential to accelerate development reduce costs and improve HSV performance while advocating for physics-informed models robust datasets and regulatory alignment to facilitate industrial adoption.
Green Hydrogen Viability in the Transition to a Fully-Renewable Energy Grid
Sep 2025
Publication
With the transition to a fully renewable energy grid arises the need for a green source of stability and baseload support which classical renewable generation such as wind and solar cannot offer due to their uncertain and highly-variable generation. In this paper we study whether green hydrogen can close this gap as a source of supplemental generation and storage. We design a two-stage mixed-integer stochastic optimization model that accounts for uncertainties in renewable generation. Our model considers the investment in renewable plants and hydrogen storage as well as the operational decisions for running the hydrogen storage systems. For the data considered we observe that a fully renewable network driven by green hydrogen has a greater potential to succeed when wind generation is high. In fact the main investment priorities revealed by the model are in wind generation and in liquid hydrogen storage. This long-term storage is more valuable for taking full advantage of hydrogen than shorter-term intraday hydrogen gas storage. In addition we note that the main driver for the potential and profitability of green hydrogen lies in the electricity demand and prices as opposed to those for gas. Our model and the investment solutions proposed are robust with respect to changes in the investment costs. All in all our results show that there is potential for green hydrogen as a source of baseload support in the transition to a fully renewable-powered energy grid.
Certification Gap Analysis for Normal-Category and Large Hydrogen-Powered Airplanes
Mar 2025
Publication
The transition to hydrogen as an aviation fuel as outlined in current decarbonization roadmaps is expected to result in the entry into service of hydrogen-powered aircraft in 2035. To achieve this evolution certification regulations are key enablers. Due to the disruptive nature of hydrogen aircraft technologies and their associated hazards it is essential to assess the maturity of the existing regulatory framework for certification to ensure its availability when manufacturers apply for aircraft certification. This paper presents the work conducted under the Clean Aviation CONCERTO project to advance certification readiness by comprehensively identifying gaps in the current European regulations. Generic methodologies were developed for regulatory gap and risk analyses and applied to a hydrogen turbine aircraft with non-propulsive fuel cells as the APU. The gap analysis conducted on certification specifications for large and normal-category airplanes as well as engines confirmed the overall adequacy of many existing requirements. However important gaps exist to appropriately address hydrogen hazards particularly concerning fire and explosion hydrogen storage and fuel systems crashworthiness and occupant survivability. The paper concludes by identifying critical areas for certification and highlighting the need for complementary hydrogen phenomenology data which are key to guiding future research and regulatory efforts for certification readiness maturation.
Hydrogen Energy Systems for Decarbonizing Smart Cities and Industrial Applications: A Review
Oct 2025
Publication
Hydrogen is increasingly recognized as a key energy vector for achieving deep decarbonization across urban and industrial sectors. Supporting global efforts to reduce greenhouse gas (GHG) emissions and achieve the Sustainable Development Goals (SDGs) it is essential to understand the multi-sectoral role of the hydrogen value chain spanning production storage and end-use applications with particular emphasis on smart city systems and industrial processes. Green hydrogen production technologies including alkaline water electrolysis (AWE) proton exchange membrane (PEM) electrolysis anion exchange membrane (AEM) electrolysis and solid oxide electrolysis cells (SOECs) are evaluated in terms of efficiency scalability and integration potential. Storage pathways are examined across physical storage (compressed gas cryo-compressed and liquid hydrogen) material-based storage (solid-state absorption in metal hydrides and chemical carriers such as LOHCs and ammonia) and geological storage (salt caverns depleted gas reservoirs and deep saline aquifers) highlighting their suitability for urban and industrial contexts. In the smart city domain hydrogen is analyzed as an enabler of zero-emission transportation low-carbon residential and commercial heating and renewable-integrated smart grids with long-duration storage capabilities. System-level studies demonstrate that coordinated integration of these applications can deliver higher overall energy efficiency deeper reductions in life-cycle GHG emissions and improved resilience of urban energy systems compared with sector-specific approaches. Policy frameworks safety standards and digitalization strategies are reviewed to illustrate how hydrogen infrastructure can be embedded into interconnected urban energy systems. Furthermore industrial applications focus on hydrogen’s potential to decarbonize energy-intensive processes and enable sector coupling between electricity heat and manufacturing. The environmental implications of hydrogen deployment are also considered including resource efficiency life-cycle emissions and ecosystem impacts. In contrast to reviews addressing isolated aspects of hydrogen technologies this study synthesizes technological infrastructural and policy dimensions integrating insights from over 400 studies to highlight the multifaceted role of hydrogen in sustainable urban development and industrial decarbonization and the added benefits achievable through coordinated cross-sector deployment strategies.
IEA TCP Task 43 - Recommendations for Safety Distances Methodology for Alkaline and PEM Electrolyzers
Sep 2025
Publication
Elena Vyazmina,
Richard Chang,
Benjamin Truchot,
Katrina M. Groth,
Samantha E. Wismer,
Sebastien Quesnel,
David Torrado,
Nicholas Hart,
Thomas Jordan,
Karen Ramsey-Idem,
Deborah Houssin-Agbomson,
Simon Jallais,
Christophe Bernard,
Lucie Bouchet,
Ricardo Ariel Perez,
Lee Phillips,
Marcus Runefors,
Jerome Hocquet and
Andrei V. Tchouvelev
Currently local regulations governing hydrogen installations vary by geographical region and by country leading to discrepancies in safety and separation distance requirements for similar hydrogen systems. This work carried out in the frame of IEA TCP H2 Task 43 (IEA TCP H2 2022) aims to provide an overview of various methodologies and recommendations established for risk management and consequence assessment in the event of accidental scenarios. It focuses on a case study involving industrial electrolyzers utilizing alkaline and PEM technologies. The research incorporates lessons learned from past incidents offers recommendations for mitigation measures reviews existing methodologies and highlights areas of divergence. Additionally it proposes strategies for harmonization. The study also emphasizes the most significant scenarios and the corresponding leakage sizes
The Climate Benefit of a Greener Blue Hydrogen
Sep 2025
Publication
Previous studies have demonstrated the potential benefit of a future hydrogen economy in terms of reducing CO2 emissions. The hydrogen leakage rate and the green hydrogen fraction in the mix were identified as key factors in maximising the climate benefit of this energy transition. This study highlights the importance of blue hydrogen production hypotheses for a climate-beneficial transition to a hydrogen economy. The benefits are substantial when blue hydrogen is produced properly using an efficient CO₂ sequestration hydrogen production plant and minimizing the rate of upstream CH₄ leakage. The rate of hydrogen leakage remains an important parameter to consider throughout the entire value chain. Based on various scenarios of the development of a 21st century hydrogen economy we estimate significant CO₂ emission reductions of 266–418 GtCO₂eq (up to 395–675 GtCO2eq in the case of a “high hydrogen demand” scenario) between 2030 and 2100. This cumulative reduction in CO₂ emissions translates into a reduction in global warming of 0.12–0.19 °C (0.18–0.30 °C for a “high hydrogen demand”) by the end of the century.
Sizing of Fuel Distribution and Thermopropulsion Systems for Liquid-Hydrogen-Powered Aircraft Using an MBSE Approach
Jun 2025
Publication
Hydrogen-powered aircraft constitute a transformative innovation in aviation motivated by the imperative for sustainable and environmentally friendly transportation solutions. This paper aims to concentrate on the design of hydrogen powertrains employing a system approach to propose representative design models for distribution and propulsion systems. Initially the requirements for powertrain design are formalized and a usecase-driven analysis is conducted to determine the functional and physical architectures. Subsequently for each component pertinent to preliminary design an analytical model is proposed for multidisciplinary analysis and optimization for powertrain sizing. A doublewall pipe model incorporating foam and vacuum multi-layer insulation was developed. The internal and outer pipes sizing were performed in accordance with standards for hydrogen piping design. Valves sizing is also considered in the present study following current standards and using data available in the literature. Furthermore models for booster pumps to compensate pressure drop and high-pressure pumps to elevate pressure at the combustion chamber entrance are proposed. Heat exchanger and evaporator models are also included and connected to a burning hydrogen engine in the sizing process. An optimal liner pipe diameter was identified which minimizes distribution systems weight. We also expect a reduction in engine length and weight while maintaining equivalent thrust.
No more items...