France
CFD Simulations of Large Scale LH2 Dispersion in Open Environment
Sep 2021
Publication
An inter-comparison among partners’ CFD simulations has been carried out within the EU-funded project PRESLHY to investigate the dispersion of the mixture cloud formed from large scale liquid hydrogen release. Rainout experiments performed by Health and Safety Executive (HSE) have been chosen for the work. From the HSE experimental series trial-11 was selected forsimulation due to its conditions where only liquid flow at the nozzle was achieved. During trial-11 liquid hydrogen is spilled horizontally 0.5 m above a concrete pad from a 5 barg tank pressure through a 12 mm (1/2 inch) nozzle. The dispersion takes place outdoors and thus it is imposed to variant wind conditions. Comparison of the CFD results with the measurements at several sensors is presented and useful conclusions are drawn.
Role of Hydrogen-Charging on Nucleation and Growth of Ductile Damage in Austenitic Stainless Steels
May 2019
Publication
Hydrogen energy is a possible solution for storage in the future. The resistance of packaging materials such as stainless steels has to be guaranteed for a possible use of these materials as containers for highly pressurized hydrogen. The effect of hydrogen charging on the nucleation and growth of microdamage in two different austenitic stainless steels AISI316 and AISI316L was studied using in situ tensile tests in synchrotron X-ray tomography. Information about damage nucleation void growth and void shape were obtained. AISI316 was found to be more sensitive to hydrogen compared to AISI316L in terms of ductility loss. It was measured that void nucleation and growth are not affected by hydrogen charging. The effect of hydrogen was however found to change the morphology of nucleated voids from spherical cavities to micro-cracks being oriented perpendicular to the tensile axis.
Assessing the Environmental Impacts of Wind-based Hydrogen Production in the Netherlands Using Ex-ante LCA and Scenarios Analysis
Mar 2021
Publication
Two electrolysis technologies fed with renewable energy sources are promising for the production of CO2-free hydrogen and enabling the transition to a hydrogen society: Alkaline Electrolyte (AE) and Polymer Electrolyte Membrane (PEM). However limited information exists on the potential environmental impacts of these promising sustainable innovations when operating on a large-scale. To fill this gap the performance of AE and PEM systems is compared using ex-ante Life Cycle Assessment (LCA) technology analysis and exploratory scenarios for which a refined methodology has been developed to study the effects of implementing large-scale sustainable hydrogen production systems. Ex-ante LCA allows modelling the environmental impacts of hydrogen production exploratory scenario analysis allows modelling possible upscaling effects at potential future states of hydrogen production and use in vehicles in the Netherlands in 2050. A bridging tool for mapping the technological field has been created enabling the combination of quantitative LCAs with qualitative scenarios. This tool also enables diversity for exploring multiple sets of visions. The main results from the paper show with an exception for the “ozone depletion” impact category (1) that large-scale AE and PEM systems have similar environmental impacts with variations lower than 7% in all impact categories (2) that the contribution of the electrolyser is limited to 10% of all impact categories results and (3) that the origin of the electricity is the largest contributor to the environmental impact contributing to more than 90% in all impact categories even when renewable energy sources are used. It is concluded that the methodology was applied successfully and provides a solid basis for an ex-ante assessment framework that can be applied to emerging technological systems.
Calibration of Hydrogen Coriolis Flow Meters Using Nitrogen and Air and Investigation of the Influence of Temperature on Measurement Accuracy
Feb 2021
Publication
The performance of four Coriolis flow meters designed for use in hydrogen refuelling stations was evaluated with air and nitrogen by three members of the MetroHyVe JRP consortium; NEL METAS and CESAME EXADEBIT.<br/>A wide range of conditions were tested overall with gas flow rates ranging from (0.05–2) kg/min and pressures ranging from (20–86) bar. The majority of tests were conducted at nominal pressures of either 20 bar or 40 bar in order to match the density of hydrogen at 350 bar and 20 °C or 700 bar and −40 °C. For the conditions tested pressure did not have a noticeable influence on meter performance.<br/>When the flow meters were operated at ambient temperatures and within the manufacturer's recommended flow rate ranges errors were generally within ±1%. Errors within ±0.5% were achievable for the medium to high flow rates.<br/>The influence of temperature on meter performance was also studied with testing under both stable and transient conditions and temperatures as low as −40 °C.<br/>When the tested flow meters were allowed sufficient time to reach thermal equilibrium with the incoming gas temperature effects were limited. The magnitude and spread of errors increased but errors within ±2% were achievable at moderate to high flow rates. Conversely errors as high as 15% were observed in tests where logging began before temperatures stabilised and there was a large difference in temperature between the flow meter and the incoming gas.<br/>One of the flow meters tested with nitrogen was later installed in a hydrogen refuelling station and tested against the METAS Hydrogen Field Test Standard (HFTS). Under these conditions errors ranged from 0.47% to 0.91%. Testing with nitrogen at the same flow rates yielded errors of −0.61% to −0.82%.
Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option Towards an Environmentally Friendly Energy Transition
Nov 2020
Publication
The latest pre-production vehicles on the market show that the major technical challenges posed by integrating a fuel cell system (FCS) within a vehicle—compactness safety autonomy reliability cold starting—have been met. Regarding the ongoing maturity of fuel cell systems dedicated to road transport the present article examines the advances still needed to move from a functional but niche product to a mainstream consumer product. It seeks to address difficulties not covered by more traditional innovation approaches. At least in long-distance heavy-duty vehicles fuel cell vehicles (FCVs) are going to play a key role in the path to zero-emissions in one or two decades. Hence the present study also addresses the structuring elements of the complete chain: the latter includes the production storage and distribution of hydrogen. Green hydrogen appears to be one of the potential uses of renewable energies. The greener the electricity is the greater the advantage for hydrogen since it permits to economically store large energy quantities on seasonal rhythms. Moreover natural hydrogen might also become an economic reality pushing the fuel cell vehicle to be a competitive and environmentally friendly alternative to the battery electric vehicle. Based on its own functional benefits for on board systems hydrogen in combination with the fuel cell will achieve a large-scale use of hydrogen in road transport as soon as renewable energies become more widespread. Its market will expand from large driving range and heavy load vehicles
Test Campaign on Existing HRS & Dissemination of Results
Apr 2019
Publication
This document is the final deliverable of Tasks 2 & 3 of the tender N° FCH / OP / CONTRACT 196: “Development of a Metering Protocol for Hydrogen Refuelling Stations”. In Task 2 a test campaign was organized on several HRS in Europe to apply the testing protocol defined in Task 1. This protocol requires mainly to perform different accuracy tests in order to determine the error of the complete measuring system (i.e. from the mass flow meter to the nozzle) in real fueling conditions. Seven HRS have been selected to fulfill the requirements specified in the tender. Tests results obtained are presented in this deliverable and conclusions are proposed to explain the errors observed. In the frame of Task 3 results and conclusions have been widely presented to additional Metrology Institutes than those involved in Task 1 in order to get their adhesion on the testing proposed protocol. All the work performed in Tasks 2 & 3 and associated outcomes / conclusions are reported here.
Chemical Inhibition of Premixed Hydrogen-air Flames: Experimental Investigation using a 20-litre Vessel
Sep 2021
Publication
Throughout the history of the mining petroleum process and nuclear industries continuous efforts have been made to develop and improve measures to prevent and mitigate accidental explosions. Over the coming decades energy systems are expected to undergo a transition towards sustainable use of conventional hydrocarbons and an increasing share of renewable energy sources in the global energy mix. The variable and intermittent supply of energy from solar and wind points to energy systems based on hydrogen or hydrogen-based fuels as the primary energy carriers. However the safety-related properties of hydrogen imply that it is not straightforward to achieve and document the same level of safety for hydrogen systems compared to similar systems based on established fuels such as petrol diesel and natural gas. Compared to the conventional fuels hydrogen-air mixtures have lower ignition energy higher combustion reactivity and a propensity to undergo deflagration-to-detonation-transition (DDT) under certain conditions. To achieve an acceptable level of safety it is essential to develop effective measures for mitigating the consequences of hydrogen explosions in systems with certain degree of congestion and confinement. Extensive research over the last decade have demonstrated that chemical inhibition or partial suppression can be used for mitigating the consequences of vapour cloud explosions (VCEs) in congested process plants. Total and cooperation partners have demonstrated that solid flame inhibitors injected into flammable hydrocarbon-air clouds represent an effective means of mitigating the consequences of VCEs involving hydrocarbons. For hydrogen-air explosions these same chemicals inhibitors have not proved effective. It is however well-known that hydrocarbons can affect the burning velocity of hydrogen-air mixtures greatly. This paper gives an overview over previous work on chemical inhibitors. In addition experiments in a 20-litre vessel have been performed to investigate the effect of combinations of hydrocarbons and alkali salts on hydrogen/air mixtures.
Sizing of a Fuel Cell–battery Backup System for a University Building Based on the Probability of the Power Outages Length
Jul 2022
Publication
Hydrogen is a bright energy vector that could be crucial to decarbonise and combat climate change. This energy evolution involves several sectors including power backup systems to supply priority facility loads during power outages. As buildings now integrate complex automation domotics and security systems energy backup systems cause interest. A hydrogen-based backup system could supply loads in a multi-day blackout; however the backup system should be sized appropriately to ensure the survival of essential loads and low cost. In this sense this work proposes a sizing of fuel cell (FC) backup systems for low voltage (LV) buildings using the history of power outages. Historical data allows fitting a probability function to determine the appropriate survival of loads. The proposed sizing is applied to a university building with a photovoltaic generation system as a case study. Results show that the sizing of an FC–battery backup system for the installation is 7.6% cheaper than a battery-only system under a usual 330-minutes outage scenario. And 59.3% cheaper in the case of an unusual 48-hours outage scenario. It ensures a 99% probability of supplying essential load during power outages. It evidences the pertinence of an FC backup system to attend to outages of long-duration and the integration of batteries to support the abrupt load variations. This research is highlighted by using historical data from actual outages to define the survival of essential loads with total service probability. It also makes it possible to determine adequate survival for non-priority loads. The proposed sizing is generalisable and scalable for other buildings and allows quantifying the reliability of the backup system tending to the resilience of electrical systems.
Protocol for Heavy-duty Hydrogen Refueling: A Modelling Benchmark
Sep 2021
Publication
For the successful deployment of the Heavy Duty (HD) hydrogen vehicles an associated infrastructure in particular hydrogen refueling stations (HRS) should be reliable compliant with regulations and optimized to reduce the related costs. FCH JU project PRHYDE aims to develop a sophisticated protocol dedicated to HD applications. The target of the project is to develop protocol and recommendations for an efficient refueling of 350 500 and 700 bar HD tanks of types III and IV. This protocol is based on modeling results as well as experimental data. Different partners of the PRHYDE European project are closely working together on this target. However modeling approaches and corresponding tools must first be compared and validated to ensure the high level of reliability for the modeling results. The current paper presents the benchmark performed in the frame of the project by Air Liquide Engie Wenger Engineering and NREL. The different models used were compared and calibrated to the configurations proposed by the PRHYDE project. In addition several scenarios were investigated to explore different cases with high ambient temperatures.
Overview of First Outcomes of PNR Project HYTUNNEL-CS
Sep 2021
Publication
Dmitry Makarov,
Donatella Cirrone,
Volodymyr V. Shentsov,
Sergii Kashkarov,
Vladimir V. Molkov,
Z. Xu,
Mike Kuznetsov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Ilias C. Tolias,
Knut Vaagsaether,
André Vagner Gaathaug,
Mark R. Pursell,
Wayne M. Rattigan,
Frank Markert,
Luisa Giuliani,
L.S. Sørensen,
A. Bernad,
Mercedes Sanz Millán,
U. Kummer,
Christian Brauner,
Paola Russo,
J. van den Berg,
F. de Jong,
Tom Van Esbroeck,
M. Van De Veire,
Didier Bouix,
Gilles Bernard-Michel,
Sergey Kudriakov,
Etienne Studer,
Domenico Ferrero,
Joachim Grüne and
G. Stern
The paper presents the first outcomes of the experimental numerical and theoretical studies performed in the funded by Fuel Cell and Hydrogen Joint Undertaking (FCH2 JU) project HyTunnel-CS. The project aims to conduct pre-normative research (PNR) to close relevant knowledge gaps and technological bottlenecks in the provision of safety of hydrogen vehicles in underground transportation systems. Pre normative research performed in the project will ultimately result in three main outputs: harmonised recommendations on response to hydrogen accidents recommendations for inherently safer use of hydrogen vehicles in underground traffic systems and recommendations for RCS. The overall concept behind this project is to use inter-disciplinary and inter-sectoral prenormative research by bringing together theoretical modelling and experimental studies to maximise the impact. The originality of the overall project concept is the consideration of hydrogen vehicle and underground traffic structure as a single system with integrated safety approach. The project strives to develop and offer safety strategies reducing or completely excluding hydrogen-specific risks to drivers passengers public and first responders in case of hydrogen vehicle accidents within the currently available infrastructure.
French Guide to Conformity Assessment and Certification of Hydrogen Systems
Sep 2021
Publication
Hydrogen as energy carrier is referenced in French and European political strategies to realize the transition to low-carbon energy. In 2020 in France the government was launching a major investment plan amounting to 7.2 billion euros until 2030 to support the deployment of large-scale hydrogen technologies [1]. The implementation of this strategy should lead to the arrival of several new hydrogen systems that will need to be evaluated and certified regarding their compliance with safety requirements before being commercialized. Conformity assessment and certification play an important role to achieve a good safety level on the EU market for the protection of workers and consumers. It is a way for the manufacturer to prove that hazards have been identified and risks are managed and to demonstrate his commitment to safety that are key to access to the EU market. To assist manufacturers in identifying the applicable regulations standards and procedures for putting their product on the market Ineris elaborated a guidebook [2] with financial and technical support by ADEME the French Agency for Ecological Transition and France Hydrogen the French Association for Hydrogen and Fuel Cells. The preparation of this document also led to identifying gaps in the Regulations Codes and Standards (RCS) framework and necessary resources for the implementation of the conformity assessment procedures. This paper first describes the main regulatory procedures applicable for various types of hydrogen systems. Then describes the role of the actors involved in this process with a special focus on the French context. And finally focuses on some of the gaps that were identified and formulates suggestions to address them.
Fuel-scale Tunnel Experiments for Fuel Cell Hydrogen Vehicles: Gas Dispersion
Sep 2021
Publication
In the framework of the HYTUNNEL-CS European project sponsored by FCH-JU a set of preliminary tests were conducted in a real tunnel in France. These tests are devoted to safety of hydrogen-fueled vehicles having a compressed gas storage and Temperature Pressure Release Device (TPRD). The goal of the study is to develop recommendations for Regulations Codes and Standards (RCS) for inherently safer use of hydrogen vehicles in enclosed transportation systems. In these preliminary tests the helium gas has been employed instead of hydrogen. Upward and downward gas releases following by TPRD activation has been considered. The experimental data describing local behavior (close to jet or below the chassis) as well as global behavior at the tunnel scale are obtained. These experimental data are systematically compared to existing engineering correlations. The results will be used for benchmarking studies using CFD codes. The hydrogen pressure range in these preliminary tests has been lowered down to 20MPa in order to verify the capability of various large-scale measurement techniques before scaling up to 70MPa the subject of the second campaign.
AMHYCO Project - Towards Advanced Accident Guidelines for Hydrogen Safety in Nuclear Power Plants
Sep 2021
Publication
Severe accidents in nuclear power plants are potentially dangerous to both humans and the environment. To prevent and/or mitigate the consequences of these accidents it is paramount to have adequate accident management measures in place. During a severe accident combustible gases — especially hydrogen and carbon monoxide — can be released in significant amounts leading to a potential explosion risk in the nuclear containment building. These gases need to be managed to avoid threatening the containment integrity which can result in the releases of radioactive material into the environment. The main objective of the AMHYCO project is to propose innovative enhancements in the way combustible gases are managed in case of a severe accident in currently operating reactors. For this purpose the AMHYCO project pursues three specific activities including experimental investigations of relevant phenomena related to hydrogen / carbon monoxide combustion and mitigation with PARs (Passive Autocatalytic Recombiners) improvement of the predictive capabilities of analysis tools used for explosion hazard evaluation inside the reactor containment as well as enhancement of the Severe Accident Management Guidelines (SAMGs) with respect to combustible gases risk management based on theoretical and experimental results. Officially launched on 1 October 2020 AMHYCO is an EU-funded Horizon 2020 project that will last 4 years from 2020 to 2024. This international project consists of 12 organizations (six from European countries and one from Canada) and is led by the Universidad Politécnica de Madrid (UPM). AMHYCO will benefit from the worldwide experts in combustion science accident management and nuclear safety in its Advisory Board. The paper will give an overview of the work program and planned outcome of the project.
Risk Assessment of a Gaseous Hydrogen Fueling Station (GHFs)
Sep 2021
Publication
Promoted by national and European investment plans promoting the use of hydrogen as energy carrier the number of Gaseous Hydrogen Fueling Station (or GHFS) has been growing up quite significantly over the past years. Considering the new possible hazards and the related accidents induced by these installations like seen in 2019 in Norway this paper presents a risk assessment of a typical GHFS using the same methodology as the one required in France by the authorities for Seveso facilities. The fact that a hydrogen fueling station could be used by a public not particularly trained to handle hydrogen underlines the importance of this risk assessment. In this article typical components related to GHFS (dispenser high pressure storage compressor low pressure storage) are listed and the hazard potentials linked to these components and the substances involved are identified. Based on these elements and an accidentology a risk analysis has been conducted in order to identify all accidental situations that could occur. The workflow included a detailed risk assessment consisting in modeling the thermal and explosion effects of all hazardous phenomena and in assessing the probability of occurrence for these scenarios. Regarding possible mitigation measures the study was based on an international benchmark for codes and standards made for GFHS. These preliminary outcomes of this study may be useful for any designer and/or owner of a GFHS.
CFD Simulations of the Refueling of Long Horizontal H2 Tanks
Sep 2021
Publication
The understanding of physical phenomena occurring during the refueling of H2 tanks used for hydrogen mobility applications is the key point towards the most optimal refueling protocol. A lot of experimental investigations on tank refueling were performed in the previous years for different types and sizes of tank. Several operating conditions were tested through these experiments. For instance the HyTransfer project gave one of the major outputs on the understanding of the physical phenomena occurring during a tank refueling. From a numerical perspective the availability of accurate numerical tools is another key point. Such tools could be used instead of the experimental set-ups to test various operating conditions or new designs of tanks and injectors. The use of these tools can reduce the cost of the refueling protocol development in the future. However they first need to be validated versus experimental data. This work is dedicated to CFD (Computational Fluid Dynamics) modeling of the hydrogen refueling of a long horizontal 530L type IV tank. As of now the number of available CFD simulations for such a large tank is low as the computational cost is significant which is often considered as a bottleneck for this approach. The simulated operating conditions correspond to one of the experimental campaigns performed in the framework of the HyTransfer project. The 3D CFD model is presented. In a first validation step the CFD results are compared with experimental data. Then a deeper insight into the physics predicted by the CFD is provided. Finally two other methodologies with the aim to reduce the computational cost have been tested.
Full-scale Tunnel Experiments for Fuel Cell Hydrogen Vehicles: Jat Fire and Explosions
Sep 2021
Publication
In the framework of the HYTUNNEL-CS European project sponsored by FCH-JU a set of preliminary tests were conducted in a real tunnel in France. These tests are devoted to safety of hydrogen-fueled vehicles having a compressed gas storage and Temperature Pressure Release Device (TPRD). The goal of the study is to develop recommendations for Regulations Codes and Standards (RCS) for inherently safer use of hydrogen vehicles in enclosed transportation systems. Two scenarios were investigated (a) jet fire evolution following the activation of TPRD due to conventional fuel car fire and (b) explosion of compressed hydrogen tank. The obtained experimental data are systematically compared to existing engineering correlations. The results will be used for benchmarking studies using CFD codes. The hydrogen pressure range in these preliminary tests has been lowered down to 20MPa in order to verify the capability of various large-scale measurement techniques before scaling up to 70 MPa the subject of the second experimental campaign.
On Board 70 MPA Hydrogen Composite Pressure Vessel Safety Factor
Sep 2021
Publication
The safety factor of a composite structure in relation to its mechanical rupture is an important criterion for the safety of a 70 MPa composite pressure vessel for hydrogen storage particularly for on-board applications (car bus truck train…). After an introduction of Type IV technology the contribution of carbon fibre composite material structure manufacturing process of pressure vessels and environmental effects on the safety factor are commented. Thanks to an experimental-based evaluation on composite material and H2 composite pressure vessel the safety margins are addressed.
Vented Explosion of Hydrogen/Air Mixtures: Influence of Vent Cover and Stratification
Sep 2017
Publication
Explosion venting is a prevention/mitigation solution widely used in the process industry to protect indoor equipment or buildings from excessive internal pressure caused by an accidental explosion. Vented explosions are widely investigated in the literature for various geometries hydrogen/air concentrations ignition positions initial turbulence etc. In real situations the vents are normally covered by a vent panel. In the case of an indoor leakage the hydrogen/air cloud will be stratified rather than homogeneous. Nowadays there is a lack in understanding about the vented explosion of stratified clouds and about the influence of vent cover inertia on the internal overpressure. This paper aims at shedding light on these aspects by means of experimental investigation of vented hydrogen/air deflagration using an experimental facility of 1m3 and via numerical simulations using the computational fluid dynamics (CFD) code FLACS
Comparison of Regulations Codes and Standards for Hydrogen Refueling Stations in Japan and France
Sep 2019
Publication
The states of Regulations Codes and Standards (RCS) of hydrogen refueling stations (HRSs) in Japan and France are compared and specified items to understand correspondence and differences among each RCSs for realizing harmonization in RCS. Japan has been trying to reform its RCSs to reduce HRS installation and operation costs as a governmental target. Specific crucial regulatory items such as safety distances mitigation means materials for hydrogen storage and certification of anti-explosion proof equipments are compared in order to identify the origins of the current obstacles for disseminating HRS.
Detailed Examination of Deformations Induced by Internal Hydrogen Explosions: Part 1 Experiments
Sep 2019
Publication
In industry handling hydrogen explosion presents a potential danger due to its effects on people and property. In the nuclear industry this explosion which is possible during severe accidents can challenge the reactor containment and it may lead to a release of radioactive materials into the environment. The Three Mile Island accident in the United States in 1979 and more recently the Fukushima accident in Japan have highlighted the importance of this phenomenon for a safe operation of nuclear installations as well as for the accident management.<br/>In 2013 the French Research Agency (ANR) launched the MITHYGENE project with the main aim of improving knowledge on hydrogen risk for the benefit of reactor safety. One of the topics in this project is devoted to the effect of hydrogen explosions on solid structures. In this context CEA conducted a test program with its SSEXHY facility to build a database on deformations of simple structures following an internal hydrogen explosion. Different regimes of explosion propagation have been studied ranging from detonation to slow deflagration. Different targets were tested such as cylinders and plates of variable thickness and diameter. Detailed instrumentation was used to obtain data for the validation of coupled CFD models of combustion and structural dynamics.<br/>This article details the experimental set-up and the results obtained. A companion article focuses on the comparison between these experimental results and the prediction of CFD numerical models
Impact of Mechanical Ventilation on Build-up and Concentration Distribution Inside a 1-m3 Enclosure Considering Hydrogen Energy
Sep 2019
Publication
Natural ventilation is an efficient and well-known way to mitigate a hydrogen build-up in the case of an accidental release in confined enclosures. However for some hydrogen energy applications natural ventilation is not possible or is not efficient enough to reach defined safety strategy. Thus mechanical or forced ventilation can be interesting means to avoid critical concentration of hydrogen considering degraded operation and associated potential hazardous events. To better understand the impact of mechanical ventilation on the hydrogen build-up and distribution a dedicated study was led. First accidental release scenarios were experimentally simulated with helium in a 1-m3 enclosure. Several configurations of release and ventilation modes were tested and are presented in this study. Secondly analytical and numerical – Computational Fluid Dynamics – calculation approaches were applied and adjusted to propose a simplified methodology taking into account mechanical ventilation for assessment of hydrogen accumulation and for design optimization of the applications.
Full Scale Experimental Campaign to Determine the Actual Heat Flux Produced by Fire on Composite Storages - Calibration Tests on Metallic Vessels
Oct 2015
Publication
If Hydrogen is expected to be highly valuable some improvements should be conducted mainly regarding the storage safety. To prevent from high pressure hydrogen composite tanks bursting the comprehension of the thermo-mechanics phenomena in the case of fire should be improved. To understand the kinetic of strength loss the heat flux produced by fire of various intensities should be assessed. This is the objective of this real scale experimental campaign which will allow studying in future works the strength loss of composite high-pressure vessels in similar fire conditions to the ones determined in this study. Fire calibration tests were performed on metallic cylinder vessels. These tests with metallic cylinders are critical in the characterization of the thermal load of various fire sources (pool fire propane gas fire hydrogen gas fire) so as to evaluate differences related to different thermal load. Radiant panels were also used as thermal source for reference of pure radiation heat transfer. The retained thermal load might be representative of accidental situations in worst case scenarios and relevant for a standardized testing protocol. The tests performed show that hydrogen gas fires and heptane pool fire allow reaching the target in terms of absorbed energy regarding the results of risk analysis performed previously. Other considerations can be taken into account that will led to retain an hydrogen gas fire for further works. Firstly hydrogen gas fire is the more realistic scenario: Hydrogen is the combustible that we every time find near an hydrogen storage. Secondly as one of the objectives of the project is to make recommendations for standardization issues it’s important to note that gas fires are not too complex to calibrate control and reproduce. Finally due to previous considerations Hydrogen gas fire will be retained for thermal load of composite cylinders in future works.
Corrosion of Structural Components of Proton Exchange Membrane Water Electrolyzer Anodes: A Review
Dec 2022
Publication
Proton exchange membrane (PEM) water electrolysis is one of the low temperature processes for producing green hydrogen when coupled with renewable energy sources. Although this technology has already reached a certain level of maturity and is being implemented at industrial scale its high capital expenditures deriving from the utilization of expensive corrosion-resistant materials limit its economic competitiveness compared to the widespread fossil fuel-based hydrogen production such as steam reforming. In particular the structural elements like bipolar plates (BPP) and porous transports layers (PTL) are essentially made of titanium protected by precious metal layers in order to withstand the harsh oxidizing conditions in the anode compartment. This review provides an analysis of literature on structural element degradation on the oxygen side of PEM water electrolyzers from the early investigations to the recent developments involving novel anti-corrosion coatings that protect more cost-effective BPP and PTL materials like stainless steels.
Review and Survey of Methods for Analysis of Impurities in Hydrogen for Fuel Cell Vehicles According to ISO 14687:2019
Feb 2021
Publication
Gaseous hydrogen for fuel cell electric vehicles must meet quality standards such as ISO 14687:2019 which contains maximal control thresholds for several impurities which could damage the fuel cells or the infrastructure. A review of analytical techniques for impurities analysis has already been carried out by Murugan et al. in 2014. Similarly this document intends to review the sampling of hydrogen and the available analytical methods together with a survey of laboratories performing the analysis of hydrogen about the techniques being used. Most impurities are addressed however some of them are challenging especially the halogenated compounds since only some halogenated compounds are covered not all of them. The analysis of impurities following ISO 14687:2019 remains expensive and complex enhancing the need for further research in this area. Novel and promising analyzers have been developed which need to be validated according to ISO 21087:2019 requirements.
Water Electrolysis: From Textbook Knowledge to the Latest Scientific Strategies and Industrial Developments
May 2022
Publication
Replacing fossil fuels with energy sources and carriers that are sustainable environmentally benign and affordable is amongst the most pressing challenges for future socio-economic development. To that goal hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting if driven by green electricity would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first principles calculations and machine learning. In addition a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the ‘junctions’ between the field’s physical chemists materials scientists and engineers as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Hydrogen Storage: Recent Improvements and Industrial Perspectives
Sep 2021
Publication
Efficient storage of hydrogen is crucial for the success of hydrogen energy markets. Hydrogen can be stored either as a compressed gas a refrigerated liquefied gas a cryo-compressed gas or in hydrides. This paper gives an overview of compressed hydrogen storage technologies focusing on high pressure storage tanks in metal and in composite materials. It details specific issues and constraints related to the materials and structure behavior in hydrogen and conditions representative of hydrogen energy uses. This paper is an update of the 2019 version that was presented in Australia. It especially covers recent progress made regarding regulations codes and standards for the design manufacturing periodic inspection and plastic materials’ evaluation of compressed hydrogen storage.
Global Hydrogen Review 2022
Sep 2022
Publication
The Global Hydrogen Review is an annual publication by the International Energy Agency that tracks hydrogen production and demand worldwide as well as progress in critical areas such as infrastructure development trade policy regulation investments and innovation.
The report is an output of the Clean Energy Ministerial Hydrogen Initiative and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while also informing discussions at the Hydrogen Energy Ministerial Meeting organised by Japan. Focusing on hydrogen’s potentially major role in meeting international energy and climate goals this year’s Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies while also creating demand for hydrogen and hydrogen-based fuels. It compares real-world developments with the stated ambitions of government and industry.
This year’s report includes a special focus on how the global energy crisis sparked by Russia’s invasion of Ukraine has accelerated the momentum behind hydrogen and on the opportunities that it offers to simultaneously contribute to decarbonisation targets and enhance energy security.
The report can be found on their website.
The report is an output of the Clean Energy Ministerial Hydrogen Initiative and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while also informing discussions at the Hydrogen Energy Ministerial Meeting organised by Japan. Focusing on hydrogen’s potentially major role in meeting international energy and climate goals this year’s Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies while also creating demand for hydrogen and hydrogen-based fuels. It compares real-world developments with the stated ambitions of government and industry.
This year’s report includes a special focus on how the global energy crisis sparked by Russia’s invasion of Ukraine has accelerated the momentum behind hydrogen and on the opportunities that it offers to simultaneously contribute to decarbonisation targets and enhance energy security.
The report can be found on their website.
Value of Green Hydrogen When Curtailed to Provide Grid Balancing Services
Aug 2022
Publication
This paper evaluates the potential of grid services in France Italy Norway and Spain to provide an alternative income for electrolysers producing hydrogen from wind power. Grid services are simulated with each country's data for 2017 for energy prices grid services and wind power profiles from relevant wind parks. A novel metric is presented the value of curtailed hydrogen which is independent from several highly uncertain parameters such as electrolyser cost or hydrogen market price. Results indicate that grid services can monetise the unused spare capacity of electrolyser plants improving their economy in the critical deployment phase. For most countries up-regulation yields a value of curtailed hydrogen above 6 V/kg over 3 times higher than the EU's 2030 price target (without incentives). However countries with large hydro power resources such as Norway yield far lower results below 2 V/kg. The value of curtailed hydrogen also decreases with hydrogen production corresponding to the cases of symmetric and down-regulation.
Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II
Jun 2022
Publication
Biomass gasification is a versatile thermochemical process that can be used for direct energy applications and the production of advanced liquid and gaseous energy carriers. In the present work the results are presented concerning the H2 production at a high purity grade from biomass feedstocks via steam/oxygen gasification. The data demonstrating such a process chain were collected at an innovative gasification prototype plant coupled to a portable purification system (PPS). The overall integration was designed for gas conditioning and purification to hydrogen. By using almond shells as the biomass feedstock from a product gas with an average and stable composition of 40%-v H2 21%-v CO 35%-v CO2 2.5%-v CH4 the PPS unit provided a hydrogen stream with a final concentration of 99.99%-v and a gas yield of 66.4%.
Control of a Three-Phase Current Source Rectifier for H2 Storage Applications in AC Microgrids
Mar 2022
Publication
The share of electrical energy from renewable sources has increased considerably in recent years in an attempt to reduce greenhouse gas emissions. To mitigate the uncertainties of these sources and to balance energy production with consumption an energy storage system (ESS) based on water electrolysis to produce hydrogen is studied. It can be applied to AC microgrids where several renewable energy sources and several loads may be connected which is the focus of the study. When excess electricity production is converted into hydrogen via water electrolysis low DC voltages and high currents are applied which needs specific power converters. The use of a three-phase buck-type current source converter in a single conversion stage allows for an adjustable DC voltage to be obtained at the terminals of the electrolyzer from a three-phase AC microgrid. The voltage control is preferred to the current control in order to improve the durability of the system. The classical control of the buck-type rectifier is generally done using two loops that correspond only to the control of its output variables. The lack of control of the input variables may generate oscillations of the grid current. Our contribution in this article is to propose a new control for the buck-type rectifier that controls both the input and output variables of the converter to avoid these grid current oscillations without the use of active damping methods. The suggested control method is based on an approach using the flatness properties of differential systems: it ensures the large-signal stability of the converter. The proposed control shows better results than the classical control especially in oscillation mitigation and dynamic performances with respect to the rejection of disturbances caused by a load step.
An Overview of Low-carbon Hydrogen Production via Water Splitting Driven by Piezoelectric and Pyroelectric Catalysis
Jun 2024
Publication
The focus on sustainable energy sources is intensifying as they present a viable alternative to conventional fossil fuels. The emergence of clean and renewable hydrogen fuel marks a significant technological shift toward decarbonizing the environment. Harnessing mechanical and thermal energy through piezoelectric and pyroelectric catalysis has emerged as an effective strategy for producing hydrogen and contributing to reducing dependence on carbon-based fuels. In this regard this review presents recent advances in piezoelectric and pyroelectric catalysis induced by mechanical and thermal excitations respectively towards hydrogen generation via the water splitting process. A thorough description of the fundamental principles underlying the piezoelectric and pyroelectric effects is provided complemented by an analysis of the catalytic processes induced by these effects. Subsequently these effects are examined to propose the prerequisites needed for such catalysts to achieve water splitting reaction and hydrogen generation. Special attention is devoted to identifying the various strategies adopted to enhance hydrogen production in order to provide new paths for increased efficiency.
Marine Renewable-Driven Green Hydrogen Production Toward a Sustainable Solution and a Low-carbon Future in Morocco
May 2024
Publication
Oceanic energy sources notably offshore wind and wave power present a significant opportunity to generate green hydrogen through water electrolysis. This approach allows for offshore hydrogen production which can be efficiently transported through existing pipelines and stored in various forms offering a versatile solution to tackle the intermittency of renewable energy sources and potentially revolutionize the entire electrical grid infrastructure. This research focusses on assessing the technical and economic feasibility of this method in six strategic coastal regions in Morocco: Laayoune Agadir Essaouira Eljadida Casablanca and Larache. Our proposed system integrates offshore wind turbines oscillating water column wave energy converters and PEM electrolyzers to meet energy demands while aligning with global sustainability objectives. Significant electricity production estimates are observed across these regions ranging from 14 MW to 20 MW. Additionally encouraging annual estimates of hydrogen production varying between 20 and 40 tonnes for specific locations showcase the potential of this approach. The system’s performance demonstrates promising efficiency rates ranging from 13% to 18% while maintaining competitive production costs. These findings underscore the ability of oceanic energy-driven green hydrogen to diversify Morocco’s energy portfolio bolster water resilience and foster sustainable development. Ultimately this research lays the groundwork for comprehensive energy policies and substantial infrastructure investments positioning Morocco on a trajectory towards a decarbonized future powered by innovative and clean technologies.
Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art
Dec 2023
Publication
To achieve a more ecologically friendly energy transition by the year 2050 under the European “green” accord hydrogen has recently gained significant scientific interest due to its efficiency as an energy carrier. This paper focuses on large-scale hydrogen production systems based on marine renewable-energy-based wind turbines and tidal turbines. The paper reviews the different technologies of hydrogen production using water electrolyzers energy storage unit base hydrogen vectors and fuel cells (FC). The focus is on large-scale hydrogen production systems using marine renewable energies. This study compares electrolyzers energy storage units and FC technologies with the main factors considered being cost sustainability and efficiency. Furthermore a review of aging models of electrolyzers and FCs based on electrical circuit models is drawn from the literature and presented including characterization methods of the model components and the parameters extraction methods using a dynamic current profile. In addition industrial projects for producing hydrogen from renewable energies that have already been completed or are now in progress are examined. The paper is concluded through a summary of recent hydrogen production and energy storage advances as well as some applications. Perspectives on enhancing the sustainability and efficiency of hydrogen production systems are also proposed and discussed. This paper provides a review of behavioral aging models of electrolyzers and FCs when integrated into hydrogen production systems as this is crucial for their successful deployment in an ever-changing energy context. We also review the EU’s potential for renewable energy analysis. In summary this study provides valuable information for research and industry stakeholders aiming to promote a sustainable and environmentally friendly energy transition.
Gas Leak Detection Using Acoustics and Artificial Intelligence
Sep 2023
Publication
Gas leak detection on a production site is a major challenge for the safety and health of workers for environmental considerations and from an economic point of view. In addition flammable gas leaks are a safety risk because if ignited they can cause serious fires or explosions. For these reasons Acoem Metravib in collaboration with TotalEnergies One Tech R&D Safety has developed for the past four years a system called AGLED for the early detection localization and classification of such leaks exploiting acoustics and artificial intelligence driven by physics. Numerous tests have been conducted on a theater representative of gas production facilities created by TotalEnergies in Lacq (France) to build a robust learning database of leaks varying in flowrates exhaust diameters and also types (hole nozzle flange...). Moreover to limit the number of false alarms a relearning strategy has been implemented to handle unexpected disturbances (wildlife human activities meteorological events...). The presented paper describes the global architecture of the system from noise acquisition to the gas leak probability and coordinates. It gives a more in-depth look at the relearning algorithm and its performance in various environments. Finally thanks to a complementary collaboration with Air Liquide an example of test campaign in a real industrial environment is presented with an emphasis on the improvement obtained through relearning.
H2 Transport in Sedimentary Basin
Aug 2025
Publication
Natural hydrogen is generated by fairly deep processes and/or in low-permeability rocks. In such contexts fluids circulate mainly through the network of faults and fractures. However hydrogen flows from these hydrogen-generating layers can reach sedimentary rocks with more typical permeability and porosity allowing H2 flows to spread out rather than be concentrated in fractures. In that case three different H2 transport modes exist: advection (displacement of water carrying dissolved gas) diffusion and free gas Darcy flow. Numerical models have been run to compare the efficiency of these different modes and the pathway they imply for the H2 in a sedimentary basin with active aquifers. The results show the key roles of these aquifers but also the competition between free gas flow and the dissolved gas displacement which can go in opposite directions. Even with a conservative hypothesis on the H2 charge a gaseous phase exists at few kilometers deep as well as free gas accumulation. Gaseous phase displacement could be the faster and diffusion is neglectable. The modeling also allows us to predict where H2 is expected in the soil: in fault zones eventually above accumulations and more likely due to exsolution above shallow aquifers.
Diffusible Hydrogen Behavior and Delayed Fracture of Cold Rolled Martensitic Steel in Consideration of Automotive Manufacturing Process and Vehicle Service Environment
Oct 2020
Publication
This study aims to elucidate the behavior of diffusible hydrogen and delayed fracture in martensitic steel with 1500 MPa strength during automotive painting process and under vehicle service conditions. A sequential process of automotive pretreatment line and vehicle service environment is simulated to evaluate the hydrogen pick up in each process. In case of the automotive painting line the absorption of hydrogen is within the common range in the process of phosphating treatment and electrodeposition. The baking process plays an effective role for desorbing the diffusible hydrogen absorbed during the automotive pre-treatment such as zinc-phosphating and electrodeposition process. In case of the corrosion environment under the automotive driving conditions hydrogen induced delayed fracture is accelerated as the exposure time increases. Further it is clarified that severe plastic deformation are the significant factors for hydrogen induced delayed fracture under with low pH value and present of chloride ion in a chemical solution parameter. In summary hydrogen is transported constantly during electrodeposition sequential line process of automobile manufacturing below the hydrogen content of 0.5 ppm which is not critical value for leading to hydrogen delayed fracture based on results of slow strain rate tensile tests. However exposure to extreme conditions under service environment of vehicle such as acidic solution and chloride chemistry solution that result in high level of hydrogen absorption severe plastic deformation in the sheared edge and constantly applied internal or external stresses can cause the hydrogen induced delayed fracture in the fully martensitic steels.
Optimal Integration of Hybrid Renewable Energy Systems for Decarbonized Urban Electrification and Hydrogen Mobility
Aug 2024
Publication
This study addresses cost-optimal sizing and energy management of a grid-integrated solar photovoltaic wind turbine hybrid renewable energy system integrated with electrolyzer and hydrogen storage tank to simultaneously meet electricity and hydrogen demands considering the case study of Dijon France. Mixed Integer Linear Programming optimization problem is formulated to evaluate two objective case scenarios: single objective and multi-objective minimizing total annual costs and grid carbon emission footprint. The study incorporates various technical economic and environmental indicators focusing on the impact of sensitivity lying on various grid electricity purchase rates within the French electricity market prices. The results highlight that rising grid prices drive increased integration of renewable sources while lower prices favor ultimate grid dependency. Constant hydrogen demand necessitates the installation of two electrolyzers. Notably grid electricity prices above 60 e/MWh result increase in the size of the hydrogen tank and electrolyzer operation to prevent renewable energy losses. Grid prices above 140 e/MWh depict 70% of electrical and 80% of electrolyzer demand provided by the renewable generation resulting in a carbon emission below 0.0416 Mt of CO2 and 0.643 kgCO2 /kgH2 . Conversely grid prices below 20 e/MWh lead ultimately to 100% grid dependency with a higher carbon emission of approximately 0.14 Mt of CO2 and 4.13 kgCO2 /kgH2 reducing the total annual cost to 41.63 Million e. Increase in grid prices from 20e/MWh to 180 e/MWh resulted in increase of hydrogen specific costs from 1.23 to 3.58 e/kgH2 . Finally the Pareto front diagram is employed to illustrate the trade-off between total annual cost and carbon emission due to grid imports aiding in informed decision-making.
Hydrogen Behavior and Mitigation Measures: State of Knowledge and Database from Nuclear Community
Sep 2023
Publication
Hydrogen has become a key enabler for decarbonization as countries pledge to reach net zero carbon emissions by 2050. With hydrogen infrastructure expanding rapidly beyond its established applications there is a requirement for robust safety practices solutions and regulations. Since the 1980s considerable efforts have been undertaken by the nuclear community to address hydrogen safety issues because in severe accidents of water-cooled nuclear reactors a large amount of hydrogen can be produced from the oxidation of metallic components with steam. As evidenced in the Fukushima accident hydrogen combustion can cause severe damage to reactor building structures promoting the release of radioactive fission products to the environment. A number of large-scale experiments were conducted in the framework of national and international projects to understand the hydrogen dispersion and combustion behaviour under postulated accidental conditions. Empirical engineering models and numerical codes were developed and validated for safety analysis. Hydrogen recombiners known as Passive Autocatalytic Recombiner (PAR) were developed and have been widely installed in nuclear containments to mitigate hydrogen risk. Complementary actions and strategies were established as part of severe accident management guidelines to prevent or limit the consequences of hydrogen explosions. In addition hydrogen monitoring systems were developed and implemented in nuclear power plants. The experience and knowledge gained from the nuclear community on hydrogen safety is valuable and applicable for other industries involving hydrogen production transport storage and use.
The Fuel Flexibility of Gas Turbines: A Review and Retrospective Outlook
May 2023
Publication
Land-based gas turbines (GTs) are continuous-flow engines that run with permanent flames once started and at stationary pressure temperature and flows at stabilized load. Combustors operate without any moving parts and their substantial air excess enables complete combustion. These features provide significant space for designing efficient and versatile combustion systems. In particular as heavy-duty gas turbines have moderate compression ratios and ample stall margins they can burn not only high- and medium-BTU fuels but also low-BTU ones. As a result these machines have gained remarkable fuel flexibility. Dry Low Emissions combustors which were initially confined to burning standard natural gas have been gradually adapted to an increasing number of alternative gaseous fuels. The paper first delivers essential technical considerations that underlie this important fuel portfolio. It then reviews the spectrum of alternative GT fuels which currently extends from lean gases (coal bed coke oven blast furnace gases . . . ) to rich refinery streams (LPG olefins) and from volatile liquids (naphtha) to heavy hydrocarbons. This “fuel diet” also includes biogenic products (biogas biodiesel and ethanol) and especially blended and pure hydrogen the fuel of the future. The paper also outlines how historically land-based GTs have gradually gained new fuel territories thanks to continuous engineering work lab testing experience extrapolation and validation on the field.
AMHYCO Project - Advances in H2/CO Combustion, Recombination and Containment Modelling
Sep 2023
Publication
During a severe accident in a nuclear power plant one of the potential threats to the containment is the occurrence of energetic combustion events. In modern plants Severe Accident Management Guidelines (SAMG) as well as dedicated mitigation hardware are in place to minimize/mitigate this combustion risk and thus avoid the release of radioactive material into the environment. Advancements in SAMGs are in the focus of AMHYCO an EU-funded Horizon 2020 project officially launched on October 1st 2020. The project consortium consists of 12 organizations (from six European countries and one from Canada) and is coordinated by the Universidad Politécnica de Madrid (UPM). The progress made in the first two years of the AMHYCO project is here presented. A comprehensive bibliographic review has been conducted providing a common foundation to build the knowledge gained during the project. After an extensive set of accident transients simulated both for phases occurring inside and outside the reactor pressure vessel a set of challenging sequences from the combustion risk perspective for different power plant types were identified. At the same time three generic containment models for the three considered reactor designs have been created to provide the full containment analysis simulations with lumped parameter models 3-dimensional containment codes and CFD codes. In order to further consolidate the model base combustion experiments and performance tests on passive auto-catalytic recombiners under explosion prone H2/CO atmospheres were performed at CNRS (France) and FZJ (Germany). Finally it is worth saying that the experimental data and engineering models generated from the AMHYCO project are useful for other industries outside the nuclear one.
European Hydrogen Train the Trainer Framework for Responders: Outcomes of the Hyresponder Project
Sep 2023
Publication
Síle Brennan,
Didier Bouix,
Christian Brauner,
Dominic Davis,
Natalie DeBacker,
Alexander Dyck,
André Vagner Gaathaug,
César García Hernández,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Petr Kupka,
Laurent Lecomte,
Eric Maranne,
Vladimir V. Molkov,
Pippa Steele,
Adolfo Pinilla,
Paola Russo and
Gerhard Schoepf
HyResponder is a European Hydrogen Train the Trainer programme for responders. This paper describes the key outputs of the project and the steps taken to develop and implement a long-term sustainable train the trainer programme in hydrogen safety for responders across Europe and beyond. This FCH2 JU (now Clean Hydrogen Joint Undertaking) funded project has built on the successful outcomes of the previous HyResponse project. HyResponder has developed further and updated educational operational and virtual reality training for trainers of responders to reflect the state-of-the-art in hydrogen safety including liquid hydrogen and expand the programme across Europe and specifically within the 10 countries represented directly within the project consortium: Austria Belgium the Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. For the first time four levels of educational materials from fire fighter through to specialist have been developed. The digital training resources are available on the e-Platform (https://hyresponder.eu/e-platform/). The revised European Emergency Response Guide is now available to all stakeholders. The resources are intended to be used to support national training programs. They are available in 8 languages: Czech Dutch English French German Italian Norwegian and Spanish. Through the HyResponder activities trainers from across Europe have undertaken joint actions which are in turn being used to inform the delivery of regional and national training both within and beyond the project. The established pan-European network of trainers is shaping the future in the important for inherently safer deployment of hydrogen systems and infrastructure across Europe and enhancing the reach and impact of the programme.
Robust Control for Techno-economic Efficiency Energy Management of Fuel Cell Hybrid Electric Vehicles
Apr 2022
Publication
The design of an efficient techno-economic autonomous fuel cell hybrid electric vehicle(FCHEV) is a crucial challenge. This paper investigates the design of a near optimal PI controller for an automated FCHEV where autonomy is expressed as efficient and robust tracking of a given reference speed trajectory without driver’s intervention. An impartial comparison is introduced to illustrate the effectiveness of the proposed metaheuristic-based optimal controllers in enhancing the system dynamic performance. The comprehensive optimization performance indicator is considered as a function of the vehicle dynamic characteristics while determining the optimal controller gains. In this paper the proposed effective up-to-date metaheuristic techniques are the grey wolf optimization (GWO) as well as the artificial bee colony (ABC). Using MATLAB TM /Simulink numerical simulations clearly illustrate the efficiency of near-optimal gains in the optimized tuning methodologies and the fixed manual one in realizing adequate velocity tracking. The simulation results demonstrate the superiority of both ABC and GWO rather than the manual controller for driving cycles of high acceleration and deceleration levels. In absence of these latter the manual defined gain controller is considered sufficient. Through a comprehensive sensitivity analysis the robustness of both metaheuristic-based controllers is verified under diverse driving cycles of different operation features and nature. Despite GWO results in better dynamic characteristics the ABC provides more economical feature with about 1.5% compared to manual system in extra urban driving cycle. However manual-controller has the minimum fuel cost under the United States driving cycle developed by the environmental protection agency as a New York city cycle(US EPA NYCC) and urban driving cycle (ECE). Ecologically electric vehicles have an environmentally friendly effect especially when driven with green hydrogen. Autonomous vehicles involving velocity control systems would raise car share and provide more comfort.
Hydrogen Jet Fires in a Full-scale Road Tunnel: Experimental Results
Sep 2023
Publication
Hydrogen Fuel Cell Electric Vehicles (HFC EVs) represent an alternative to replace current internal combustion engine vehicles. The use of these vehicles with storage of compressed gaseous hydrogen (CGH2) or cryogenic liquid hydrogen (LH2) in confined spaces such as tunnels underground car parks etc. creates new challenges to ensure the protection of people and property and to keep the risk at an acceptable level. Several studies have shown that confinement or congestion can lead to severe accidental consequences compared to accidents in an open atmosphere. It is therefore necessary to develop validated hazard and risk assessment tools for the behaviour of hydrogen in tunnels. The HYTUNNEL-CS project sponsored by the FCH-JU pursues this objective. Among the experiments carried out in support of the validation of the hydrogen safety tools the CEA conducted tests on large-scale jet fires in a full-scale tunnel geometry.<br/>The tests were performed in a decommissioned road tunnel in two campaigns. The first one with 50 liters type II tanks under a pressure of 20 MPa and the second one with 78 liters type IV tanks under 70 MPa. In both cases a flate plate was used to simulate the vehicle. Downward and upward gas discharges to simulate a rollover have been investigated with various release diameters. For the downward discharge the orientation varied from normal to the road to a 45° rearward inclination. The first campaign took place under a concrete vault while the second under a rocky vault. Additional tests with the presence of a propane fire simulating a hydrocarbon powered vehicle fire were performed to study the interaction between the two reactive zones.<br/>In the paper all the results obtained during the second campaign for the evolution of the hydrogen jet-fire size the radiated heat fluxes and the temperature of the hot gases released in the tunnel are reported. Comparisons with the classical correlations from open field tests used in engineering models are also presented and conclusions are given as to their applicability.
Investigations on Pressure Dependence of Coriolis Mass Flow Meters Used at Hydrogen Refueling Stations
Sep 2020
Publication
In the framework of the ongoing EMPIR JRP 16ENG01 ‘‘Metrology for Hydrogen Vehicles’’ a main task is to investigate the influence of pressure on the measurement accuracy of Coriolis Mass Flow Meters (CFM) used at Hydrogen Refueling Stations (HRS). At a HRS hydrogen is transferred at very high and changing pressures with simultaneously varying flow rates and temperatures. It is clearly very difficult for CFMs to achieve the current legal requirements with respect to mass flow measurement accuracy at these measurement conditions. As a result of the very dynamic filling process it was observed that the accuracy of mass flow measurement at different pressure ranges is not sufficient. At higher pressures it was found that particularly short refueling times cause significant measurement deviations. On this background it may be concluded that pressure has a great impact on the accuracy of mass flow measurement. To gain a deeper understanding of this matter RISE has built a unique high-pressure test facility. With the aid of this newly developed test rig it is possible to calibrate CFMs over a wide pressure and flow range with water or base oils as test medium. The test rig allows calibration measurements under the conditions prevailing at a 70 MPa HRS regarding mass flows (up to 3.6 kg min−1) and pressures (up to 87.5 MPa).
Investigating the Future of Freight Transport Low Carbon Technologies Market Acceptance across Different Regions
Oct 2024
Publication
Fighting climate change has become a major task worldwide. One of the key energy sectors to emit greenhouse gases is transportation. Therefore long term strategies all over the world have been set up to reduce on-road combustion emissions. In this context the road freight sector faces significant challenges in decarbonization driven by its limited availability of low-emission fuels and commercialized zero-emission vehicles compared with its high energy demand. In this work we develop the Mobility and Energy Transportation Analysis (META) Model a python-based optimization model to quantify the impact of transportation projected policies on freight transport by projecting conventional and alternative fuel technologies market acceptance as well as greenhouse gas (GHG) emissions. Along with introducing e-fuels as an alternative refueling option for conventional vehicles META investigates the market opportunities of Mobile Carbon Capture (MCC) until 2050. To accurately assess this technology a techno-economic analysis is essential to compare MCC abatement cost to alternative decarbonization technologies such as electric trucks. The novelty of this work comes from the detailed cost categories taken into consideration in the analysis including intangible costs associated with heavy-duty technologies such as recharging/refueling time cargo capacity limitations and consumer acceptance towards emerging technologies across different regions. Based on the study results the competitive total cost of ownership (TCO) and marginal abatement cost (MAC) values of MCC make it an economically promising alternative option to decarbonize the freight transport sector. Both in the KSA and EU MCC options could reach greater than 50% market shares of all ICE vehicle sales equivalent to a combined 35% of all new sales shares by 2035.
Hydrogen Dispersion in a Full-scale Road Tunnel: Experimental Results and CFD Analysis
Sep 2023
Publication
Hydrogen Fuel Cell Electric Vehicles (HFC EVs) represent an alternative to replace current internal combustion engine vehicles. The use of these vehicles with storage of compressed gaseous hydrogen (CGH2) in confined spaces such as tunnels underground car parks etc. creates new challenges to ensure the protection of people and property and to keep the risk at an acceptable level. The HYTUNNEL-CS project sponsored by the FCH-JU was launched to develop validated hazard and risk assessment tools for the behavior of hydrogen leaks in tunnels. Among the experiments carried out in support of the validation tools the CEA has conducted tests on gas dispersion in a full-scale tunnel geometry. In the tests carried out hydrogen is replaced by helium under a pressure of 70 MPa in a 78 liter tank. The car is simulated by a flat plate called chassis and the discharges are made either downwards under the chassis or upwards to take into account a rollover of the car during the accident. Different thermally activated pressure relief device (TPRD) diameters are examined as well as different orientations of the discharge. Finally the mixing transient of helium with air is measured for distances between -50 and +50m from the release. Performing CFD simulations of such an under-expanded jet in an environment as large as a road tunnel demands a compressible flow solver and so a large computational cost. To optimize this cost a notional nozzle approach is generally used to replace the under-expanded jet by a subsonic jet that has the same concentration dilution behavior. The physics at the injection point is then not resolved and a model of these boundary conditions has to be implemented. This article first reviews the main experimental results. Then a model of boundary conditions is proposed to have a subsonic hydrogen jet that matches the dilution characteristics of an under-expanded jet. Furthermore this model is implemented in the TRUST LES computer code and in the Neptune-CFD RANS computer code in order to simulate some helium dispersion experiments. Finally results from the CFD simulations are compared to the experimental results and the effect of the exact shape of the tunnel is also assessed by comparing simulations with idealized flat walls and real scanned walls.
Hydrogen Fuel Cell as an Electric Generator: A Case Study for a General Cargo Ship
Feb 2024
Publication
In this study real voyage data and ship specifications of a general cargo ship are employed and it is assumed that diesel generators are replaced with hydrogen proton exchange membrane fuel cells. The effect of the replacement on CO2 NOX SOX and PM emissions and the CII value is calculated. Emission calculations show that there is a significant reduction in emissions when hydrogen fuel cells are used instead of diesel generators on the case ship. By using hydrogen fuel cells there is a 37.4% reduction in CO2 emissions 32.5% in NOX emissions 37.3% in SOX emissions and 37.4% in PM emissions. If hydrogen fuel cells are not used instead of diesel generators the ship will receive an A rating between 2023 and 2026 a B rating in 2027 a C rating in 2028–2029 and an E rating in 2030. On the other hand if hydrogen fuel cells are used the ship will always remain at an A rating between 2023 and 2030. The capital expenditure (CAPEX) and operational expenditure (OPEX) of the fuel cell system are USD 1305720 and USD 2470320 respectively for a 15-year lifetime and the hydrogen fuel expenses are competitive at USD 260981 while marine diesel oil (MDO) fuel expenses are USD 206435.
Hydrogen Fuel Quality from Two Main Production Processes: Steam Methane Reforming and Proton Exchange Membrane Water Electrolysis
Oct 2019
Publication
Thomas Bacquart,
Karine Arrhenius,
Stefan Persijn,
Andrés Rojo,
Fabien Auprêtre,
Bruno Gozlan,
Abigail Morris,
Andreas Fischer,
Arul Murugan,
Sam Bartlett,
Niamh Moore,
Guillaume Doucet,
François Laridant,
Eric Gernot,
Teresa E. Fernandez,
Concepcion Gomez,
Martine Carré,
Guy De Reals and
Frédérique Haloua
The absence of contaminants in the hydrogen delivered at the hydrogen refuelling station is critical to ensure the length life of FCEV. Hydrogen quality has to be ensured according to the two international standards ISO 14687–2:2012 and ISO/DIS 19880-8. Amount fraction of contaminants from the two hydrogen production processes steam methane reforming and PEM water electrolyser is not clearly documented. Twenty five different hydrogen samples were taken and analysed for all contaminants listed in ISO 14687-2. The first results of hydrogen quality from production processes: PEM water electrolysis with TSA and SMR with PSA are presented. The results on more than 16 different plants or occasions demonstrated that in all cases the 13 compounds listed in ISO 14687 were below the threshold of the international standards. Several contaminated hydrogen samples demonstrated the needs for validated and standardised sampling system and procedure. The results validated the probability of contaminants presence proposed in ISO/DIS 19880-8. It will support the implementation of ISO/ DIS 19880-8 and the development of hydrogen quality control monitoring plan. It is recommended to extend the study to other production method (i.e. alkaline electrolysis) the HRS supply chain (i.e. compressor) to support the technology growth.
Calculating the Fundamental Parameters to Assess the Explosion Risk Due to Crossover in Electrolysers
Sep 2023
Publication
With the predicted high demand of hydrogen projected to support the neutral carbon society transition in the coming years the production of hydrogen is set to increase alongside the demand. As electrolysis is set to be amongst the main solutions for green hydrogen production ensuring the safety of electrolysers during operation will become a central concern. This is mainly due to the crossover risk (hydrogen into oxygen or the other way around) in the separators as throughout the years several cases of incidents have been reported. This study aims to evaluate the methodologies for calculating H2/O2 detonation cell size and laminar flame velocity using detailed kinetic mechanisms at the operating conditions of electrolysers (up to 35 bar and 360 K). Therefore the modeling of H2/O2 and H2/Air shock tube delay times and laminar flame speeds at initial different pressures and temperature based on the GRI mech 3.0 [1] Mevel et al.[2] Li et al.[3] Lutz et al. [4] and Burke et al. [5] kinetic mechanisms were performed and compared with the available experimental data in the literature. In each case a best candidate mechanism was then chosen to build a database for the detonation cell size then for the laminar flame speeds up to the operating conditions of electrolysers (293-360K and 1-35 bar).
Identifying Social Aspect Related to the Hydrogen Economy: Review, Synthesis, and Research Perspectives
Oct 2023
Publication
Energy transition will reshape the power sector and hydrogen is a key energy carrier that could contribute to energy security. The inclusion of sustainability criteria is crucial for the adequate design/deployment of resilient hydrogen networks. While cost and environmental metrics are commonly included in hydrogen models social aspects are rarely considered. This paper aims to identify the social criteria related to the hydrogen economy by using a systematic hybrid literature review. The main contribution is the identification of twelve social aspects which are described ranked and discussed. “Accessibility” “Information” “H2 markets” and “Acceptability” are now emerging as the main themes of hydrogen-related social research. Identified gaps are e.g. lack of the definition of the value of H2 for society insufficient research for “socio-political” aspects (e.g. geopolitics wellbeing) scarce application of social lifecycle assessment and the low amount of works with a focus on social practices and cultural issues.
No more items...