United Kingdom
Assessment of Hydrogen Flame Length Full Bore Pipeline Rupture
Sep 2021
Publication
The study aims at the development of a safety engineering methodology for the assessment of flame length after full-bore rupture of hydrogen pipeline. The methodology is validated using experimental data on hydrogen jet flame from full-bore pipeline rupture by Acton et al. (2010). The experimental pressure dynamics in the hydrogen pipeline system is simulated using previously developed adiabatic and “isothermal” blowdown models. The hydrogen release area is taken as equal similar to the experiment to doubled pipeline cross-section as hydrogen was coming out from both sides of the ruptured pipe. The agreement with the experimental pressure decay in the piping system was achieved using discharge coefficient CD=0.26 and CD=0.21 for adiabatic and “isothermal” blowdown model respectively that indicates significant friction and minor pressure losses. The hydrogen flame length was calculated using the dimensionless correlation by Molkov and Saffers (2013). The correlation relies on the density of hydrogen in the choked flow at the pipe exit. The maximum experimental flame length between 92 m and 111 m was recorded at 6 s after the pipe rupture under the ground. The calculated by the dimensionless correlation flame length is 110 m and 120 m for the “isothermal” and adiabatic blowdown model respectively. This is an acceptable accuracy for such a large-scale experiment. It is concluded that the methodology can be applied as an engineering tool to assess flame length resulting from ruptured hydrogen pipelines.
Optimising Fuel Supply Chains within Planetary Boundaries: A Case Study of Hydrogen for Road Transport in the UK
Jul 2020
Publication
The world-wide sustainability implications of transport technologies remain unclear because their assessment often relies on metrics that are hard to interpret from a global perspective. To contribute to filling this gap here we apply the concept of planetary boundaries (PBs) i.e. a set of biophysical limits critical for operating the planet safely to address the optimal design of sustainable fuel supply chains (SCs) focusing on hydrogen for vehicle use. By incorporating PBs into a mixed-integer linear programming model (MILP) we identify SC configurations that satisfy a given transport demand while minimising the PBs transgression level i.e. while reducing the risk of surpassing the ecological capacity of the Earth. On applying this methodology to the UK we find that the current fossil-based sector is unsustainable as it transgresses the energy imbalance CO2 concentration and ocean acidification PBs heavily i.e. five to 55-fold depending on the downscale principle. The move to hydrogen would help to reduce current transgression levels substantially i.e. reductions of 9–86% depending on the case. However it would be insufficient to operate entirely within all the PBs concurrently. The minimum impact SCs would produce hydrogen via water electrolysis powered by wind and nuclear energy and store it in compressed form followed by distribution via rail which would require as much as 37 TWh of electricity per year. Our work unfolds new avenues for the incorporation of PBs in the assessment and optimisation of energy systems to arrive at sustainable solutions that are entirely consistent with the carrying capacity of the planet.
Multi-model Assessment of Heat Decarbonisation Options in the UK Using Electricity and Hydrogen
May 2022
Publication
Delivering low-carbon heat will require the substitution of natural gas with low-carbon alternatives such as electricity and hydrogen. The objective of this paper is to develop a method to soft-link two advanced investment-optimising energy system models RTN (Resource-Technology Network) and WeSIM (Whole-electricity System Investment Model) in order to assess cost-efficient heat decarbonisation pathways for the UK while utilising the respective strengths of the two models. The linking procedure included passing on hourly electricity prices from WeSIM as input to RTN and returning capacities and locations of hydrogen generation and shares of electricity and hydrogen in heat supply from RTN to WeSIM. The outputs demonstrate that soft-linking can improve the quality of the solution while providing useful insights into the cost-efficient pathways for zero-carbon heating. Quantitative results point to the cost-effectiveness of using a mix of electricity and hydrogen technologies for delivering zero-carbon heat also demonstrating a high level of interaction between electricity and hydrogen infrastructure in a zero-carbon system. Hydrogen from gas reforming with carbon capture and storage can play a significant role in the medium term while remaining a cost-efficient option for supplying peak heat demand in the longer term with the bulk of heat demand being supplied by electric heat pumps.
Feasibility of Hydrogen Storage in Depleted Hydrocarbon Chalk Reservoirs: Assessment of Biochemical and Chemical Effects
Jul 2022
Publication
Hydrogen storage is one of the energy storage methods that can help realization of an emission free future by saving surplus renewable energy for energy deficit periods. Utilization of depleted hydrocarbon reservoirs for large-scale hydrogen storage may be associated with the risk of chemical/biochemical reactions. In the specific case of chalk reservoirs the principal reactions are abiotic calcite dissolution acetogenesis methanogenesis and biological souring. Here we use PHREEQC to evaluate the dynamics and the extent of hydrogen loss by each of these reactions in hydrogen storage scenarios for various Danish North Sea chalk hydrocarbon reservoirs. We find that: (i) Abiotic calcite dissolution does not occur in the temperature range of 40-180◦ C. (ii) If methanogens and acetogens grow as slow as the slowest growing methanogens and acetogens reported in the literature methanogenesis and acetogenesis cannot cause a hydrogen loss more than 0.6% per year. However (iii) if they proceed as fast as the fastest growing methanogens and acetogens reported in the literature a complete loss of all injected hydrogen in less than five years is possible. (iv) Co-injection of CO2 can be employed to inhibit calcite dissolution and keep the produced methane due to methanogenesis carbon neutral. (v) Biological sulfate reduction does not cause significant hydrogen loss during 10 years but it can lead to high hydrogen sulfide concentrations (1015 ppm). Biological sulfate reduction is expected to impact hydrogen storage only in early stages if the only source of sulfur substrates are the dissolved species in the brine and not rock minerals. Considering these findings we suggest that depleted chalk reservoirs may not possess chemical/biochemical risks and be good candidates for large-scale underground hydrogen storage.
The Effect of a Nuclear Baseload in a Zero-carbon Electricity System: An Analysis for the UK
Jan 2023
Publication
This paper explores the effect of having a nuclear baseload in a 100% carbon-free electricity system The study analyses numerous 8 scenarios based on different penetrations of conventional nuclear wind and solar PV power different levels of overgeneration 9 and different combinations between medium and long duration energy stores (hydrogen and compressed air respectively) to 10 determine the configuration that achieves the lowest total cost of electricity (TCoE). 11 At their current cost new baseload nuclear power plants are too expensive. Results indicate the TCoE is minimised when demand 12 is supplied entirely by renewables with no contribution from conventional nuclear. 13 However small modular reactors may achieve costs of ~£60/MWh (1.5x current wind cost) in the future. With such costs 14 supplying ~80% of the country’s electricity demand with nuclear power could minimise the TCoE. In this scenario wind provides 15 the remaining 20% plus a small percentage of overgeneration (~2.5%). Hydrogen in underground caverns provides ~30.5 TWh (81 16 days) of long-duration energy storage while CAES systems provide 2.8 TWh (~8 days) of medium-duration storage. This 17 configuration achieves costs of ~65.8 £/MWh. Batteries (required for short duration imbalances) are not included in the figure. 18 The TCoE achieved will be higher once short duration storage is accounted for.
Agreement for the Low Carbon Hydrogen Production Business Model
Dec 2022
Publication
The Heads of Terms for the Low Carbon Hydrogen Agreement sets out the government’s proposal for the final hydrogen production business model design. It will form the basis of the Low Carbon Hydrogen Agreement the business model contract between the government appointed counterparty and a low carbon hydrogen producer.<br/>The business model will provide revenue support to hydrogen producers to overcome the operating cost gap between low carbon hydrogen and high carbon fuels. It has been designed to incentivise investment in low carbon hydrogen production and use and in doing so deliver the government’s ambition of up to 10GW of low carbon hydrogen production capacity by 2030.
Hydrogen Strategy Update to the Market: July 2022
Jul 2022
Publication
Low carbon hydrogen is our new home-grown super-fuel which will be vital for our energy security and to meet our legally binding commitment to achieve net zero by 2050. The UK Hydrogen Strategy published in August 2021 outlined a comprehensive roadmap for the development of a thriving UK hydrogen economy over the coming decade. In the British Energy Security Strategy published in April this year the government doubled the UK’s hydrogen production ambition to up to 10GW by 2030. This increased ambition cements our place firmly at the forefront of the global race to develop hydrogen as a secure low carbon replacement for fossil fuels in the transition to greater energy security and net zero. Since the publication of the UK Hydrogen Strategy we have continued to deliver on our commitments setting out new policy and funding for hydrogen across the value chain and bringing together the international community around shared hydrogen objectives to rapidly develop a global hydrogen economy. Hydrogen was a key component of the Net Zero Strategy COP26 and the British Energy Security Strategy. The Hydrogen Investment Package and opening of the £240 million Net Zero Hydrogen Fund in April marked a major step forward in delivering government support to drive further private investment into hydrogen production in the UK. To keep industry informed on the government’s ongoing work to develop the hydrogen economy we committed in the UK Hydrogen Strategy to producing regular updates to the market as our policy develops. In addition to offering an accessible ‘one stop shop’ of government policy development and support schemes these updates will provide industry and investors with further clarity on the direction of travel of hydrogen policy across the value chain so that government and industry can work together most effectively and with the necessary pace to build a world-leading low carbon hydrogen sector in the UK.
Prospects of Fuel Cell Combined Heat and Power Systems
Aug 2020
Publication
Combined heat and power (CHP) in a single and integrated device is concurrent or synchronized production of many sources of usable power typically electric as well as thermal. Integrating combined heat and power systems in today’s energy market will address energy scarcity global warming as well as energy-saving problems. This review highlights the system design for fuel cell CHP technologies. Key among the components discussed was the type of fuel cell stack capable of generating the maximum performance of the entire system. The type of fuel processor used was also noted to influence the systemic performance coupled with its longevity. Other components equally discussed was the power electronics. The thermal and water management was also noted to have an effect on the overall efficiency of the system. Carbon dioxide emission reduction reduction of electricity cost and grid independence were some notable advantages associated with fueling cell combined heat and power systems. Despite these merits the high initial capital cost is a key factor impeding its commercialization. It is therefore imperative that future research activities are geared towards the development of novel and cheap materials for the development of the fuel cell which will transcend into a total reduction of the entire system. Similarly robust systemic designs should equally be an active research direction. Other types of fuel aside hydrogen should equally be explored. Proper risk assessment strategies and documentation will similarly expand and accelerate the commercialization of this novel technology. Finally public sensitization of the technology will also make its acceptance and possible competition with existing forms of energy generation feasible. The work in summary showed that proton exchange membrane fuel cell (PEM fuel cell) operated at a lower temperature-oriented cogeneration has good efficiency and is very reliable. The critical issue pertaining to these systems has to do with the complication associated with water treatment. This implies that the balance of the plant would be significantly affected; likewise the purity of the gas is crucial in the performance of the system. An alternative to these systems is the PEM fuel cell systems operated at higher temperatures.
Fuel Cell Products for Sustainable Transportation and Stationary Power Generation: Review on Market Perspective
Mar 2023
Publication
The present day energy supply scenario is unsustainable and the transition towards a more environmentally friendly energy supply system of the future is inevitable. Hydrogen is a potential fuel that is capable of assisting with this transition. Certain technological advancements and design challenges associated with hydrogen generation and fuel cell technologies are discussed in this review. The commercialization of hydrogen-based technologies is closely associated with the development of the fuel cell industry. The evolution of fuel cell electric vehicles and fuel cell-based stationary power generation products in the market are discussed. Furthermore the opportunities and threats associated with the market diffusion of these products certain policy implications and roadmaps of major economies associated with this hydrogen transition are discussed in this review.
Industrial Boilers: Study to Develop Cost and Stock Assumptions for Options to Enable or Require Hydrogen-ready Industrial Boilers
Dec 2022
Publication
This study aims to help the Department for Business Energy and Industrial Strategy (BEIS) determine whether the government should intervene to enable or require hydrogen-ready industrial boiler equipment. It will do this based on information from existing literature along with qualitative and quantitative information from stakeholder engagement. The study draws on evidence gathered through BEIS’ Call for Evidence (CfE) on hydrogen-ready industrial boilers. The assessment will advance the overall understanding of hydrogen-ready industrial boilers based on four outputs: definitions of hydrogen-readiness comparisons of the cost and resource requirement to install and convert hydrogen-ready industrial boiler equipment supply chain capacity for conversion to hydrogen and estimates of the UK industrial boiler population.
Hydrogen Embrittlement Characteristics in Cold-drawn High-strength Stainless Steel Wires
Mar 2023
Publication
Hydrogen uptake and embrittlement characteristics of a cold-drawn austenitic stainless steel wire were investigated. Slow strain rate testing and fracture surface analysis were applied to determine the hydrogen embrittlement resistance providing an apparent decrease in resistance to hydrogen embrittlement for a 50% degree of cold deformation. The hydrogen content was assessed by thermal desorption and laser-induced breakdown spectroscopy establishing a correlation between the total absorbed hydrogen and the intensity of near-surface hydrogen. The sub-surface hydrogen content of the hot-rolled specimen was determined to be 791 wt.ppm.
Towards Net-zero Compatible Hydrogen from Steam Reformation - Techno-economic Analysis of Process Design Options
Dec 2022
Publication
Increased consumption of low-carbon hydrogen is prominent in the decarbonisation strategies of many jurisdictions. Yet prior studies assessing the current most prevalent production method steam reformation of natural gas (SRNG) have not sufficiently evaluated how process design decisions affect life cycle greenhouse gas (GHG) emissions. This techno-economic case study assesses cradle-to-gate emissions of hydrogen produced from SRNG with CO2 capture and storage (CCS) in British Columbia Canada. Four process configurations with amine-based CCS using existing technology and novel process designs are evaluated. We find that cradle-to-gate GHG emission intensity ranges from 0.7 to 2.7 kgCO2e/kgH2 – significantly lower than previous studies of SRNG with CCS and similar to the range of published estimates for hydrogen produced from renewable-powered electrolysis. The levelized cost of hydrogen (LCOH) in this study (US$1.1–1.3/kgH2) is significantly lower than published estimates for renewable-powered electrolysis.
Extended Design Philosophy of Hydrogen Transport Pipelines
Oct 2024
Publication
This paper examines some specific design issues associated with hydrogen transportation via pipelines based on recent field development study of high-throughput hydrogen pipelines. A mechanical design review is undertaken and the current design practices and challenge are examined first. An array of key parameters considered to have significant bearing on the hydrogen pipeline general mechanical design are considered and assessed including OOR imperfections combined stress and design factors thermal gradients joint mismatch and fabrication fatigue assessment installation specifications and material consideration. Some of these are typically ignored for the conventional pipeline design but open to rationalization for hydrogen charged pipeline systems subject to material embrittlement risk arising from hydrogen absorption. Complementary to the current design standards and as a spur to discussion on the hydrogen pipeline design analysis special considerations and recommendations are proposed on materials specification additional design criteria and construction assessments and their rationale to mitigate material embrittlement with a view to improving hydrogen pipeline design reliability and integrity management potentially leading to some tangible cost saving.
A Critical Analysis of Morocco’s Green Hydrogen Roadmap: A Modelling Approach to Assess Country Readiness from the Energy Trilemma Perspective
Apr 2024
Publication
Morocco despite its heavy reliance on imported fossil fuels which made up 68% of electricity generation in 2020 has recognised its significant renewable energy potential. The Nationally Determined Contribution (NDC) commitment is to reduce emissions by 45.5% from baseline levels with international assistance and abstain from constructing new coal plants. Moreover the Green Hydrogen Roadmap aims to export 10 TWh of green hydrogen by 2030 as well as use it for local electricity storage. This paper critically analyses this Roadmap and Morocco’s readiness to reach its ambitious targets focusing specifically on an energy trilemma perspective and using OSeMOSYS (Open-Source energy Modelling System) for energy modelling. The results reveal that the NDC scenario is only marginally more expensive than the least-cost scenario at around 1.3% (approximately USD 375 million) and facilitates a 23.32% emission reduction by 2050. An important note is the continued reliance on existing coal power plants across all scenarios which challenges both energy security and emissions. The assessment of the Green Hydrogen Scenarios highlights that it could be too costly for the Moroccan government to fund the Green Hydrogen Roadmap at this scale which leads to increased imports of polluting fossil fuels for cost reduction. In fact the emission levels are 39% higher in the green hydrogen exports scenario than in the least-cost scenario. Given these findings it is recommended that the Green Hydrogen Roadmap be re-evaluated with a suggestion for a postponement and reduction in scope.
Modelling Studies of the Hazards Posed by Liquid Hydrogen Use in Civil Aviation
Sep 2021
Publication
As part of the ENABLEH2 project modelling studies have been carried out to examine liquid hydrogen release and dispersion behaviour for different LH2 aircraft and airport infrastructure leak/spill accident scenarios. The FLACS CFD model has been used to simulate the potential hazard effects following an accidental LH2 leak including the extent of the flammable LH2 clouds formed magnitude of explosion overpressures and pool fire radiation hazards. A comparison has also been made between the relative hazard consequences of using LH2 with conventional Jet A/A-1 fuel. The results indicate that in the event of accidental fuel leak/spill LH2 has some safety advantages over Jet A/A-1 but will also introduce additional hazards not found with Jet A/A-1 that will need to be carefully managed and mitigated against.
Progress and Prospects of Reversible Solid Oxide Fuel Cell Materials
Dec 2021
Publication
Reversible solid oxide fuel cell (RSOFC) is an energy device that flexibly interchanges between electrical and chemical energy according to people’s life and production needs. The development of cell materials affects the stability and cost of the cell but also restricts its market-oriented development. After decades of research by scientists a lot of achievements and progress have been made on RSOFC materials. According to the composition and requirements of each component of RSOFC this article summarizes the research progress based on materials and discusses the merits and demerits of current cell materials in electrochemical performance. According to the efficiency of different materials in solid oxide fuel cell (SOFC mode) and solid oxide electrolyzer (SOEC mode) the challenges encountered by RSOFC in the operation are evaluated and the future development of RSOFC materials is boldly prospected.
Advancing Hydrogen: A Closer Look at Implementation Factors, Current Status and Future Potential
Dec 2023
Publication
This review article provides a comprehensive analysis of the hydrogen landscape outlining the imperative for enhanced hydrogen production implementation and utilisation. It places the question of how to accelerate hydrogen adoption within the broader context of sustainable energy transitions and international commitments to reduce carbon emissions. It discusses influencing factors and policies for best practices in hydrogen energy application. Through an in-depth exploration of key factors affecting hydrogen implementation this study provides insights into the complex interplay of both technical and logistical factors. It also discusses the challenges of planning constructing infrastructure and overcoming geographical constraints in the transition to hydrogen-based energy systems. The drive to achieve net-zero carbon emissions is contingent on accelerating clean hydrogen development with blue and green hydrogen poised to complement traditional fuels. Public–private partnerships are emerging as catalysts for the commercialisation of hydrogen and fuel-cell technologies fostering hydrogen demonstration projects worldwide. The anticipated integration of clean hydrogen into various sectors in the coming years signifies its importance as a complementary energy source although specific applications across industries remain undefined. The paper provides a good reference on the gradual integration of hydrogen into the energy landscape marking a significant step forward toward a cleaner greener future.
Understanding Costs in Hydrogen Infrastructure Networks: A Multi-stage Approach for Spatially-aware Pipeline Design
Jan 2025
Publication
The emergence and design of hydrogen transport infrastructures are crucial steps towards the development of a hydrogen economy. However pipeline routing remains underdeveloped in hydrogen infrastructure design models despite its significant impact on the resultant cost and network configuration. Many previous studies assume uniform cost surfaces on which pipelines are designed. Studies that consider a variable cost surface focus on designing candidate networks rather than bespoke routes for a given infrastructure. This study proposes a novel multi-stage approach based on a graph-based Steiner tree with Obstacles Genetic Algorithm (StObGA) to route pipelines on a complex cost surface for multi-source multi-sink hydrogen networks. The application of StObGA results in cost savings of 20–40% compared to alternative graph-based methods that assume uniform cost surfaces. Furthermore this publication presents an in-depth methodological comparative analysis of different pipeline routing and sizing methods used in the literature and discusses their impact. Finally we demonstrate how this model can generate design variations and provide practical insights to inform industry and policymakers.
Review of Next Generation Hydrogen Production from Offshore Wind Using Water Electrolysis
Dec 2023
Publication
Hydrogen produced using renewable energy from offshore wind provides a versatile method of energy storage and power-to-gas concepts. However few dedicated floating offshore electrolyser facilities currently exist and therefore conditions of the offshore environment on hydrogen production cost and efficiency remain uncertain. Therefore this review focuses on the conversion of electrical energy to hydrogen using water electrolysis located in offshore areas. The challenges associated with the remote locations fluctuating power and harsh conditions are highlighted and recommendations for future electrolysis system designs are suggested. The latest research in polymer electrolyte membrane alkaline and membraneless electrolysis are evaluated in order to understand their capital costs efficiency and current research status for achieving scaled manufacturing to the GW scale required in the next three decades. Operating fundamentals that govern the performance of each device are investigated and future recommendations of research specifically for the integration of water electrolysers with offshore wind turbines is presented.
Hydrogen UK Supply Chain Strategic Assessment
Sep 2024
Publication
Hydrogen offers the UK a unique opportunity to deliver on our Net Zero ambitions enabling deep decarbonisation of the parts of the energy system that are challenging to electrify balancing the energy system by providing large scale long duration energy storage and reducing pressure on electricity infrastructure. The UK Government in recognition of the centrality of hydrogen to the future energy system has set a 10GW hydrogen production ambition to be achieved by 2030. This ambition and its supporting policies such as the Hydrogen Business Model the Low Carbon Hydrogen Standard and the Hydrogen Transport and Storage Business Models will unlock private sector investment and kick-start the UK’s hydrogen activity. Encouragingly the UK has a positive track record of deploying low carbon technologies. The combination of the UK’s world leading policies and incentive schemes alongside a vibrant Research Development and Innovation (RD&I) and engineering environment has enabled rapid deployment of technologies such as offshore wind and electric vehicles. Yet despite being world leaders in deployment early opportunities for regional supply chain growth and job creation were not fully realised and taken advantage of from inception. The hydrogen sector is therefore at a tipping point. To capitalise on the economic opportunity hydrogen offers the UK must learn from prior technology deployments and build a strong domestic hydrogen supply chain in parallel to championing deployment.
Hydrogen is unique amongst low carbon technologies. It represents a significant economic opportunity with future hydrogen markets estimated by the Hydrogen Innovation Initiative to be worth $8tn and hydrogen technology markets estimated to reach $1tn by 20501 but crucially it is also still a nascent market. Unlike many other low carbon technologies where supply chains are already well established hydrogen supply chains are embryonic meaning that the UK has an opportunity to anchor these supply chains here and establish itself as a global leader.
The UK is well placed to capitalise on this opportunity with favourable geography and geology that enables us to produce and store hydrogen cost effectively coupled with a strong pipeline of hydrogen projects a stable policy environment that is attractive to investors and a wealth of transferable skills and expertise from the oil and gas industry.
We must ensure that alongside our focus on deployment we are also investing in technology and supply chains. Not only will this deliver exponential economic benefits from the projects supported by Government but it will also enable us to tackle increasing global supply chain constraints. Hydrogen UK estimated in its Economic Impact Assessment that hydrogen could deliver 30000 jobs annually and £7bn of GVA by 2030
It is important to be targeted and strategic in our investment and activities and recognise that hydrogen represents a wide range of technologies and the UK should not expect to lead in every area. Hydrogen UK with the support of the Hydrogen Delivery Council has undertaken analysis of the hydrogen value chain building on UK strengths and identifying the high value items that can deliver significant impact and benefit to the UK. We have also conducted widespread engagement with project developers to identify the barriers to utilising UK technology in projects and with technology developers to identify the challenges and barriers to investing and siting development and manufacturing in the UK.
The report can be found on Hydrogen UK's website.
Hydrogen is unique amongst low carbon technologies. It represents a significant economic opportunity with future hydrogen markets estimated by the Hydrogen Innovation Initiative to be worth $8tn and hydrogen technology markets estimated to reach $1tn by 20501 but crucially it is also still a nascent market. Unlike many other low carbon technologies where supply chains are already well established hydrogen supply chains are embryonic meaning that the UK has an opportunity to anchor these supply chains here and establish itself as a global leader.
The UK is well placed to capitalise on this opportunity with favourable geography and geology that enables us to produce and store hydrogen cost effectively coupled with a strong pipeline of hydrogen projects a stable policy environment that is attractive to investors and a wealth of transferable skills and expertise from the oil and gas industry.
We must ensure that alongside our focus on deployment we are also investing in technology and supply chains. Not only will this deliver exponential economic benefits from the projects supported by Government but it will also enable us to tackle increasing global supply chain constraints. Hydrogen UK estimated in its Economic Impact Assessment that hydrogen could deliver 30000 jobs annually and £7bn of GVA by 2030
It is important to be targeted and strategic in our investment and activities and recognise that hydrogen represents a wide range of technologies and the UK should not expect to lead in every area. Hydrogen UK with the support of the Hydrogen Delivery Council has undertaken analysis of the hydrogen value chain building on UK strengths and identifying the high value items that can deliver significant impact and benefit to the UK. We have also conducted widespread engagement with project developers to identify the barriers to utilising UK technology in projects and with technology developers to identify the challenges and barriers to investing and siting development and manufacturing in the UK.
The report can be found on Hydrogen UK's website.
No more items...