Ireland
The Hydrogen Storage Challenge: Does Storage Method and Size Affect the Cost and Operational Flexbility of Hydrogen Supply Chains?
Jun 2023
Publication
Hydrogen is seen as a key energy vector in future energy systems due to its ability to be stored in large volumes for long periods providing energy flexibility and security. Despite the importance of storage in hydrogen's potential role in a zero-carbon energy system many techno-economic analyses fail to adequately model different storage methods in hydrogen supply chains often ignoring storage requirements altogether. Therefore this paper uses a data-driven techno-economic analysis (TEA) tool to examine the effect of storage size and cost on three different 2030 hydrogen supply chain scenarios: wind-based solar-based and mixed-source grid electrolysis. For varying storage sizes and specific capital costs the overall levelised cost of hydrogen (LCOH) including production storage and delivery to a constant demand varies significantly. The LCOH ranges from V3.90 e12.40/kgH2 V5.50e12.75/kgH2 and V2.80e15.65/kgH2 for the wind-based solar-based and mixed-source grid scenarios respectively with lower values for scenarios with low-cost storage. This highlights the critical role of low-cost hydrogen storage in realising the energy flexibility and security electrolytic hydrogen can provide.
Development of a Viability Assessment Model for Hydrogen Production from Dedicated Offshore Wind Farms
Jun 2020
Publication
Dedicated offshore wind farms for hydrogen production are a promising option to unlock the full potential of offshore wind energy attain decarbonisation and energy security targets in electricity and other sectors and cope with grid expansion constraints. Current knowledge on these systems is limited particularly the economic aspects. Therefore a new integrated and analytical model for viability assessment of hydrogen production from dedicated offshore wind farms is developed in this paper. This includes the formulae for calculating wind power output electrolysis plant size and hydrogen production from time-varying wind speed. All the costs are projected to a specified time using both Discounted Payback (DPB) and Net Present Value (NPV) to consider the value of capital over time. A case study considers a hypothetical wind farm of 101.3 MW situated in a potential offshore wind development pipeline off the East Coast of Ireland. All the costs of the wind farm and the electrolysis plant are for 2030 based on reference costs in the literature. Proton exchange membrane electrolysers and underground storage of hydrogen are used. The analysis shows that the DPB and NPV flows for several scenarios of storage are in good agreement and that the viability model performs well. The offshore wind farm – hydrogen production system is found to be profitable in 2030 at a hydrogen price of €5/kg and underground storage capacities ranging from 2 days to 45 days of hydrogen production. The model is helpful for rapid assessment or optimisation of both economics and feasibility of dedicated offshore wind farm – hydrogen production systems.
A Geospatial Method for Estimating the Levelised Cost of Hydrogen Production from Offshore Wind
Jan 2023
Publication
This paper describes the development of a general-purpose geospatial model for assessing the economic viability of hydrogen production from offshore wind power. A key feature of the model is that it uses the offshore project's location characteristics (distance to port water depth distance to gas grid injection point). Learning rates are used to predict the cost of the wind farm's components and electrolyser stack replacement. The notional wind farm used in the paper has a capacity of 510 MW. The model is implemented in a geographic information system which is used to create maps of levelised cost of hydrogen from offshore wind in Irish waters. LCOH values in 2030 spatially vary by over 50% depending on location. The geographically distributed LCOH results are summarised in a multivariate production function which is a simple and rapid tool for generating preliminary LCOH estimates based on simple site input variables.
Operation of a Circular Economy, Energy, Environmental System at a Wastewater Treatment Plant
Oct 2022
Publication
Decarbonising economies and improving environment can be enhanced through circular economy energy and environmental systems integrating electricity water and gas utilities. Hydrogen production can facilitate intermittent renewable electricity through reduced curtailment of electricity in periods of over production. Positioning an electrolyser at a wastewater treatment plant with existing sludge digesters offers significant advantages over stand-alone facilities. This paper proposes co-locating electrolysis and biological methanation technologies at a wastewater treatment plant. Electrolysis can produce oxygen for use in pure or enhanced oxygen aeration offering a 40% reduction in emissions and power demand at the treatment facility. The hydrogen may be used in a novel biological methanation system upgrading carbon dioxide (CO2)in biogas from sludge digestion yielding a 54% increase in biomethane production. A 10MW electrolyser operating at 80% capacity would be capable of supplying the oxygen demand for a 426400 population equivalent wastewater treatment plant producing 8500 tDS/a of sludge. Digesting the sludge could generate 1409000 m 3 CH4/a and 776000 m 3 CO2/a. Upgrading the CO2 to methane would consume 22.2% of the electrolyser generated hydrogen and capture 1.534 ktCO2e/a. Hydrogen and methane are viable advanced transport fuels that can be utilised in decarbonising heavy transport. In the proposed circular economy energy and environment system sufficient fuel would be generated annually for 94 compressed biomethane gas (CBG) heavy goods vehicles (HGV) and 296 compressed hydrogen gas fuel cell (CHG) HGVs. Replacement of the equivalent number of diesel HGVs would offset approximately 16.1 ktCO2e/a.
Batteries, Fuel Cells, or Engines? A Probabilistic Economic and Environmental Assessment of Electricity and Electrofuels for Heavy Goods Vehicles
Oct 2022
Publication
Uncertainty surrounding the total cost of ownership system costs and life cycle environmental impacts means that stakeholders may lack the required information to evaluate the risks of transitioning to low-carbon fuels and powertrains. This paper assesses the life cycle costs and well-to-wheel environmental impacts of using electricity and electrofuels in Heavy Good Vehicles (HGVs) whilst considering input parameter uncertainty. The complex relationship between electricity cost electrolyser capacity factor CO2 capture cost and electricity emissions intensity is assessed within a Monte Carlo based framework to identify scenarios where use of electricity or electrofuels in heavy goods vehicles makes economic and environmental sense. For vehicles with a range of less than 450 km battery electric vehicles achieve the lowest total cost of ownership for an electricity cost less than 100 €/MWh. For vehicles that require a range of up to 900 km hydrogen fuel cell vehicles represent the lowest long-term cost of abatement. Power-to-methane and power-to-liquid scenarios become economically competitive when low-cost electricity is available at high-capacity factors and CO2 capture costs for fuel synthesis are below 100 €/tCO2; these fuels may be more applicable to decarbonise shipping and aviation. Battery electric HGVs reduce greenhouse gas emissions by 50% compared to the diesel baseline with electricity emissions of 350 gCO2e/kWh. Electricity emissions less than 35 gCO2e/kWh are required for the power-to-methane and power-to-liquid scenarios to meet EU emissions savings criteria. High vehicle capital costs and a lack of widespread refuelling infrastructure may hinder initial uptake of low-carbon fuels and powertrains for HGVs.
Towards the Integration of Flexible Green Hydrogen Demand and Production in Ireland: Opportunities, Barriers, and Recommendations
Dec 2022
Publication
Ireland’s Climate Action Plan 2021 has set out ambitious targets for decarbonization across the energy transport heating and agriculture sectors. The Climate Action Plan followed the Climate Act 2021 which committed Ireland to a legally binding target of net-zero greenhouse gas emissions no later than 2050 and a reduction of 51% by 2030. Green hydrogen is recognized as one of the most promising technologies for enabling the decarbonization targets of economies across the globe but significant challenges remain to its large-scale adoption. This research systematically investigates the barriers and opportunities to establishing a green hydrogen economy by 2050 in Ireland by means of an analysis of the policies supporting the optimal development of an overall green hydrogen eco-system in the context of other decarbonizing technologies including green hydrogen production using renewable generation distribution and delivery and final consumption. The outcome of this analysis is a set of clear recommendations for the policymaker that will appropriately support the development of a green hydrogen market and eco-system in parallel with the development of other more mature low-carbon technologies. The analysis has been supplemented by an open “call for evidence” which gathered relevant information about the future policy and roles of hydrogen involving the most prominent stakeholders of hydrogen in Ireland. Furthermore the recommendations and conclusions from the research have been validated by this mechanism.
Levelised Cost of Transmission Comparison for Green Hydrogen and Ammonia in New-build Offshore Energy Infrastructure: Pipelines, Tankers, and HVDC
Mar 2024
Publication
As the global market develops for green hydrogen and ammonia derived from renewable electricity the bulk transmission of hydrogen and ammonia from production areas to demand-intensive consumption areas will increase. Repurposing existing infrastructure may be economically and technically feasible but increases in supply and demand will necessitate new developments. Bulk transmission of hydrogen and ammonia may be effected by dedicated pipelines or liquefied fuel tankers. Transmission of electricity using HVDC lines to directly power electrolysers producing hydrogen near the demand markets is another option. This paper presents and validates detailed cost models for newly-built dedicated offshore transmission methods for green hydrogen and ammonia and carries out a techno-economic comparison over a range of transmission distances and production volumes. New pipelines are economical for short distances while new HVDC interconnectors are suited to medium-large transmission capacities over a wide range of distances and liquefied gas tankers are best for long distances.
Investigation of the Multi-Point Injection of Green Hydrogen from Curtailed Renewable Power into a Gas Network
Nov 2020
Publication
Renewable electricity can be converted into hydrogen via electrolysis also known as power-to-H2 (P2H) which when injected in the gas network pipelines provides a potential solution for the storage and transport of this green energy. Because of the variable renewable electricity production the electricity end-user’s demand for “power when required” distribution and transmission power grid constrains the availability of renewable energy for P2H can be difficult to predict. The evaluation of any potential P2H investment while taking into account this consideration should also examine the effects of incorporating the produced green hydrogen in the gas network. Parameters including pipeline pressure drop flowrate velocity and most importantly composition and calorific content are crucial for gas network management. A simplified representation of the Irish gas transmission network is created and used as a case study to investigate the impact on gas network operation of hydrogen generated from curtailed wind power. The variability in wind speed and gas network demands that occur over a 24 h period and with network location are all incorporated into a case study to determine how the inclusion of green hydrogen will affect gas network parameters. This work demonstrates that when using only curtailed renewable electricity during a period with excess renewable power generation despite using multiple injection points significant variation in gas quality can occur in the gas network. Hydrogen concentrations of up to 15.8% occur which exceed the recommended permitted limits for the blending of hydrogen in a natural gas network. These results highlight the importance of modelling both the gas and electricity systems when investigating any potential P2H installation. It is concluded that for gas networks that decarbonise through the inclusion of blended hydrogen active management of gas quality is required for all but the smallest of installations.
Production of Advanced Fuels Through Integration of Biological, Thermo-Chemical and Power to Gas Technologies in a Circular Cascading Bio-Based System
Sep 2020
Publication
In the transition to a climate neutral future the transportation sector needs to be sustainably decarbonized. Producing advanced fuels (such as biomethane) and bio-based valorised products (such as pyrochar) may offer a solution to significantly reduce greenhouse gas (GHG) emissions associated with energy and agricultural circular economy systems. Biological and thermochemical bioenergy technologies together with power to gas (P2G) systems can generate green renewable gas which is essential to reduce the GHG footprint of industry. However each technology faces challenges with respect to sustainability and conversion efficiency. Here this study identifies an optimal pathway leading to a sustainable bioenergy system where the carbon released in the fuel is offset by the GHG savings of the circular bio-based system. It provides a state-of-the-art review of individual technologies and proposes a bespoke circular cascading bio-based system with anaerobic digestion as the key platform integrating electro-fuels via P2G systems and value-added pyrochar via pyrolysis of solid digestate. The mass and energy analysis suggests that a reduction of 11% in digestate mass flow with the production of pyrochar bio-oil and syngas and an increase of 70% in biomethane production with the utilization of curtailed or constrained electricity can be achieved in the proposed bio-based system enabling a 70% increase in net energy output as compared with a conventional biomethane system. However the carbon footprint of the electricity from which the hydrogen is sourced is shown to be a critical parameter in assessing the GHG balance of the bespoke system.
Long-Term Hydrogen Storage—A Case Study Exploring Pathways and Investments
Jan 2022
Publication
Future low-carbon systems with very high shares of variable renewable generation require complex models to optimise investments and operations which must capture high degrees of sector coupling contain high levels of operational and temporal detail and when considering seasonal storage be able to optimise both investments and operations over long durations. Standard energy system models often do not adequately address all these issues which are of great importance when considering investments in emerging energy carriers such as Hydrogen. An advanced energy system model of the Irish power system is built in SpineOpt which considers a number of future scenarios and explores different pathways to the wide-scale adoption of Hydrogen as a low-carbon energy carrier. The model contains a high degree of both temporal and operational detail sector coupling via Hydrogen is captured and the optimisation of both investments in and operation of large-scale underground Hydrogen storage is demonstrated. The results highlight the importance of model detail and demonstrate how over-investment in renewables occur when the flexibility needs of the system are not adequately captured. The case study shows that in 2030 investments in Hydrogen technologies are limited to scenarios with high fuel and carbon costs high levels of Hydrogen demand (in this case driven by heating demand facilitated by large Hydrogen networks) or when a breakthrough in electrolyser capital costs and efficiencies occurs. However high levels of investments in Hydrogen technologies occur by 2040 across all considered scenarios. As with the 2030 results the highest level of investments occur when demand for Hydrogen is high albeit at a significantly higher level than 2030 with increases in investments of large-scale electrolysers of 538%. Hydrogen fuelled compressed air energy storage emerges as a strong investment candidate across all scenarios facilitating cost effective power-to-Hydrogen-to-power conversions.
Dedicated Large-scale Floating Offshore Wind to Hydrogen: Assessing Design Variables in Proposed Typologies
Mar 2022
Publication
To achieve the Net-Zero Emissions goal by 2050 a major upscale in green hydrogen needs to be achieved; this will also facilitate use of renewable electricity as a source of decarbonised fuel in hard-to-abate sectors such as industry and transport. Nearly 80% of the world’s offshore wind resource is in waters deeper than 60 m where bottom-fixed wind turbines are not feasible. This creates a significant opportunity to couple the high capacity factor floating offshore wind and green hydrogen. In this paper we consider dedicated large-scale floating offshore wind farms for hydrogen production with three coupling typologies; (i) centralised onshore electrolysis (ii) decentralised offshore electrolysis and (iii) centralised offshore electrolysis. The typology design is based on variables including for: electrolyser technology; floating wind platform; and energy transmission vector (electrical power or offshore hydrogen pipelines). Offshore hydrogen pipelines are assessed as economical for large and distant farms. The decentralised offshore typology employing a semi-submersible platform could accommodate a proton exchange membrane electrolyser on deck; this would negate the need for an additional separate structure or hydrogen export compression and enhance dynamic operational ability. It is flexible; if one electrolyser (or turbine) fails hydrogen production can easily continue on the other turbines. It also facilities flexibility in further expansion as it is very much a modular system. Alternatively less complexity is associated with the centralised offshore typology which may employ the electrolysis facility on a separate offshore platform and be associated with a farm of spar-buoy platforms in significant water depth locations.
Decarbonising Ships, Planes and Trucks: An Analysis of Suitable Low-carbon Fuels for the Maritime, Aviation and Haulage Sectors
Jan 2021
Publication
The high environmental impacts of transport mean that there is an increasing interest in utilising low-carbon alternative energy carriers and powertrains within the sector. While electricity has been mooted as the energy carrier of choice for passenger vehicles as the mass and range of the vehicle increases electrification becomes more difficult. This paper reviews the shipping aviation and haulage sectors and a range of low-carbon energy carriers (electricity biofuels hydrogen and electro fuels) that can be used to decarbonise them. Energy carriers were assessed based on their energy density specific energy cost lifecycle greenhouse gas emissions and land-use. In terms of haulage current battery electric vehicles may be technically feasible however the specific energy of current battery technology reduces the payload capacity and range when compared to diesel. To alleviate these issues biomethane represents a mature technology with potential co-benefits while hydrogen is close to competitiveness but requires significant infrastructure. Energy density issues preclude the use of batteries in shipping which requires energy dense liquids or compressed gaseous fuels that allow for retrofits/current hull designs with methanol being particularly appropriate here. Future shipping may be achieved with ammonia or hydrogen but hull design will need to be changed significantly. Regulations and aircraft design mean that commercial aviation is dependant on drop-in jet fuels for the foreseeable future with power-to-liquid fuels being deemed the most suitable option due to the scales required. Fuel costs and a lack of refuelling infrastructure were identified as key barriers facing the uptake of alternatives with policy and financial incentives required to encourage the uptake of low-carbon fuels.
Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives
Jan 2021
Publication
Fuel cells as clean power sources are very attractive for the maritime sector which is committed to sustainability and reducing greenhouse gas and atmospheric pollutant emissions from ships. This paper presents a technological review on fuel cell power systems for maritime applications from the past two decades. The available fuels including hydrogen ammonia renewable methane and methanol for fuel cells under the context of sustainable maritime transportation and their pre-processing technologies are analyzed. Proton exchange membrane molten carbonate and solid oxide fuel cells are found to be the most promising options for maritime applications once energy efficiency power capacity and sensitivity to fuel impurities are considered. The types layouts and characteristics of fuel cell modules are summarized based on the existing applications in particular industrial or residential sectors. The various research and demonstration projects of fuel cell power systems in the maritime industry are reviewed and the challenges with regard to power capacity safety reliability durability operability and costs are analyzed. Currently power capacity costs and lifetime of the fuel cell stack are the primary barriers. Coupling with batteries modularization mass production and optimized operating and control strategies are all important pathways to improve the performance of fuel cell power systems.
Optimal Design of Photovoltaic, Biomass, Fuel Cell, Hydrogen Tank Units and Electrolyzer Hybrid System for a Remote Area in Egypt
Jul 2022
Publication
In this paper a new isolated hybrid system is simulated and analyzed to obtain the optimal sizing and meet the electricity demand with cost improvement for servicing a small remote area with a peak load of 420 kW. The major configuration of this hybrid system is Photovoltaic (PV) modules Biomass gasifier (BG) Electrolyzer units Hydrogen Tank units (HT) and Fuel Cell (FC) system. A recent optimization algorithm namely Mayfly Optimization Algorithm (MOA) is utilized to ensure that all load demand is met at the lowest energy cost (EC) and minimize the greenhouse gas (GHG) emissions of the proposed system. The MOA is selected as it collects the main merits of swarm intelligence and evolutionary algorithms; hence it has good convergence characteristics. To ensure the superiority of the selected MOA the obtained results are compared with other well-known optimization algorithms namely Sooty Tern Optimization Algorithm (STOA) Whale Optimization Algorithm (WOA) and Sine Cosine Algorithm (SCA). The results reveal that the suggested MOA achieves the best system design achieving a stable convergence characteristic after 44 iterations. MOA yielded the best EC with 0.2106533 $/kWh the net present cost (NPC) with 6170134 $ the loss of power supply probability (LPSP) with 0.05993% and GHG with 792.534 t/y.
What is the Energy Balance of Electrofuels Produced Through Power-to-fuel Integration with Biogas Facilities?
Nov 2021
Publication
The need to reduce the climate impact of the transport sector has led to an increasing interest in the utilisation of alternative fuels. Producing advanced fuels through the integration of anaerobic digestion and power-to-fuel technologies may offer a solution to reduce greenhouse gas emissions from difficult to decarbonise modes of transport such as heavy goods vehicles shipping and commercial aviation while also offering wider system benefits. This paper investigates the energy balance of power-to-fuel (power-to-methane power-to-methanol power-to-Fischer-Tropsch fuels) production integrated with a biogas facility co-digesting grass silage and dairy slurry. Through the integration of power-to-methane with anaerobic digestion an increase in system gross energy of 62.6% was found. Power-to-methanol integration with the biogas system increased the gross energy by 50% while power-to-Fischer-Tropsch fuels increased the gross energy yield by 32%. The parasitic energy demand for hydrogen production was highlighted as the most significant factor for integrated biogas and power-to-fuel facilities. Consuming electricity that would otherwise have been curtailed and optimising the anaerobic digestion process were identified as key to improving the energetic efficiency of all system configurations. However the broad cross-sectoral benefits of the overarching cascading circular economy system such as providing electrical grid stability and utilising waste resources must also be considered for a comprehensive perspective on the integration of anaerobic digestion and power-to-fuel.
Operational Challenges for Low and High Temperature Electrolyzers Exploiting Curtailed Wind Energy for Hydrogen Production
Jan 2021
Publication
Understanding the system performance of different electrolyzers could aid potential investors achieve maximum return on their investment. To realize this system response characteristics to 4 different summarized data sets of curtailed renewable energy is obtained from the Irish network and was investigated using models of both a Low Temperature Electrolyzer (LTE) and a High Temperature Electrolyzer (HTE). The results indicate that statistical parameters intrinsic to the method of data extraction along with the thermal response time of the electrolyzers influence the hydrogen output. A maximum hydrogen production of 5.97 kTonne/year is generated by a 0.5 MW HTE when the electrical current is sent as a yearly average. Additionally the high thermal response time in a HTE causes a maximum change in the overall flowrate of 65.7% between the 4 scenarios when compared to 7.7% in the LTE. This evaluation of electrolyzer performance will aid investors in determining scenario specific application of P2G for maximizing hydrogen production.
Prospective Roles for Green Hydrogen as Part of Ireland's Decarbonisation Strategy
Mar 2023
Publication
In recent decades governments and society have been making increasing efforts to address and mitigate climate change by reducing emissions and decarbonising energy generation. Ireland has invested greatly in renewable electricity installing 4 GW of wind capacity since 2002 and has set assertive energy targets such as the aim to reduce overall emissions by 51% by 2030. Nonetheless considerable acceleration is needed in the decarbonisation of the country’s energy sector. This paper investigates the potential role hydrogen can play in Ireland’s energy transition proposing hydrogen as an energy vector and storage medium that may help the country achieve its targets and reduce greenhouse gas emissions. Through literature review research and from industry insights the current state of the Irish energy sector is analysed and recommendations are made as to how where and when hydrogen can be integrated into the decarbonisation of Ireland’s electricity heating and transport. It is concluded that; with significant effort from the government policymakers industry and organisations; the effective deployment of hydrogen technologies in Ireland could avoid up to 6.1 MtCO2eq of emissions annually reflecting a trend observed in many other developed countries in which hydrogen plays an important part in the path to a low-carbon future. Prospective roles for hydrogen in Ireland include renewable energy storage and grid balancing through the deployment of Power-to-Gas systems a replacement for fossil natural gas in the gas grid for backup electricity production as well as industry and heating requirements and the use of hydrogen as a fuel for heavy transport.
Enabling the Scale Up of Green Hydrogen in Ireland by Decarbonising the Haulage Sector
Jul 2022
Publication
The current research on green hydrogen can focus from the perspective of production but understanding the demand side is equally important to the initial creation of a hydrogen ecosystem in countries with low industrial activities that can utilise large amounts of hydrogen in the short term. Early movers in these countries must create a demand market in parallel with the green hydrogen plant commissioning. This paper presents research that explores the heavy-duty transport sector as a market-of-interest for early deployment of green hydrogen in Ireland. Conducting a survey-based market research amongst this sector indicate significant interest in hydrogen on the island of Ireland and the barriers the participants presented have been overcome in other jurisdictions. The study develops a model to estimate 1.) the annual hydrogen demand and 2.) the corresponding delivery cost to potential hydrogen consumers either directly or to central hydrogen fuelling hubs.
Palm Trees, Energy Security and Green Hydrogen Futures: Tourists' Views on Mallorca's Low Carbon Transition
Jan 2025
Publication
The development of green hydrogen can provide a welcome boost in energy security particularly for island nations that may be reliant on energy imports or intermittent renewables as part of their energy transition. However the expansion of a green hydrogen economy may have social environmental and economic impacts on tourism-reliant islands which may not be accounted for using typical market assessments. In this study focus groups and an online choice experiment survey are conducted with recent international tourists to Mallorca Spain to elicit preferences for green hydrogen infrastructure including the visual and biodiversity impacts potential for export and the value for the provision of additional local and tourism benefits. The results indicate generally positive attitudes to the development of green hydrogen in Mallorca however respondents indicate significant disutility associated with high visual impact of green hydrogen infrastructure with the exception of respondents that have previous experience with hydrogen transport. In general respondents favour policies that do not negatively impact biodiversity value restrictions on exports to enhance energy security on the island and are willing to pay to support green hydrogen development in Mallorca which provides benefits to tourism and local residents.
Green Hydrogen for Heating and its Impact on the Power System
Jun 2021
Publication
With a relatively high energy density hydrogen is attracting increasing attention in research commercial and political spheres specifically as a fuel for residential heating which is proving to be a difficult sector to decarbonise in some circumstances. Hydrogen production is dependent on the power system so any scale use of hydrogen for residential heating will impact various aspects of the power system including electricity prices and renewable generation curtailment (i.e. wind solar). Using a linearised optimal power flow model and the power infrastructure on the island of Ireland this paper examines least cost optimal investment in electrolysers in the presence of Ireland's 70% renewable electricity target by 2030. The introduction of electrolysers in the power system leads to an increase in emissions from power generation which is inconsistent with some definitions of green hydrogen. Electricity prices are marginally higher with electrolysers whereas the optimal location of electrolysers is driven by a combination of residential heating demand and potential surplus power supplies at electricity nodes.
No more items...