Italy
An Exploration of Safety Measures in Hydrogen Refueling Stations: Delving into Hydrogen Equipment and Technical Performance
Feb 2024
Publication
The present paper offers a thorough examination of the safety measures enforced at hydrogen filling stations emphasizing their crucial significance in the wider endeavor to advocate for hydrogen as a sustainable and reliable substitute for conventional fuels. The analysis reveals a wide range of crucial safety aspects in hydrogen refueling stations including regulated hydrogen dispensing leak detection accurate hydrogen flow measurement emergency shutdown systems fire-suppression mechanisms hydrogen distribution and pressure management and appropriate hydrogen storage and cooling for secure refueling operations. The paper therefore explores several aspects including the sophisticated architecture of hydrogen dispensers reliable leak-detection systems emergency shut-off mechanisms and the implementation of fire-suppression tactics. Furthermore it emphasizes that the safety and effectiveness of hydrogen filling stations are closely connected to the accuracy in the creation and upkeep of hydrogen dispensers. It highlights the need for materials and systems that can endure severe circumstances of elevated pressure and temperature while maintaining safety. The use of sophisticated leak-detection technology is crucial for rapidly detecting and reducing possible threats therefore improving the overall safety of these facilities. Moreover the research elucidates the complexities of emergency shut-off systems and fire-suppression tactics. These components are crucial not just for promptly managing hazards but also for maintaining the station’s structural soundness in unanticipated circumstances. In addition the study provides observations about recent technical progress in the industry. These advances effectively tackle current safety obstacles and provide the foundation for future breakthroughs in hydrogen fueling infrastructure. The integration of cutting-edge technology and materials together with the development of upgraded safety measures suggests a positive trajectory towards improved efficiency dependability and safety in hydrogen refueling stations.
Thermodynamic Modelling, Testing and Sensitive Analysis of a Directly Pressurized Hydrogen Refuelling Process with a Compressor
Mar 2024
Publication
This paper presents the development of a thermodynamic model for the hydrogen refuelling station (HRS) to simulate the process of refuelling which involves the transfer of hydrogen gas from a high-pressure storage tank to the onboard tank of a fuel cell electric vehicle (FCEV). This model encompasses the fundamental elements of an HRS which consists of a storage tank compressor piping system heat exchanger and an on-board vehicle tank. The model is implemented and validated using experimental data from SAE J2601. Various simulations are conducted to assess the impact of the Joule-Thomson effect and compression on the temperature of hydrogen flow specifically focusing on an average pressure rate of 18 MPa/min. Furthermore a comprehensive analysis is conducted to examine the impact of pressure variations in the storage tank (10–90 MPa) and the initial pressure within the vehicle tank (5–35 MPa) as well as variations in ambient temperature (0–40 °C). The study revealed that the energy consumption in the cooling system surpasses the average power consumption in the more advantageous scenario of 60 MPa by a range of 36% to over 220% when the pressure in the storage system drops below 30 MPa. Furthermore it was noted that the impact of ambient temperature is comparatively less significant when compared to the initial pressure of the vehicle's tank. The impact of an ambient temperature change of 10 °C on the final temperature of a hydrogen vehicle is found to be approximately 2 °C. Similarly a variation in the initial vehicle pressure of 10 MPa results in a modification of the final hydrogen vehicle temperature by approximately 8.5 °C.
Net-zero Energy Management through Multi-criteria Optimizations of a Hybrid Solar-Hydrogen Energy Production System for an Outdoor Laboratory in Toronto
Apr 2024
Publication
Hydrogen production and storage in hybrid systems is a promising solution for sustainable energy transition decoupling the energy generation from its end use and boosting the deployment of renewable energy. Nonetheless the optimal and cost-effective design of hybrid hydrogen-based systems is crucial to tackle existing limitations in diffusion of these systems. The present study explores net-zero energy management via a multi-objective optimization algorithm for an outdoor test facility equipped with a hydrogen-based hybrid energy production system. Aimed at enabling efficient integration of hydrogen fuel cell system the proposed solution attempts to maximize the renewable factor (RF) and carbon mitigation in the hybrid system as well as to minimize the grid dependency and the life cycle cost (LCC) of the system. In this context the techno-enviroeconomic optimization of the hybrid system is conducted by employing a statistical approach to identify optimal design variables and conflictive objective functions. To examine interactions in components of the hybrid system a series of dynamic simulations are carried out by developing a TRNSYS code coupled with the OpenStudio/EnergyPlus plugin. The obtained results indicate a striking disparity in the monthly RF values as well as the hydrogen production rate and therefore in the level of grid dependency. It is shown that the difference in LCC between optimization scenarios suggested by design of experiments could reach $15780 corresponding to 57% of the mean initial cost. The LCOE value yielded for optimum scenarios varies between 0.389 and 0.537 $/kWh. The scenario with net-zero target demonstrates the lowest LCOE value and the highest carbon mitigation i.e. 828 kg CO2/yr with respect to the grid supply case. However the LCC in this scenario exceeds $57370 which is the highest among all optimum scenarios. Furthermore it was revealed that the lowest RF in optimal scenarios is equal to 66.2% and belongs to the most economical solution.
A Complete Assessment of the Emission Performance of an SI Engine Fueled with Methanol, Methane and Hydrogen
Feb 2024
Publication
This study explores the potentiality of low/zero carbon fuels such as methanol methane and hydrogen for motor applications to pursue the goal of energy security and environmental sustainability. An experimental investigation was performed on a spark ignition engine equipped with both a port fuel and a direct injection system. Liquid fuels were injected into the intake manifold to benefit from a homogeneous charge formation. Gaseous fuels were injected in direct mode to enhance the efficiency and prevent abnormal combustion. Tests were realized at a fixed indicated mean effective pressure and at three different engine speeds. The experimental results highlighted the reduction of CO and CO2 emissions for the alternative fuels to an extent depending on their properties. Methanol exhibited high THC and low NOx emissions compared to gasoline. Methane and even more so hydrogen allowed for a reduction in THC emissions. With regard to the impact of gaseous fuels on the NOx emissions this was strongly related to the operating conditions. A surprising result concerns the particle emissions that were affected not only by the fuel characteristics and the engine test point but also by the lubricating oil. The oil contribution was particularly evident for hydrogen fuel which showed high particle emissions although they did not contain carbon atoms.
Exploiting the Ocean Thermal Energy Conversion (OTEC) Technology for Green Hydrogen Production and Storage: Exergo-economic Analysis
Nov 2024
Publication
This study presents and analyses three plant configurations of the Ocean Thermal Energy Conversion (OTEC) technology. All the solutions are based on using the OTEC system to obtain hydrogen through an electrolyzer. The hydrogen is then compressed and stored. In the first and second layouts a Rankine cycle with ammonia and a mixture of water and ethanol is utilised respectively; in the third layout a Kalina cycle is considered. In each configuration the OTEC cycle is coupled with a polymer electrolyte membrane (PEM) electrolyzer and the compression and storage system. The water entering the electrolyzer is pre-heated to 80 ◦C by a solar collector. Energy exergy and exergo-economic studies were conducted to evaluate the cost of producing compressing and storing hydrogen. A parametric analysis examining the main design constraints was performed based on the temperature range of the condenser the mass flow ratio of hot and cold resource flows and the mass fraction. The maximum value of the overall exergy efficiency calculated is equal to 93.5% for the Kalina cycle and 0.524 €/kWh is the minimum cost of hydrogen production achieved. The results were compared with typical data from other hydrogen production systems.
Towards the Design of a Hydrogen-powered Ferry for Cleaner Passenger Transport
Aug 2024
Publication
The maritime transportation sector is a large and growing contributor of greenhouse gas and other emissions. Therefore stringent measures have been taken by the International Maritime Organization to mitigate the environmental impact of the international shipping. These lead to the adoption of new technical solutions involving clean fuels such as hydrogen and high efficiency propulsion technologies that is fuel cells. In this framework this paper proposes a methodological approach aimed at supporting the retrofit design process of a car-passenger ferry operating in the Greece’s western maritime zone whose conventional powertrain is replaced with a fuel cell hybrid system. To this aim first the energy/power requirements and the expected hydrogen consumption of the vessel are determined basing on a typical operational profile retrieved from data provided by the shipping company. Three hybrid powertrain configurations are then proposed where fuel cell and batteries are balanced out according to different design criteria. Hence a new vessel layout is defined for each of the considered options by taking into account on-board weight and space constraints to allocate the components of the new hydrogen-based propulsion systems. Finally the developed vessel configurations are simulated in a virtual towing tank environment in order to assess their hydrodynamic response and compare them with the original one thus providing crucial insights for the design process of new hydrogen-fueled vessel solutions. Findings from this study reveal that the hydrogen-based configurations of the vessel are all characterized by a slight reduction of the payload mainly due to the space required to allocate the hydrogen storage system; instead the hydrodynamic behavior of the H2 powered vessels is found to be similar to the one of the original Diesel configuration; also from a hydrodynamic point of view the results show that mid load operating conditions get relevance for the design process of the hybrid vessels.
Hazard Footprint of Alternative Fuel Storage Concepts for Hydrogen-powered Urban Buses
Nov 2023
Publication
Hydrogen mobility is a powerful strategy to fight climate change promoting the decarbonization of the transportation sector. However the higher flammability of hydrogen in comparison with traditional fuels raises issues concerning the safety of hydrogen-powered vehicles in particular when urban mobility in crowded areas is concerned. In the present study a comparative analysis of alternative hydrogen storage concepts for buses is carried out. A specific inherent safety assessment methodology providing a hazard footprint of alternative hydrogen storage technologies was developed. The approach provides a set of ex-ante safety performance indicators and integrates a sensitivity analysis performed by a Monte Carlo method. Integral models for consequence analysis and a set of baseline frequencies are used to provide a preliminary identification of the worstcase credible fire and explosion scenarios and to rank the inherent safety of alternative concepts. Cryocompressed storage in the supercritical phase resulted as the more hazardous storage concept while cryogenic storage in the liquid phase at ambient pressure scored the highest safety performance. The results obtained support risk-informed decision-making in the shift towards the promotion of sustainable mobility in urban areas.
Reversible Solid Oxide Cell Coupled to an Offshore Wind Turbine as a Poly-generation Energy System for Auxiliary Backup Generaiton and Hydrogen Production
Nov 2022
Publication
The coupling of a reversible Solid Oxide Cell (rSOC) with an offshore wind turbine is investigated to evaluate the mutual benefits in terms of local energy management. This integrated system has been simulated with a dynamic model under a control algorithm which manages the rSOC operation in relation to the wind resource implementing a local hydrogen storage with a double function: (i) assure power supply to the wind turbine auxiliary systems during power shortages (ii) valorize the heat produced to cover the desalinization system needs. With an export-based strategy which maximize the rSOC capacity factor up to 15 tons of hydrogen could be produced for other purposes. The results show the compatibility between the auxiliary systems supply of a 2.3 MW wind turbine and a 120/21 kWe rSOC system which can cover the auxiliaries demand during wind shortages or maintenance. The total volume required by such a system occupy less than the 2% if compared with the turbine tower volume. Additionally thermal availability exceeds the desalination needs representing a promising solution for small-scale onsite desalination in offshore environments.
0-D Dynamic Performance Simulation of Hydrogen-Fueled Turboshaft Engine
Oct 2024
Publication
In the last few decades the problem of pollution resulting from human activities has pushed research toward zero or net-zero carbon solutions for transportation. The main objective of this paper is to perform a preliminary performance assessment of the use of hydrogen in conventional turbine engines for aeronautical applications. A 0-D dynamic model of the Allison 250 C-18 turboshaft engine was designed and validated using conventional aviation fuel (kerosene Jet A-1). A dedicated experimental campaign covering the whole engine operating range was conducted to obtain the thermodynamic data for the main engine components: the compressor lateral ducts combustion chamber high- and low-pressure turbines and exhaust nozzle. A theoretical chemical combustion model based on the NASA-CEA database was used to account for the energy conversion process in the combustor and to obtain quantitative feedback from the model in terms of fuel consumption. Once the engine and the turbomachinery of the engine were characterized the work focused on designing a 0-D dynamic engine model based on the engine’s characteristics and the experimental data using the MATLAB/Simulink environment which is capable of replicating the real engine behavior. Then the 0-D dynamic model was validated by the acquired data and used to predict the engine’s performance with a different throttle profile (close to realistic request profiles during flight). Finally the 0-D dynamic engine model was used to predict the performance of the engine using hydrogen as the input of the theoretical combustion model. The outputs of simulations running conventional kerosene Jet A-1 and hydrogen using different throttle profiles were compared showing up to a 64% reduction in fuel mass flow rate and a 3% increase in thermal efficiency using hydrogen in flight-like conditions. The results confirm the potential of hydrogen as a suitable alternative fuel for small turbine engines and aircraft.
Towards Sustainable Hydrogen Production: An Integrated Approach for Sustainability, Complexity, and Systems Thinking in the Energy Sector
Mar 2024
Publication
The energy sector constitutes a dynamic and complex system indicating that its actions are influenced not just by its individual components but also by the emergent behavior resulting from interactions among them. Moreover there are crucial limitations of previous approaches for addressing the sustainability challenge of the energy sector. Changing transforming and integrating paradigms are the most relevant leverage points for transforming a given system. In other words nowadays the integration of new predominant paradigms in order to provide a unified framework could aim at this actual transformation looking for a sustainable future. This research aims to develop a new unified framework for the integration of the following three paradigms: (1) Sustainability (2) Complexity and (3) Systems Thinking which will be applied to achieving sustainable energy production (using hydrogen production as a case study). The novelty of this work relies on providing a holistic perspective through the integration of the aforementioned paradigms considering the multiple and complex interdependencies among the economy the environment and the economy. For this purpose an integrated seven-stage approach is introduced which explores from the starting point of the integration of paradigms to the application of this integration to sustainable energy production. After applying the Three-Paradigm approach for sustainable hydrogen production as a case study 216 feedback loops are identified due to the emerged complexity linked to the analyzed system. Additionally three system dynamics-based models are developed (by increasing the level of complexity) as part of the application of the Three-Paradigm approach. This research can be of interest to a broad professional audience (e.g. engineers policymakers) as looks into the sustainability of the energy sector from a holistic perspective considering a newly developed Three-Paradigm model considering complexity and using a Systems Thinking approach.
The Future Technological Potential of Hydrogen Fuel Cell Systems for Aviation and Preliminary Co-design of a Hybrid Regional Aircraft Powertrain Through a Mathematical Tool
Feb 2023
Publication
The growing demand for air travel in the commercial sector leads to an increase in global emissions whose mitigation entails transitioning from the current fossil-fuel based generation of aircrafts to a cleaner one within a short timeframe. The use of hydrogen and fuel cells has the potential to reach zero emissions in the aerospace sector provided that required innovation and research efforts are substantially accomplished. Development programs investments and new regulations are needed for this technology to be safe and economical. In this context it makes sense to develop a model-based preliminary design methodology for a hybrid regional aircraft assisted by a battery hybridized fuel cell powertrain. The technological assumptions underlying the study refer to both current and expected data for 2035. The major contribution of the proposed methodology is to provide a mathematical tool that considers the interactions between the choice of components in terms of installed power and energy management. This simultaneous study is done because of the availability of versatile control maps. The tool was then deployed to define current and future technological scenarios for fuel cell battery and hydrogen storage systems by quickly adapting control strategies to different sizing criteria and technical specifications. In this way it is possible to facilitate the estimation of the impact of different sizing criteria and technological features at the aircraft level on the onboard electrical system the management of in-flight power the propulsion methods the impact of the masses on consumption and operational characteristics in a typical flight mission. The proposed combination of advanced sizing and energy management strategies allowed meeting mass and volume constraints with state-of-the-art PEM fuel cell and Li-ion battery specifications. Such a solution corresponds to a high degree of hybridization between the fuel cell system and battery pack (i.e. 300 kW and 750 kWh) whereas projected 2035 specs were demonstrated to help reduce mass and volume by 23 % and 40 % respectively.
Enhancing Heavy Duty Vehicle Hydrogen Refuelling by Alternative Approach to SAE J2601/2 Protocol and Flow Dynamics
Dec 2024
Publication
This paper analyzes the hydrogen refueling process for heavy-duty vehicles according to the SAE J2601/2 protocol. Attention is paid to two key aspects of the protocol that affect the refueling process: treatment of the storage system from a thermodynamic and geometric point of view and the maximum deliverable flow rate of the station in the refueling process. The effect of the ratio of the inner diameter to the inner length of the total volume on the refueling process was then analyzed and it was shown how far the new approach results deviate from the results obtained by applying the SAE protocol. A total supply of 28 kg was simulated but with three different configurations: 14*2 kg tanks 7*4 kg tanks and 4*7 kg tanks. When analyzing the effect of varying the ratio of inner diameter to inner length it was noted that in the most conservative case there is an overestimation in terms of final temperature for the three configurations of about: 2.1 ◦C 1.4 ◦C and 1.1 ◦C respectively. This aspect has a significant impact on the refueling time which could be reduced by about 9.9% in the first case and about 7.1% and 5.4% in the other two. In addition refueling using the multi-tank approach was simulated for some case studies assimilated to heavy vehicles currently on the market in terms of the amount of hydrogen stored. These refuelings were carried out with stations capable of delivering a maximum flow rate of 120 g/s 180 g/s and 240 g/s. It is inferred that increasing the flow rate from 120 g/s to 180 g/s results in time savings for the three cases of: 35% 34% and 37%. On the other hand running up to 240 g/s results in time savings of: 54% 52% and 55%.
Functional Resonance Analysis for Emerging Risks in Hydrogen Handling: An Analysis of an Experimental Test
Oct 2024
Publication
Hydrogen is on the rise as a substitute for fossil fuel in the energy sector. While this substitution does not happen dramatically the steady increase in hydrogen related research might be a good indicator of such desire. As it stands there are issues regarding its safe handling and use; consequently the health and safety subsectors observe the situation conspicuously. As we yet to know the behavior of hydrogen in critical situations uncertainties make these tasks prone to emerging risks. Thus hydrogen safety falls under emerging risk studies. Conventional perspective on safety especially regarding the flammable material focuses on calculating the hypothetical risks of failures in system. Resilience Engineering has another perspective as it focuses on normal operations offering new perspectives to tackle emerging risks from a new angle. Born from the heart of Resilience Engineering the Functional Resonance Analysis Method (FRAM) captures sociotechnical systems’ essence in a tangible way. In this study FRAM has been used to model a series of experiments done on hydrogen management to analyze its jet fire. FRAM is used to test whether the method could be suitable to model a system in which emerging risks are present. It is the conclusion of this study that FRAM seems promising in raising risk awareness especially when available data is limited.
Liquid E-fuels for a Sustainable Future: A Comprehensive Review of Production, Regulation, and Technological Innovation
Sep 2025
Publication
The decarbonization of sectors such as aviation maritime transport and heavy-duty mobility—where direct electrification is not yet feasible—requires alternative fuels with high energy density and compatibility with existing infrastructure. This review investigates the potential of liquid synthetic fuels known as liquid electrofuels (or e-fuels) to replace fossil fuels in these hard-to-abate sectors. The objective is to provide a comprehensive integrative assessment of liquid e-fuel development by analyzing production pathways feedstock demands regulatory frameworks and industrial implementation trends. The study reviews three major production processes—Fischer–Tropsch synthesis methanol synthesis and the Haber–Bosch process—used to produce six key synthetic fuels: e-kerosene e-diesel e-methanol e-dimethyl ether e-gasoline and e-ammonia. The methodology includes a systematic review of literature life cycle assessments for water and energy demand and analysis of over 30 large-scale projects worldwide in terms of plant capacity (10–200 MW) production volume capital investment and technology readiness level. Results show that process efficiencies range from 59 % to 89 % with current production costs for synthetic kerosene and methanol varying between 1200–4200 €/ton depending on the pathway and technology maturity. The study finds that polymer electrolyte membrane electrolysis and industrial point-source carbon dioxide capture are the most prevalent technologies among operational plants. Regulatory complexity high capital expenditure and the lack of harmonized sustainability criteria remain key barriers to commercial scaling. This review advances the scientific literature by presenting a novel multi-dimensional framework that connects technical environmental and policy considerations offering a strategic roadmap for accelerating the global deployment of liquid synthetic fuels.
Exploring the Viability of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation Using Solid Oxide Electrolysis Cells (SOECs)
Jul 2023
Publication
In response to the European Union’s initiative toward achieving carbon neutrality the utilization of water electrolysis for hydrogen production has emerged as a promising avenue for decarbonizing current energy systems. Among the various approaches Solid Oxide Electrolysis Cell (SOEC) presents an attractive solution especially due to its potential to utilize impure water sources. This study focuses on modeling a SOEC supplied with four distinct streams of treated municipal wastewaters using the Aspen Plus software. Through the simulation analysis it was determined that two of the wastewater streams could be effectively evaporated and treated within the cell without generating waste liquids containing excessive pollutant concentrations. Specifically by evaporating 27% of the first current and 10% of the second it was estimated that 26.2 kg/m3 and 9.7 kg/m3 of green hydrogen could be produced respectively. Considering the EU’s target for Italy is to have 5 GW of installed power capacity by 2030 and the mass flowrate of the analyzed wastewater streams this hydrogen production could meet anywhere from 0.4% to 20% of Italy’s projected electricity demand.
Techno-Economic Analysis of Clean Hydrogen Production Plants in Sicily: Comparison of Distributed and Centralized Production
Jul 2024
Publication
This paper presents an assessment of the levelized cost of clean hydrogen produced in Sicily a region in Southern Italy particularly rich in renewable energy and where nearly 50% of Italy’s refineries are located making a comparison between on-site production that is near the end users who will use the hydrogen and centralized production comparing the costs obtained by employing the two types of electrolyzers already commercially available. In the study for centralized production the scale factor method was applied on the costs of electrolyzers and the optimal transport modes were considered based on the distance and amount of hydrogen to be transported. The results obtained indicate higher prices for hydrogen produced locally (from about 7 €/kg to 10 €/kg) and lower prices (from 2.66 €/kg to 5.80 €/kg) for hydrogen produced in centralized plants due to economies of scale and higher conversion efficiencies. How-ever meeting the demand for clean hydrogen at minimal cost requires hydrogen distribution pipelines to transport it from centralized production sites to users which currently do not exist in Sicily as well as a significant amount of renewable energy ranging from 1.4 to 1.7 TWh per year to cover only 16% of refineries’ hydrogen needs.
Chemical Kinetic Analysis of High-Pressure Hydrogen Ignition and Combustion toward Green Aviation
Jan 2024
Publication
In the framework of the “Multidisciplinary Optimization and Regulations for Low-boom and Environmentally Sustainable Supersonic aviation” project pursued by a consortium of European government and academic institutions coordinated by Politecnico di Torino under the European Commission Horizon 2020 financial support the Italian Aerospace Research Centre is computationally investigating the high-pressure hydrogen/air kinetic combustion in the operative conditions typically encountered in supersonic aeronautic ramjet engines. This task is being carried out starting from the zero-dimensional and one-dimensional chemical kinetic assessment of the complex and strongly pressure-sensitive ignition behavior and flame propagation characteristics of hydrogen combustion through the validation against experimental shock tube and laminar flame speed measurements. The 0D results indicate that the kinetic mechanism by Politecnico di Milano and the scheme formulated by Kéromnès et al. provide the best matching with the experimental ignition delay time measurements carried out in high-pressure shock tube strongly argon-diluted reaction conditions. Otherwise the best behavior in terms of laminar flame propagation is achieved by the Mueller scheme while the other investigated kinetic mechanisms fail to predict the flame speeds at elevated pressures. This confirms the non-linear and intensive pressure-sensitive behavior of hydrogen combustion especially in the critical high-pressure and low-temperature region which is hard to be described by a single all-encompassing chemical model.
It Is Not the Same Green: A Comparative LCA Study of Green Hydrogen Supply Network Pathways
Jul 2024
Publication
Green hydrogen (H2 ) a promising clean energy source garnering increasing attention worldwide can be derived through various pathways resulting in differing levels of greenhouse gas emissions. Notably Green H2 production can utilize different methods such as integrating standard photovoltaic panels thermal photovoltaic or concentrated photovoltaic thermal collectors with electrolyzers. Furthermore it can be conditioned to different states or carriers including liquefied H2 compressed H2 ammonia and methanol and stored and transported using various methods. This paper employs the Life Cycle Assessment methodology to compare 18 different green hydrogen pathways and provide recommendations for greening the hydrogen supply chain. The findings indicate that the production pathway utilizing concentrated photovoltaic thermal panels for electricity generation and hydrogen compression in the conditioning and transportation stages exhibits the lowest environmental impact emitting only 2.67 kg of CO2 per kg of H2 .
The Economic Competitiveness of Hydrogen Fuel Cell-Powered Trucks: A Review of Total Cost of Ownership Estimates
May 2024
Publication
This paper investigates the economic competitiveness of hydrogen-powered trucks. It reviews the growing number of papers that provide an estimate of the total cost of ownership (TCO) of hydrogen-powered trucks relative to their diesel equivalents. It examines the methodology applied the variables considered the data used for estimation and the results obtained. All reviewed studies conclude that hydrogen-powered trucks are not currently cost-competitive while they might become competitive after 2030. The conclusion holds across truck types and sizes hydrogen pathways mission profiles and countries. However we find that there is still a huge area of uncertainty regarding the purchase price of hydrogen-powered trucks and the cost of hydrogen which hampers the reliability of the results obtained. Various areas of methodological improvements are suggested.
Computational Predictions of Hydrogen-assisted Fatigue Crack Growth
May 2024
Publication
A new model is presented to predict hydrogen-assisted fatigue. The model combines a phase field description of fracture and fatigue stress-assisted hydrogen diffusion and a toughness degradation formulation with cyclic and hydrogen contributions. Hydrogen-assisted fatigue crack growth predictions exhibit an excellent agreement with experiments over all the scenarios considered spanning multiple load ratios H2 pressures and loading frequencies. These are obtained without any calibration with hydrogen-assisted fatigue data taking as input only mechanical and hydrogen transport material properties the material’s fatigue characteristics (from a single test in air) and the sensitivity of fracture toughness to hydrogen content. Furthermore the model is used to determine: (i) what are suitable test loading frequencies to obtain conservative data and (ii) the underestimation made when not pre-charging samples. The model can handle both laboratory specimens and large-scale engineering components enabling the Virtual Testing paradigm in infrastructure exposed to hydrogen environments and cyclic loading.
Modeling the Long-term Evolution of the Italian Power Sector: The Role of Renewable Resources and Energy Storage Facilities
Feb 2024
Publication
The aim of this study is to investigate the long-term planning of the Italian power sector from 2021 to 2050. The key role of photovoltaic and wind technologies in combination with power-to-power systems based on hydrogen and batteries is investigated. An updated version of the OSeMOSYS tool is used which employs a clustering method for the representation of time-varying input data. First the potential of variable renewable energy sources (VRES) is assessed. A sensitivity analysis is also performed on the temporal resolution of the model to determine an adequate trade-off between the computation time and the accuracy of the results. Then a technoeconomic optimization scenario is carried out resulting in a total net present cost of about 233.7 B€. A high penetration of VRES technologies is foreseen by 2050 with a total VRES installed capacity of 272.9 GW (mainly photovoltaic and onshore wind). Batteries are found to be the preferable energy storage solution in the first part of the energy transition while the hydrogen storage starts to be convenient from about the year 2040. Indeed the role of hydrogen storage becomes fundamental as the VRES penetration increases thanks to its cost-effective long-term storage capability. By 2050 74.6 % of electricity generation will be based on VRES which will also enable a significant reduction in CO2 emissions of about 87 %.
A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell
Feb 2024
Publication
This paper addresses the problem of the reduction in the huge energy demand of hospitals and health care facilities. The sharp increase in the natural gas price due to the Ukrainian–Russian war has significantly reduced economic savings achieved by combined heat and power (CHP) units especially for hospitals. In this framework this research proposes a novel system based on the integration of a reversible CHP solid oxide fuel cell (SOFC) and a photovoltaic field (PV). The PV power is mainly used for balancing the hospital load. The excess power production is exploited to produce renewable hydrogen. The SOFC operates in electrical tracking mode. The cogenerative heat produced by the SOFC is exploited to partially meet the thermal load of the hospital. The SOFC is driven by the renewable hydrogen produced by the plant. When this hydrogen is not available the SOFC is driven by natural gas. In fact the SOFC is coupled with an external reformer. The simulation model of the whole plant including the reversible SOFC PV and hospital is developed in the TRNSYS18 environment and MATLAB. The model of the hospital is calibrated by means of measured data. The proposed system achieves very interesting results with a primary energy-saving index of 33% and a payback period of 6.7 years. Therefore this energy measure results in a promising solution for reducing the environmental impact of hospital and health care facilities.
Mapping Hydrogen Initiatives in Italy: An Overview of Funding and Projects
May 2024
Publication
The global momentum towards hydrogen has led to various initiatives aimed at harnessing hydrogen’s potential. In particular low-carbon hydrogen is recognized for its crucial role in reducing greenhouse gas emissions across hard-to-abate sectors such as steel cement and heavy-duty transport. This study focuses on the presentation of all hydrogen-related financing initiatives in Italy providing a comprehensive overview of the various activities and their geographical locations. The examined funding comes from the National Recovery and Resilience Plan (PNRR) from projects directly funded through the Important Projects of Common European Interest (IPCEI) and from several initiatives supported by private companies or other funding sources (hydrogen valleys). Specific calls for proposals within the PNRR initiative outline the allocation of funds focusing on hydrogen production in brownfield areas (52 expected hydrogen production plants by 2026) hydrogen use in hard-to-abate sectors and the establishment of hydrogen refuelling stations for both road (48 refuelling stations by 2026) and railway transport (10 hydrogen-based railway lines). A detailed description of the funded initiatives (150 in total) is presented encompassing their geographical location typology and size (when available) as well as the funding they have received. This overview sheds light on regions prioritising decarbonisation efforts in heavy-duty transport especially along cross-border commercial routes as evident in northern Italy. Conversely some regions concentrate more on local transport typically buses or on the industrial sector primarily steel and chemical industries. Additionally the study presents initiatives aimed at strengthening the national manufacturing capacity for hydrogenrelated technologies alongside new regulatory and incentive schemes for hydrogen. The ultimate goal of this analysis is to foster connections among existing and planned projects stimulate new initiatives along the entire hydrogen value chain raise an awareness of hydrogen among stakeholders and promote cooperation and international competitiveness.
Critical Review of Life Cycle Assessment of Hydrogen Production Pathways
May 2024
Publication
In light of growing concerns regarding greenhouse gas emissions and the increasingly severe impacts of climate change the global situation demands immediate action to transition towards sustainable energy solutions. In this sense hydrogen could play a fundamental role in the energy transition offering a potential clean and versatile energy carrier. This paper reviews the recent results of Life Cycle Assessment studies of different hydrogen production pathways which are trying to define the routes that can guarantee the least environmental burdens. Steam methane reforming was considered as the benchmark for Global Warming Potential with an average emission of 11 kgCO2eq/kgH2. Hydrogen produced from water electrolysis powered by renewable energy (green H2 ) or nuclear energy (pink H2 ) showed the average lowest impacts with mean values of 2.02 kgCO2eq/kgH2 and 0.41 kgCO2eq/kgH2 respectively. The use of grid electricity to power the electrolyzer (yellow H2 ) raised the mean carbon footprint up to 17.2 kgCO2eq/kgH2 with a peak of 41.4 kgCO2eq/kgH2 in the case of countries with low renewable energy production. Waste pyrolysis and/or gasification presented average emissions three times higher than steam methane reforming while the recourse to residual biomass and biowaste significantly lowered greenhouse gas emissions. The acidification potential presents comparable results for all the technologies studied except for biomass gasification which showed significantly higher and more scattered values. Regarding the abiotic depletion potential (mineral) the main issue is the lack of an established recycling strategy especially for electrolysis technologies that hamper the inclusion of the End of Life stage in LCA computation. Whenever data were available hotspots for each hydrogen production process were identified.
A General Criterion for the Design and Operation of Flexible Hydrogen Storage in Power-to-X Processed
Dec 2024
Publication
This paper introduces a general criterion for the optimal design and operation of hydrogen storage tanks. Specifically the proposed procedure identifies the optimal delivery schedule that minimizes the capacity of material storage systems. Indeed many manufacturing processes need some buffer storage to administer mass flows appropriately according to the operating needs (one class above all: Power-to-X processes) and have one of their highest expenditures right in those tanks when proving not sufficiently flexible. Hence the novelty of the proposed method lies in a rigorous mathematical formulation that converts arbitrarily fluctuating inlet streams into optimally fluctuating outlet streams that minimize the storage volume and comply with different operating requirements. The criterion is validated by considering the techno-economic assessment of a chemical plant featuring a dedicated green hydrogen production facility that feeds the process. Specifically the required capacity of the “Flexible” hydrogen buffer storage which connects the green hydrogen generation system to the conversion process significantly decreases by 91.31%–99.31% (depending on the flexibility ranges enabled by the downstream conversion process) compared to the “Rigid” storage alternative based on a constant outlet mass flow withdrawal coinciding with the hydrogen consumption rate at nominal operating conditions. Correspondingly the resulting levelized cost of hydrogen benefits accordingly ranging from 4.19 to 6.03 USD/kg (California 2023).
Hydrogen Production from Low-quality Water: Challenges and Perspectives
Sep 2022
Publication
The Next Generation EU plan fosters the development of a large capacity for hydrogen generation. However water and energy resources are strictly connected to an indissoluble nexus. For that water electrolysis may counteract the coexistence of two primary UNO Sustainable Development Goals humankind must face to achieve a prosperous and equal society namely SDG 7 (Affordable access to renewable energy sources) and SDG 6 (clean water). To design innovative energy systems implementing hydrogen as an efficient and sustainable vector water resources need careful management and energy use ought not to compete with freshwater delivery. Therefore the present study reviews the technologies available for hydrogen production and their fitness to water quality standards. Among the feeding possibilities to be scrutinized wastewaters and saline waters are worth attention. Each source of water asks for a specific design and management of the water treatment pre-process. Since these steps are energydemanding in some applications the direct use of low-quality water to produce hydrogen may be envisaged. An example is the direct feeding of seawater to Solid Oxide Electrolysers (SOE). SOEs appear more promising than commercial low-temperature electrolysis systems since water steam production integrates the function of preliminary water treatment.
Multi-year Energy Performance Data for an Electrolysis-based Hydrogen Refueling Station
Apr 2023
Publication
Financing sizing operating or upgrading a hydrogen refueling station (HRS) is challenging and may be complex much more so in today's rapidly changing and growing hydrogen industry. There is a significant information gap regarding experimental hydrogen station activities. A high-level perspective on such data and information may facilitate the transition between present and future HRS operations. To address the need for such high-level perspective this paper presents a comprehensive data set on the performance of the California State University Los Angeles Hydrogen Research and Fueling Facility based on multi-year operational data. The analysis of over 4500 refueling events and over 8800 kg of hydrogen dispensed as well as the operation of the facility electrolyzer and of both storage and refueling compressors from 2016 to 2020 reveals a comprehensive picture of HRS energy performance and the identification of useful key performance indicators. In 2016 the station's energy efficiency was 25% but in 2017 and the first three quarters of 2018 it dropped to 15%. Station-specific energy consumption increased during these quarters. The 2020 first quarter energy consumption was between 70 and 80 kWh/kg. At this time the energy efficiency of the station reached 40%.<br/>This research is based on an unprecedented and unique dataset of an HRS operating under real-world conditions with an approach that can be informative for modeling the performance of other stations providing a dataset that HRS designers operators and investors may utilize to make data-driven choices regarding HRS components and their specs and size as well as operating strategies.
Regional Disparities and Strategic Implications of Hydrogen Production in 27 European Countries
Aug 2024
Publication
This study examines hydrogen production across 27 European countries highlighting disparities due to varying energy policies and industrial capacities. Germany leads with 109 plants followed by Poland France Italy and the UK. Mid-range contributors like the Netherlands Spain Sweden and Belgium also show substantial investments. Countries like Finland Norway Austria and Denmark known for their renewable energy policies have fewer plants while Estonia Iceland Ireland Lithuania and Slovenia are just beginning to develop hydrogen capacities. The analysis also reveals that a significant portion of the overall hydrogen production capacity in these countries remains underutilized with an estimated 40% of existing infrastructure not operating at full potential. Many countries underutilize their production capacities due to infrastructural and operational challenges. Addressing these issues could enhance output supporting Europe’s energy transition goals. The study underscores the potential of hydrogen as a sustainable energy source in Europe and the need for continued investment technological advancements supportive policies and international collaboration to realize this potential.
A Multi-objective Planning Tool for the Optimal Supply of Green Hydrogen for an Inustrial Port Area Decarbonisation
Jul 2024
Publication
This study addresses the challenge of decarbonizing highly energy-intensive Industrial Port Areas (IPA) focusing on emissions from various sources like ship traffic warehouses buildings cargo handling equipment and hardto-abate industry typically hosted in port areas. The analysis and proposal of technological solutions and their optimal integration in the context of IPA is a topic of growing scientific interest with considerable social and economic implications. Representing the main novelties of the work this study introduces (i) the development of a novel IPA energy and green hydrogen hub located in a tropical region (Singapore); (ii) a multi-objective optimization approach to analyse synthesize and optimize the design and operation of the hydrogen and energy hub with the aim of supporting decision-making for decarbonization investments. A sensitivity analysis identifies key parameters affecting optimization results indicating that for large hydrogen demands imported ammonia economically outperforms other green hydrogen carriers. Conversely local hydrogen production via electrolysis becomes economically viable when the capital cost of alkaline electrolyser drops by at least 30 %. Carbon tax influences the choice of green hydrogen but its price variation mainly impacts system operation rather than design. Fuel cells and batteries are not considered economically feasible solutions in any scenario.
Hydrogen in Natural Gas Grids: Prospects and Recommendations About Gas Flow Meters
Aug 2024
Publication
To inject green hydrogen (H2) into the existing natural gas (NG) infrastructure is one way to decarbonize the European energy system. However asset readiness is necessary to be successful. Preliminary analysis and experimental results about the compatibility of hydrogen and natural gas mixtures (H2NG) with the actual gas grids make the scientific community confident about the feasibility. Nevertheless specific technical questions need more research. A significant topic of debate is the impact of H2NG mixtures on the performance of state-ofthe-art fiscal measuring devices which are essential for accurate billing. Identifying and addressing any potential degradation in their metrological performance due to H2NG is critical for decision-making. However the literature lacks data about the gas meters’ technologies currently installed in the NG grids such as a comprehensive overview of their readiness at different concentrations while data are fragmented among different sources. This paper addresses these gaps by analyzing the main characteristics and categorizing more than 20000 gas meters installed in THOTH2 project partners’ grids and by summarizing the performance of traditional technologies with H2NG mixtures and pure H2 based on literature review operators experience and manufacturers knowledge. Based on these insights recommendations are given to stakeholders on overcoming the identified barriers to facilitate a smooth transition.
Review of the Hydrogen Supply Chain and Use in Africa
Oct 2024
Publication
The high potential in renewable energy sources (RES) and the availability of strategic minerals for green hydrogen technologies place Africa in a promising position for the development of a climate-compatible economy leveraging on hydrogen. This study reviews the potential hydrogen value chain in Africa considering production and final uses while addressing perspectives on policies possible infrastructures and facilities for hydrogen logistics. Through scientific studies research and searching in relevant repositories this review features the collection analysis of technical data and georeferenced information about key aspects of the hydrogen value chain. Detailed maps and technical data for gas transport infrastructure and liquefaction terminals in the continent are reported to inform and elaborate findings about readiness for hydrogen trading and domestic use in Africa. Specific maps and technical data have been also collected for the identification of potential hydrogen offtakers focusing on individual industrial installations to produce iron and steel chemicals and oil refineries. Finally georeferenced data are presented for main road and railway corridors as well as for most important African ports as further end-use and logistic platforms. Beyond technical information this study collects and discusses more recent perspectives about policies and implementation initiatives specifically addressing hydrogen production logistics and final use also introducing potential criticalities associated with environmental and social impacts.
Comparison Between Hydrogen and Syngas Fuels in an Integrated Micro Gas Turbine/Solar Field with Storage
Sep 2020
Publication
In recent years the use of alternative fuels in thermal engine power plants has gained more and more attention becoming of paramount importance to overcome the use of fuels from fossil sources and to reduce polluting emissions. The present work deals with the analysis of the response to two different gas fuels—i.e. hydrogen and a syngas from agriculture product—of a 30 kW micro gas turbine integrated with a solar field. The solar field included a thermal storage system to partially cover loading requests during night hours reducing fuel demand. Additionally a Heat Recovery Unit was included in the plant considered and the whole plant was simulated by Thermoflex® code. Thermodynamics analysis was performed on hour-to-hour basis for a given day as well as for 12 months; subsequently an evaluation of cogeneration efficiency as well as energy saving was made. The results are compared against plant performance achieved with conventional natural gas fueling. After analyzing the performance of the plant through a thermodynamic analysis the study was complemented with CFD simulations of the combustor to evaluate the combustion development and pollutant emissions formation particularly of NOx with the two fuels considered using Ansys-Fluent code and a comparison was made.
Current Standards and Configurations for the Permitting and Operation of Hydrogen Refueling Stations
Mar 2023
Publication
The literature lacks a systematic analysis of HRS equipment and operating standards. Researchers policymakers and HRS operators could find this information relevant for planning the network's future expansion. This study is intended to address this information need by providing a comprehensive strategic overview of the regulations currently in place for the construction and maintenance of hydrogen fueling stations. A quick introduction to fundamental hydrogen precautions and hydrogen design is offered. The paper therefore provides a quick overview of hydrogen's safety to emphasize HRS standards rules and regulations. Both gaseous and liquid safety issues are detailed including possible threats and installation and operating expertise. After the safety evaluation layouts equipment and operating strategies for HRSs are presented followed by a review of in-force regulations: internationally by presenting ISO IEC and SAE standards and Europeanly by reviewing the CEN/CENELEC standards. A brief and concise analysis of Italy's HRS regulations is conducted with the goal of identifying potential insights for strategic development and more convenient technology deployment.
Model Complexity and Optimization Trade-offs in the Design and Scheduling of Hybrid Hydrogen-battery Systems
Jul 2025
Publication
The production of hydrogen from renewable sources could play a significant role in supporting the transition toward a decarbonized energy system. This study has involved investigating optimization strategies − mixedinteger linear programming (MILP) a hybrid particle swarm optimization (PSO)-MILP framework and PSO combined with a rule-based energy management strategy (EMS) − applied to a power-to-hydrogen system for industrial applications. The analysis evaluates the levelized cost of hydrogen production (LCOH) carbon emissions and the impact of key factors such as battery degradation electrolyzer efficiency real-time pricing and hydrogen load management. The obtained results indicated that the MILP-based models achieved moderate LCOH values (10.1–10.7 €/kg) but incurred higher CO2 emissions (20.2–24.6 kt/y). Instead the PSO model combined with the rule-based EMS lowered emissions to 14.3 kt/y (a 27–45% reduction) albeit with a higher LCOH (11.6 €/kg). The hybrid PSO-MILP models struck a balance achieving LCOH values of between 9.2 and 9.7 €/kg with CO2 emissions of 19.7–20.3 kt/y as they benefited from the integration of piecewise affine linearization for modeling electrolyzer efficiency and battery degradation. In terms of computational efforts the MILP-based models required more than 48 h to converge while the PSO-MILP models completed within 27–35 h and the PSO model with rule-based EMS achieved results in 1.5 h. These findings offer guidance that can be used to select the most suitable optimization method on the basis of the desired performance targets resource constraints and computational complexity thereby contributing to the design of more sustainable energy systems.
An Innovative Cryogenic Heat Exchanger Design for Sustainable Aviation
Mar 2025
Publication
Aviation is one of the most important industries in the current global scenario but it has a significant impact on climate change due to the large quantities of carbon dioxide emitted daily from the use of fossil kerosene-based fuels (jet fuels). Although technological advancements in aircraft design have enhanced efficiency and reduced emissions over the years the rapid growth of the aviation industry presents challenges in meeting the environmental targets outlined in the “Flightpath 2050” report. This highlights the urgent need for effective decarbonisation strategies. Hydrogen propulsion via fuel cells or combustion offers a promising solution with the combustion route currently being more practical for a wider range of aircraft due to the limited power density of fuel cells. In this context this paper designs and models a nitrogen–hydrogen heat exchanger architecture for use in an innovative hydrogen-propelled aircraft fuel system where the layout was recently proposed by the same authors to advance sustainable aviation. This system stores hydrogen in liquid form and injects it into the combustion chamber as a gas making the cryogenic heat exchanger essential for its operation. In particular the heat exchanger enables the vaporisation and superheating of liquid hydrogen by recovering heat from turbine exhaust gases and utilising nitrogen as a carrier fluid. A pipe-in-pipe design is employed for this purpose which to the authors’ knowledge is not yet available on the market. Specifically the paper first introduces the proposed heat exchanger architecture then evaluates its feasibility with a detailed thermodynamic model and finally presents the calculation results. By addressing challenges in hydrogen storage and usage this work contributes to advancing sustainable aviation technologies and reducing the environmental footprint of air travel.
Experimental Study of the Influence of Oxygen Enrichment in Hydrogen-enriched Natural Gas Combustion at a Semi-industrial Scale
Aug 2025
Publication
This study investigates the effect of Oxygen-Enriched Combustion on hydrogen-enriched natural gas (H2 -NG) fuel mixtures at a semi-industrial scale (up to 60 kW). The analysis focuses on flame structure temperature distribu tion in the furnace NOx emissions and potential fuel savings. A multi-fuel multi-oxidizer jet burner was used to compare two oxygen enrichment configurations: premixed with air (PM) and air-pure O2 (AO) independent feed. The O2 -enriched flames remained stable across the entire fuel range. OH* chemiluminescence imaging for the H2 -NG fuel mixture delivering 50 concentration kW revealed that higher O2 increases the OH* intensity narrows and elongates the flame transitions from buoyancy- to momentum-driven shape and relocates the reaction zone. At 50 % oxygen enrichment level (OEL) flame shape OH* intensity and temperature profiles resembled pure O combustion. Up to 29 % OEL furnace temperature profiles were similar to those 2 of air-fuel combustion. The power required to maintain 1300 ± 25 ◦C at the reference position decreases with O2 enrichment. Higher OELs resulted in a sharp increase in NOx emissions. The effect of hydrogen enrichment on NOx levels was significantly less pronounced than that of oxygen enrichment. The rise in NOx emissions correlates with increased OH* in tensities. For a 50 % H2 2 blend increasing the O concentration in the oxidizer from 21 % to 50 % resulted in a 27 % reduction in flue gas heat losses. Utilizing O2 co-produced with H2 could be strategic for reducing fuel consumption facilitating the adoption of hydrogen-based energy systems.
Green Hydrogen Production: Energy and Economic Modelling of Self-sufficient Solar-powered Electrolyser Based on Seawater Desalination
Jun 2025
Publication
Growing energy demands and increasing concerns about climate change have spurred new approaches in both policy and industry with a focus on transforming current energy systems in modern energy hubs. In this context green hydrogen produced through electrolysis process powered by renewable energy sources emerges as a highly versatile and promising solution for decarbonising sectors and provide alternative fuels for process and transportation. This study models and simulates an integrated system comprising desalination brine treatment and electrolysis to generate green hydrogen fuelled entirely by solar energy. The desalination unit produces demineralised water suitable for electrolysis while alternative brine management strategies are explored for scenarios where brine discharge back to the sea is restricted. An economic analysis further evaluates cost-effective system configurations by varying component sizes. To demonstrate the model potential a case study for green hydrogen production based on seawater desalination was conducted for an Italian port city and extended to three other sites with different annual solar radiation. The objective is to determine configurations that minimise hydrogen cost and identify required incentives. The economic performance of the system in terms of the Levelized Cost of Hydrogen ranges from 5 to 8 €/kg while the required incentives to make green hydrogen competitive with blue hydrogen production systems vary between 7 and 12 M€ across the analysed configurations. Furthermore the analysis provides valuable insights into the potential of coastal areas to serve as critical hubs for green hydrogen production given the abundant availability of seawater. Ports with their existing infrastructure and proximity to maritime transport represent ideal locations for integrating renewable energy sources with hydrogen production facilities.
Exploring Hydrogen–Diesel Dual Fuel Combustion in a Light-Duty Engine: A Numerical Investigation
Nov 2024
Publication
Dual fuel combustion has gained attention as a cost-effective solution for reducing the pollutant emissions of internal combustion engines. The typical approach is combining a conventional high-reactivity fossil fuel (diesel fuel) with a sustainable low-reactivity fuel such as bio-methane ethanol or green hydrogen. The last one is particularly interesting as in theory it produces only water and NOx when it burns. However integrating hydrogen into stock diesel engines is far from trivial due to a number of theoretical and practical challenges mainly related to the control of combustion at different loads and speeds. The use of 3D-CFD simulation supported by experimental data appears to be the most effective way to address these issues. This study investigates the hydrogen-diesel dual fuel concept implemented with minimum modifications in a light-duty diesel engine (2.8 L 4-cylinder direct injection with common rail) considering two operating points representing typical partial and full load conditions for a light commercial vehicle or an industrial engine. The numerical analysis explores the effects of progressively replacing diesel fuel with hydrogen up to 80% of the total energy input. The goal is to assess how this substitution affects engine performance and combustion characteristics. The results show that a moderate hydrogen substitution improves brake thermal efficiency while higher substitution rates present quite a severe challenge. To address these issues the diesel fuel injection strategy is optimized under dual fuel operation. The research findings are promising but they also indicate that further investigations are needed at high hydrogen substitution rates in order to exploit the potential of the concept.
Mitigation of Reverse Power Flows in a Distribution Network by Power-to-Hydrogen Plant
Jul 2025
Publication
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems due to phenomena such as congestion and reverse power flows. In mitigating these phenomena Power-to-Gas plants can make an important contribution. In this paper a linear optimisation study is presented for the sizing of a Power-to-Hydrogen plant consisting of a PEM electrolyser a hydrogen storage system composed of multiple compressed hydrogen tanks and a fuel cell for the eventual reconversion of hydrogen to electricity. The plant was sized with the objective of minimising reverse power flows in a medium-voltage distribution network characterised by a high presence of photovoltaic systems considering economic aspects such as investment costs and the revenue obtainable from the sale of hydrogen and excess energy generated by the photovoltaic systems. The study also assessed the impact that the electrolysis plant has on the power grid in terms of power losses. The results obtained showed that by installing a 737 kW electrolyser the annual reverse power flows are reduced by 81.61% while also reducing losses in the transformer and feeders supplying the ring network in question by 17.32% and 29.25% respectively on the day with the highest reverse power flows.
Raman Gas Sensor for Hydrogen Detection via Non-Dispersive and Dispersive Approaches
Jul 2025
Publication
The current solicitude in hydrogen production and its utilization as a greenhouse-neutral energy vector pushed deep interest in developing new and reliable systems intended for its detection. Most sensors available on the market offer reliable performance; however their limitations such as restricted dynamic range hysteresis reliance on consumables transducer–sample interaction and sample dispersion into the environment are not easily overcome. In this paper a non-dispersive Raman effect-based system is presented and compared with its dispersive alternative. This approach intrinsically guarantees no sample dispersion or preparation as no direct contact is required between the sample and the transducer. Moreover the technique does not suffer from hysteresis and recovering time issues. The results evaluated in terms of sample pressures and camera integration time demonstrate promising signal-to-noise ratio (SNR) and limit of detection (LOD) values indicating strong potential for direct field application.
On the Identification of Regulatory Gaps for Hydrogen as Maritime Fuel
Feb 2025
Publication
C. Georgopoulou,
C. Di Maria,
G. Di Ilio,
Viviana Cigolotti,
Mariagiovanna Minutillo,
Mosè Rossi,
B.P. Sullivan,
A. Bionda,
Markus Rautanen,
R. Ponzini,
F. Salvadore,
M. Alvarez-Cardozo,
P. Douska,
L. Koukoulopoulos,
G. Psaraftis,
G. Dimopoulos,
T. Wannemacher,
N. Baumann,
K. Mahosl,
M. Tome,
O. Noguero Torres,
F. Oikonomou,
A. Hamalainen,
F. Chillé,
Y. Papagiannopoulos and
N. Sakellaridis
The decarbonization of the maritime sector represents a priority in the energy policy agendas of the majority of Countries worldwide and the International Maritime Organization (IMO) has recently revised its strategy aiming for an ambitious zero-emissions scenario by 2050. In these regards there is a broad consensus on hydrogen as one of the most promising clean energy vectors for maritime transport and a key towards that goal. However to date an international regulatory framework for the use of hydrogen on-board of ships is absent this posing a severe limitation to the adoption of hydrogen technologies in this sector. To cope with this issue this paper presents a preliminary gap assessment analysis for the International Code of Safety for Ship Using Gases or other Low-flashpoint Fuels (IGF Code) with relation to hydrogen as a fuel. The analysis is structured according to the IGF Code chapters and a bottom-up approach is followed to review the code content and assess its relevance to hydrogen. The risks related to hydrogen are accounted for in assessing the gaps and providing a first level set of recommendations for IGF Code updates. By this means this work settles the basis for further research over the identified gaps towards the identification of a final set of recommendations for the IGF Code update.
Assessing the Feasibility of a Green Hydrogen Economy in Selected African Regions with Composite Indicators
Jan 2025
Publication
This study offers a comprehensive analysis of the feasibility of green hydrogen economies in Western and Southern African regions focusing on the ECOWAS and SADC countries. Utilizing a novel approach based on composite indicators the research evaluates the potential readiness and overall feasibility of green hydrogen production and export across these regions. The study incorporates various factors including the technical potential of renewable energy sources water resource availability energy security and existing infrastructure for transport and export. Country-specific analyses reveal unique insights into the diverse potential of nations like South Africa Lesotho Ghana Nigeria Angola and Namibia each with its unique strengths and challenges in the context of green hydrogen. The research findings underscore the complexity of developing green hydrogen economies highlighting the need for nuanced region-specific approaches that consider technical socioeconomic geopolitical and environmental factors. The paper concludes that cooperation and integration between countries in the regions may be crucial for the success of a future green hydrogen economy
Operational Analysis of a Pilot-Scale Plant for Hydrogen Production via an Electrolyser Powered by a Photovoltaic System
Jul 2025
Publication
This study presents preliminary findings from an experimental campaign conducted on a pilot-scale green hydrogen production plant powered by a photovoltaic (PV) system. The integrated setup implemented at the University “Mediterranea” of Reggio Calabria includes renewable energy generation hydrogen production via electrolysis on-site storage and reconversion through fuel cells. The investigation assessed system performance under different configurations (on-grid and selective stand-alone modes) focusing on key operational phases such as inerting purging pressurization hydrogen generation and depressurization. Results indicate a strong linear correlation between the electrolyser’s power setpoint and the pressure rise rate with a maximum gradient of 0.236 bar/min observed at 75% power input. The system demonstrated robust and stable operation efficient control of shutdown sequences and effective integration with PV input. These outcomes support the technical feasibility of small-scale hydrogen systems driven by renewables and offer valuable reference data for calibration models and future optimization strategies.
Optimisation of Green Hydrogen Production for Hard-to-abate Industries: An Italian Case Study Considering National Incentives
Mar 2025
Publication
Green hydrogen has emerged as a promising energy vector for the decarbonisation of heavy industry. The EU and national governments have recently introduced incentives to address the high costs of green hydrogen production and accelerate the economic development of hydrogen. This study investigates the local production of green hydrogen to decarbonise the high-temperature process heat demand of a heavy industry located in Italy. The hydrogen generation is powered by PV electricity and from the electric grid. We have optimised the sizes of the energy system components including battery storage and hydrogen tanks. The Levelised Cost of Hydrogen (LCOH) was found to be 7.7 EUR/kg in the unincentivised base scenario but this amount significantly reduced to 3.3 EUR/kg when incentives on hydrogen production in abandoned industrial areas were considered. Thanks to such incentives the greenhouse gas emissions decreased by as much as 85 % with respect to the non-incentivised base case. Our results show that the effect of the incentives on the design and economics of the system is comparable with the expected reductions in equipment costs over the next decade. Importantly our findings reveal a linear relationship between Capital Costs and LCOH thereby enabling precise cost estimations to be made for the considered location without any further simulations. A side effect of the size optimisation in the presence of incentives is an increase of the plant footprint. However the limited availability of land could lead to non-optimal configurations with important impacts on emission intensity and LCOH.
Ammonia as Hydrogen Carrier for Realizing Distributed On-site Refueling Stations Implementing PEMFC Technology
Oct 2020
Publication
Ammonia is a particularly promising hydrogen carrier due to its relatively low cost high energy density its liquid storage and to its production from renewable sources. Thus in recent years great attention is devoted to this fuel for realizing next generation refueling stations according to a carbon-free energy economy. In this paper a distributed onsite refueling station (200 kg/day of hydrogen filling 700-bar HFCEVs (Hybrid Fuel Cell Electric Vehicles) with about 5 kg of hydrogen in 5 min) based on ammonia feeding is studied from the energy and economic point of views. The station is designed with a modular configuration consisting of more sections: i) the hydrogen production section ii) the electric energy supplier section iii) the compression and storage section and the refrigeration/dispenser section. The core of the station is the hydrogen production section that is based on an ammonia cracking reactor and its auxiliaries; the electric energy demand necessary for the station operation (i.e. the hydrogen compression and refrigeration) is satisfied by a PEMFC (Proton-Exchange Membrane Fuel Cell) power module. Energy performance according to the hydrogen daily demand has been evaluated and the estimation of the levelized cost of hydrogen (LCOH) has been carried out in order to establish the cost of the hydrogen at the pump that can assure the feasibility of this novel refueling station.
Power Converters for Green Hydrogen: State of the Art and Perspectives
Nov 2024
Publication
This paper provides a comprehensive review and outlook on power converters devised for supplying polymer electrolyte membrane (PEM) electrolyzers from photovoltaic sources. The produced hydrogen known as green hydrogen is a promising solution to mitigate the dependence on fossil fuels. The main topologies of power conversion systems are discussed and classified; a loss analysis emphasizes the issues concerning the electrolyzer supply. The attention is focused on power converters of rated power up to a tenth of a kW since it is a promising field for a short-term solution implementing green hydrogen production as a decentralized. It is also encouraged by the proliferation of relatively cheap photovoltaic low-power plants. The main converters proposed by the literature in the last few years and realized for practical applications are analyzed highlighting their key characteristics and focusing on the parameters useful for designers. Future perspectives are addressed concerning the availability of new wide-bandgap devices and hard-to-abate sectors with reference to the whole conversion chain.
3E Analysis of a Virtual Hydrogen Valley Supported by Railway-based H2 Delivery for Multi-transportation Service
Nov 2023
Publication
In Southern Italy near the Mediterranean Sea mobility services like cars bicycles scooters and materialhandling forklifts are frequently required in addition to multimodal local transportation services such as trains ferry boats and airplanes. This research proposes an innovative concept of hydrogen valley virtually simulated in Matlab/Simulink environment located in Calabria. As a novelty hydrogen is produced centrally and delivered via fuel cell hybrid trains to seven hydrogen refueling stations serving various mobility hubs. The centralized production facility operates with a nominal capacity of about 4 tons/day producing hydrogen via PEM electrolysis and storing hydrogen at 200 bar with a hydrogen compressor. As the size of vehicle fleets and the cost of acquiring renewable energy through power purchase agreements vary the hydrogen valley is examined from both a technical and an economic perspective analyzing: the values of the levelized cost of hydrogen the energy consumption and the energy efficiency of the energy systems. Specifically the levelized cost of hydrogen reached competitive values close to 5 €/kg of hydrogen under the most optimistic scenarios with fleet conversions of more than 60 % and a power purchase agreement price lower than 150 €/MWh. Then the benefits of hydrogen rail transport in terms of emissions reduction and health from an economic standpoint are compared to conventional diesel trains and fully electric trains saving respectively 3.2 ktons/year and 0.4 ktons/year of carbon dioxide equivalent emissions and corresponding economic benefits of respectively 51 and 0.548 million euros.
Thermoeconomic Analysis of a Integrated Membrane Reactor and Carbon Dioxide Capture System Producing Decarbonized Hydrogen
Jan 2025
Publication
In this study a novel thermo-economic analysis on a membrane reactor adopted to generate hydrogen coupled to a carbon-dioxide capture system is proposed. Exergy destruction fuel and environmental as well as pur chased equipment costs have been accounted to estimate the cost of hydrogen production in the aforementioned integrated plant. It has been found that the integration of the CO2 capture system with the membrane reactor is responsible for the reduction of the hydrogen production cost by 12 % due to the decrease in environmental penalty cost. In addition the effects of operating parameters (steam-to-carbo ratio and biogas temperature) on the hydrogen production cost are investigated. Hence this work demonstrates that the latter can be decreased by approximately 2 $/kgH2 when steam to carbon ratio increases from 1.5 to 4. The analyses reveal that steam-tocarbo ratio increases exergy destruction cost affecting consequently also the hydrogen production cost. How ever from a thermodynamic point of view it enhances the hydrogen production in the membrane reactor mutually lowering the hydrogen production cost. It has been also estimated that a decrease in the biogas inlet temperature from 450 to 400◦C can reduce the hydrogen production cost by 7 %. This study demonstrates that the fuel cost is a major economic parameter affecting commercialization of hydrogen production while exergy destruction and environmental costs are also significant factors in determining the hydrogen production cost.
Advancing Energy Management Strategies for Hybrid Fuel Cell Vehicles: A Comparative Study of Deterministic and Fuzzy Logic Approaches
Aug 2025
Publication
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries these vehicles offer greater efficiency and zero emissions. However their energy management remains a challenge requiring advanced strategies. This paper presents a comparative study of two developed energy management strategies: a deterministic rule-based approach and a fuzzy logic approach. The proposed system consists of a proton exchange membrane fuel cell (PEMFC) as the primary energy source and a lithium-ion battery as the secondary source. A comprehensive model of the hybrid powertrain is developed to evaluate energy distribution and system behaviour. The control system includes a model predictive control (MPC) method for fuel cell current regulation and a PI controller to maintain DC bus voltage stability. The proposed strategies are evaluated under standard driving cycles (UDDS and NEDC) using a simulation in MATLAB/Simulink. Key performance indicators such as fuel efficiency hydrogen consumption battery state-of-charge and voltage stability are examined to assess the effectiveness of each approach. Simulation results demonstrate that the deterministic strategy offers a structured and computationally efficient solution while the fuzzy logic approach provides greater adaptability to dynamic driving conditions leading to improved overall energy efficiency. These findings highlight the critical role of advanced control strategies in improving FCHEV performance and offer valuable insights for future developments in hybrid-vehicle energy management.
Assessment of the Role of the Green Hydrogen as the Commodity Enabling a New Green Dialogue Among the Mediterranean Shores
Apr 2024
Publication
The Mediterranean basin has been characterized by a net flow of fossil commodities from the North African shore to Southern Europe and the Middle East for decades; however decarbonizing the energy system implies to substantially modify this situation turning the current “black dialogue” into a “green dialogue” (i.e. based on the exchange of renewable electricity and green hydrogen). This paper presents a feasibility study conducted to estimate the potential green hydrogen production by electrolysis in three Tunisian sites. It shows and compares several plant layouts varying the size and typology of renewable electricity generators and electrolyzers. The work adopts local weather data and technical features of the technologies in the computations and accounts for site specific topographical and infrastructural constraints such as land available for construction and local power grid connection capacities. It shows that configurations able to produce large quantities of green hydrogen may not be compliant with such constraints basically nullifying their contribution in any hydrogen strategy. Finally results show that the LCOH lies in the range 1.34 $/kgH2 and 4.06 $/kgH2 depending on both the location and the combination of renewable electricity generators and electrolyzers.
Assessing the Carbon Intensity of e-fuels Production in European Countries: A Temporal Analysis
Nov 2024
Publication
The transport sector heavily relies on the use of fossil fuels which are causing major environmental concerns. Solutions relying on the direct or indirect use of electricity through efuel production are emerging to power the transport sector. To ensure environmental benefits are achieved over this transition an accurate estimation of the impact of the use of electricity is needed. This requires a high temporal resolution to capture the high variability of electricity. This paper presents a previously unseen temporal analysis of the carbon intensity of e-fuels using grid electricity in countries that are members of the European Network of Transmission System Operators (ENTSO-E). It also provides an estimation of the potential load factor for producing low-carbon e-fuels according to the European Union legislative framework. This was achieved by building on top of the existing EcoDynElec tool to develop EcoDynElec_xr a python tool enabling—with an hourly time resolution—the calculation visualisation and analysis of the historical time-series of electricity mixing from the ENTSO-E. The results highlight that in 2023 very few European countries were reaching low carbon intensity for electricity that enables the use of grid electricity for the production of green electrolytic hydrogen. The methodological assumptions consider the consumption of the electricity mix instead of the production mix and the considered time step is of paramount importance and drastically impacts the potential load factor of green hydrogen production. The developed tools are released under an open-source license to ensure transparency result reproducibility and reuse regarding newer data for other territories or for other purposes.
A Survey on Hydrogen Tanks for Sustainable Aviation
Aug 2024
Publication
The aviation industry is facing challenges related to its environmental impact and thus the pressing need to develop aircraft technologies aligned with the society climate goals. Hydrogen is emerging as a potential clean fuel for aviation as it offers several advantages in terms of supply potential and weight specific energy. One of the key factors enabling the use of H2 in aviation is the development of reliable and safe storage technologies to be integrated into aircraft design. This work provides an overview of the technologies currently being investigated or developed for the storage of hydrogen within the aircraft which would enable the use of hydrogen as a sustainable fuel for aviation with emphasis on tanks material and structural aspects. The requirements dictated by the need of integrating the fuel system within existing or ex-novo aircraft architectures are discussed. Both the storage of gaseous and liquid hydrogen are considered and the main challenges related to the presence of either high internal pressures or cryogenic conditions are explored in the background of recent literature. The materials employed for the manufacturing of hydrogen tanks are overviewed. The need to improve the storage tanks efficiency is emphasized and issues such as thermal insulation and hydrogen embrittlement are covered as well as the reference to the main structural health monitoring strategies. Recent projects dealing with the development of onboard tanks for aviation are eventually listed and briefly reviewed. Finally considerations on the tank layout deemed more realistic and achievable in the near future are discussed.
Heat Transfer Modeling of Hydrogen-Fueled Spark Ignition Engine
Jan 2025
Publication
Currently green hydrogen generated through renewable energy sources stands out as one of the best substitutes for fossil fuels in mitigating pollutant emissions and consequent global warming. Particularly the utilization of hydrogen in spark ignition engines has undergone extensive study in recent years. Many aspects have been analyzed: the conversion of gasoline engines to hydrogen operation the combustion duration the heat transfer and in general the engine thermal efficiency. Hydrogen combustion is characterized by a smaller quenching distance compared to traditional hydrocarbon fuels such as gasoline or natural gas and this produces a smaller thermal boundary layer and consequently higher heat transfer. This paper presents findings from experimental trials and numerical simulations conducted on a hydrogen-powered CFR (cooperative fuel research) engine focusing specifically on heat transfer with combustion chamber walls. The engine has also been fueled with methane and isooctane (two reference fuels); both the engine compression ratio and the air/fuel ratio have been changed in a wide range in order to compare the three fuels in terms of heat transfer combustion duration and engine thermal efficiency in different operating conditions. A numerical model has been calibrated with experimental data in order to predict the amount of heat transfer under the best thermal efficiency operating conditions. The results show that when operated with hydrogen the best engine efficiency is obtained with a compression ratio of 11.9 and an excess air ratio (λ) of 2.
Optimal Decarbonisation Pathways for the Italian Energy System: Modelling a Long-term Energy Transition to Achieve Zero Emission by 2050
May 2024
Publication
The goal of achieving a zero-emission energy system by 2050 requires accurate energy planning to minimise the overall cost of the energy transition. Long-term energy models based on cost-optimal solutions are extremely dependent on the cost forecasts of different technologies. However such forecasts are inherently uncertain. The aim of the present work is to identify a cost-optimal pathway for the Italian energy system decarbonisation and assess how renewable cost scenarios can affect the optimal solution. The analysis has been carried out with the H2RES model a single-objective optimisation algorithm based on Linear Programming. Different cost scenarios for photovoltaics on-shore and off-shore wind power and lithium-ion batteries are simulated. Results indicate that a 100% renewable energy system in Italy is technically feasible. Power-to-X technologies are crucial for balancing purposes enabling a share of non-dispatchable generation higher than 90%. Renewable cost scenarios affect the energy mix however both on-shore and off-shore wind saturate the maximum capacity potential in almost all scenarios. Cost forecasts for lithium-ion batteries have a significant impact on their optimal capacity and the role of hydrogen. Indeed as battery costs rise fuel cells emerge as the main solution for balancing services. This study emphasises the importance of conducting cost sensitivity analyses in long-term energy planning. Such analyses can help to determine how changes in cost forecasts may affect the optimal strategies for decarbonising national energy systems.
A Techno-economic Life Cycle Assessment of H2 Fuelled and Electrified Urban Buses
Sep 2025
Publication
Nowadays several technologies based on powertrain electrification and the exploitation of hydrogen represent valuable options for decarbonizing the on-road public transport sector. The considered alternatives should exhibit an effective benchmark between CO2 reduction potential and production/operational costs. Conducting a comprehensive Total Cost of Ownership (TCO) analysis coupled with a thorough Life Cycle Assessment (LCA) is therefore crucial in shaping the future for cleaner urban mobility. From this perspective this study compares different powertrain configurations for a 12 m urban bus: a conventional diesel Internal Combustion Engine Vehicle (ICEV) a series hybrid diesel two hydrogen-based series hybrid vehicles: a Hydrogen Hybrid Electric Vehicle featuring an H2-ICE (H2-HEV) or a Fuel Cell Electric Vehicle (FCEV) and a Battery Electric Vehicle (BEV). Moreover a sensitivity analysis has been conducted on the carbon footprint for power generation considering also the marginal electricity mix. In addition prospective LCA and TCO elements are introduced by addressing future technological projections for the 2030 horizon. The research reveals that as of today the BEV and hydrogen-fueled vehicles have comparable environmental impacts when the marginal electricity mix is considered. The techno-economic analysis indicates that under current conditions FCEVs and H2-HEVs are not cost-effective for CO₂ reduction unless powered by renewable energy sources. However considering future technological advancements and market evolution FCEVs offer the most promising balance between economic and environmental benefits particularly if hydrogen prices reach €4 per kilogram. If hydrogen-powered vehicles remain a niche market BEVs will be the most viable option for decarbonizing the transport sector in most European countries.
Techno-economic Feasibility of Integrating Hybrid-battery Hydrogen Energy Storage in Academic Buildings
Apr 2024
Publication
Green hydrogen production and storage are vital in mitigating carbon emissions and sustainable transition. However the high investment cost and management requirements are the bottleneck of utilizing hybrid hydrogen-based systems in microgrids. Given the necessity of cost-effective and optimal design of these systems the present study examines techno-economic feasibility of integrating hybrid hydrogen-based systems into an outdoor test facility. With this perspective several solar-driven hybrid scenarios are introduced at two energy storage levels namely the battery and hydrogen energy storage systems including the high-pressure gaseous hydrogen and metal hydride storage tanks. Dynamic simulations are carried out to address subtle interactions in components of the hybrid system by establishing a TRNSYS model coupled to a Fortran code simulating the metal hydride storage system. The OpenStudio-EnergyPlus plugin is used to simulate the building load validate against experimental data according to the measured data and monitored operating conditions. Aimed at enabling efficient integration of energy storage systems a techno-enviro-economic optimization algorithm is developed to simultaneously minimize the levelized cost of the electricity and maximize the CO2 mitigation in each proposed hybrid scenario. The results indicate that integrating the gaseous hydrogen and metal hydride storages into the photovoltaic-alone scenario enhances 22.6% and 14.4% of the annual renewable factor. Accordingly the inclusion of battery system to these hybrid scenarios gives a 30.4% and 20.3 % boost to the renewable factor value respectively. Although the inclusion of battery energy storage into the hybrid systems increases the renewable factor the results imply that it reduces the hydrogen production rate via electrolysis. The optimized values of the levelized cost of electricity and CO2 emission for different scenarios vary in the range of 0.376–0.789 $/kWh and 6.57–9.75 ton respectively. The multi-criteria optimizations improve the levelized cost of electricity and CO2 emission by up to 46.2% and 11.3% with respect to their preliminary design.
Experimental Investigation of High Temperature Oxidation Behaviour of Steels Exposed to Air-fuel Natural Gas or Hydrogen Combustion Atmospheres during Reheating on a Semi-industrial Scale
Jun 2025
Publication
In the future steel products will be reheated for hot working using hydrogen instead of natural gas. This study investigated the differences in oxide scale formation between natural gas/air and hydrogen/air combustion at constant air-fuel-ratio. Samples of a hypo-eutectoid eutectoid and hyper-eutectoid steel grade (dimensions: 30 x 30 x 50 mm W x H x L) were exposed to the two atmospheres in a semi-industrial scale furnace for 180 min at three sample core temperatures (1100 1200 and 1280 °C). Specific mass gain was calculated and the samples were metallographically examined. Switching the fuel increased scale formation depending on the steel. The exponential correlation between temperature and scale formation is more pronounced for the eutectoid and the hyper-eutectoid steel grade. Metallographic investigations revealed similar scale morphologies in both atmospheres but with significant temperature dependence. The decarburization depth is atmosphere-independent. Thus switching fuel does not negatively impact the properties of the steel substrate; it only increases scale formation during reheating.
Hydrogen Refueling Station: Overview of the Technological Status and Research Enhancement
Jan 2023
Publication
Hydrogen refueling stations (HRSs) are key infrastructures rapidly spreading out to support the deployment of fuel cell electric vehicles for several mobility purposes. The research interest in these energy systems is increasing focusing on different research branches: research on innovation on equipment and technology proposal and development of station layout and research aiming to provide experimental data sets for perfor mance investigation. The present manuscript aims to present an overview of the most recent literature on hydrogen stations by presenting the technological status of the system at the global level and their research enhancement on the involved components and processes. After the review of the mentioned aspects this paper will present the already existing layouts and the potential configurations of such infrastructures considering several options of the delivery routes the end-user destination and hydrogen storage thermodynamic status whether liquid or gaseous.
Mechanical Testing Methods for Assessing Hydrogen Embrittlement in Pipeline Steels: A Review
Oct 2025
Publication
As the transport of gaseous hydrogen and its use as a low carbon-footprint energy vector become increasingly likely scenarios both the scientific literature and technical standards addressing the compatibility of pipeline steels with high-pressure hydrogen environments are rapidly expanding. This work presents a detailed review of the most relevant hydrogen embrittlement testing methodologies proposed in standards and the academic literature. The focus is placed on testing approaches that support design-oriented assessments rather than simple alloy qualification for hydrogen service. Particular attention is given to tensile tests (conducted on smooth and notched specimens) as well as to J-integral and fatigue tests performed following the fracture mechanics’ approach. The influences of hydrogen partial pressure and deformation rate are critically examined as these parameters are essential for ensuring meaningful comparisons across different studies.
Renewable Energy Storage in a Poly-Generative System Fuel Cell/Electrolyzer, Supporting Green Mobility in a Residential Building
Oct 2025
Publication
The European Commission through the REPowerEU plan and the “Fit for 55” package aims to reduce fossil fuel dependence and greenhouse gas emissions by promoting electric and fuel cell hybrid electric vehicles (EV-FCHEVs). The transition to this mobility model requires energy systems that are able to provide both electricity and hydrogen while reducing the reliance of residential buildings on the national grid. This study analyses a poly-generative (PG) system composed of a Solid Oxide Fuel Cell (SOFC) fed by biomethane a Photovoltaic (PV) system and a Proton Exchange Membrane Electrolyser (PEME) with electric vehicles used as dynamic storage units. The assessment is based on simulation tools developed for the main components and applied to four representative seasonal days in Rende (Italy) considering different daily travel ranges of a 30-vehicle fleet. Results show that the PG system provides about 27 kW of electricity 14.6 kW of heat and 3.11 kg of hydrogen in winter spring and autumn and about 26 kW 14 kW and 3.11 kg in summer; it fully covers the building’s electrical demand in summer and hot water demand in all seasons. The integration of EV batteries reduces grid dependence improves renewable self-consumption and allows for the continuous and efficient operation of both the SOFC and PEME demonstrating the potential of the proposed system to support the green transition.
Hydrogen Valleys to Foster Local Decarbonisation Targets: A Multiobjective Optimisation Approach for Energy Planning
Oct 2025
Publication
Hydrogen Valley represents localised ecosystems that enable the integrated production storage distribution and utilisation of hydrogen to support the decarbonisation of the energy system. However planning such integrated systems necessitates a detailed evaluation of their interconnections with variable renewable generation sector coupling and system flexibility. The novelty of this work lies in addressing a critical gap in system-level modelling for Hydrogen Valleys by introducing an optimization-based framework to determine their optimal configuration. This study focuses on the scenario-based multiobjective design of local hydrogen energy systems considering renewable integration infrastructure deployment and sector coupling. We developed and simulated three scenarios based on varying hydrogen pathways and penetration levels using the EnergyPLAN model implemented through a custom MATLAB Toolbox. Several decision variables such as renewable energy capacity electrolyser size and hydrogen storage were optimised to minimise CO₂ emissions total annual system cost and critical excess electricity production simultaneously. The findings show that Hydrogen Valley deployment can reduce CO₂ emissions by up to 30 % triple renewable penetration in the primary energy supply and lower the levelized cost of hydrogen from 7.6 €/kg to 5.6 €/kg despite a moderate increase in the total cost of the system. The approach highlights the potential of sector coupling and Power-to-X technologies in enhancing system flexibility and supporting green hydrogen integration. The outcome of our research offers valuable insights for policymakers and planners seeking to align local hydrogen strategies with broader decarbonisation targets and regulatory frameworks.
Altering Carbonate Wettability for Hydrogen Storage: The Role of Surfactant and CO2 Floods
Oct 2025
Publication
Underground hydrogen storage (UHS) in depleted oil and gas fields is pivotal for balancing large-scale renewable-energy systems yet the wettability of reservoir rocks in contact with hydrogen after decades of Enhanced Oil Recovery (EOR) operations remains poorly quantified. This work experimentally investigates how two common EOR legacies cationic surfactant (city-trimethyl-ammonium bromide CTAB) and supercritical carbon dioxide (SC–CO2) flooding alter rock–water–Hydrogen (H2) wettability in carbonate formations. Contact angles were measured on dolomite and limestone rock slabs at 30–75 ◦C and 3.4–17.2 MPa using a high-pressure captive-bubble cell. Crude-oil aging shifted clean dolomite from strongly water-wet (θ ~ 28–29◦) to intermediate-wet (θ ≈ 84◦). Subsequent immersion in dilute CTAB solutions (0.5–2 wt %) fully reversed this effect restoring or surpassing the original water-wetness (θ ≈ 21–28◦). Limestone samples exposed to SC-CO2 at 60–80 ◦C became more hydrophilic (θ ≈ 18–30◦) relative to untreated controls; moderate carbonate dissolution (≤6 × 103 ppm Ca2+) produced the most significant improvement in water-wetness whereas severe dissolution yielded diminishing returns. These findings show that many mature reservoirs are already water-wet (post-CO2) or can be easily re-wetted (via residual CTAB). Across all scenarios sample wettability showed little sensitivity to pressure but higher temperature consistently promoted stronger water-wetness. Future work should include dynamic core-flooding experiments with realistic reservoir.
Techno-Economic Assessment of Hydrogen-Based Power-to-Power Systems: Operational Strategies and Feasibility Within Energy Communities
Jun 2025
Publication
In the context of the evolving energy landscape the need to harness renewable energy sources (RESs) has become increasingly imperative. Within this framework hydrogen emerges as a promising energy storage vector offering a viable solution to the flexibility challenges caused by the inherent variability of RESs. This work investigates the feasibility of integrating a hydrogen-based energy storage system within an energy community in Barcelona using surplus electricity from photovoltaic (PV) panels. A power-to-power configuration is modelled through a comprehensive methodology that determines optimal component sizing based on high-resolution real-world data. This analysis explores how different operational strategies influence the system’s cost-effectiveness. The methodology is thus intended to assist in the early-stage decision-making process offering a flexible approach that can be adapted to various market conditions and operational scenarios. The results show that under the current conditions the combination of PV generation energy storage and low-cost grid electricity purchases yield the most favourable outcomes. However in a long-term perspective considering projected cost reductions for hydrogen technologies strategies including energy sales back to the grid become more profitable. This case study offers a practical example of balancing engineering and economic considerations providing replicable insights for designing hydrogen storage systems in similar energy communities.
Innovative Aircraft Propulsive Configurations: Technology Evaluation and Operations in the SIENA Project
Mar 2025
Publication
In this paper developed in the context of the Clean Sky 2 project SIENA (Scalability Investigation of hybrid-Electric concepts for Next-generation Aircraft) an extensive analysis is carried out to identify and accelerate the development of innovative propulsion technologies and architectures that can be scaled across five aircraft categories from small General Aviation airplanes to long-range airliners. The assessed propulsive architectures consider various components such as batteries and fuel cells to provide electricity as well as electric motors and jet engines to provide thrust combined to find feasible aircraft architectures that satisfy certification constraints and deliver the required performance. The results provide a comprehensive analysis of the impact of key technology performance indicators on aircraft performance. They also highlight technology switching points as well as the potential for scaling up technologies from smaller to larger aircraft based on different hypotheses and assumptions concerning the upcoming technological advancements of components crucial for the decarbonization of aviation. Given the considered scenarios the common denominator of the obtained results is hydrogen as the main energy source. The presented work shows that for the underlying models and technology assumptions hydrogen can be efficiently used by fuel cells for propulsive and system power for smaller aircraft (General Aviation commuter and regional) typically driven by propellers. For short- to long-range jet aircraft direct combustion of hydrogen combined with a fuel cell to power the on-board subsystems appears favorable. The results are obtained for two different temporal scenarios 2030 and 2050 and are assessed using Payload-Range Energy Efficiency as the key performance indicator. Naturally introducing such innovative architectures will face a lack of applicable regulation which could hamper a smooth entry into service. These regulatory gaps are assessed detailing the level of maturity in current regulations for the different technologies and aircraft categories.
Green Hydrogen: A Pathway to Vietnam’s Energy Security
Oct 2025
Publication
Green hydrogen is increasingly recognized as a pivotal energy carrier in the global transition toward low-carbon energy systems. Beyond its established applications in industry and transportation the development of green hydrogen could accelerate its integration into the power generation sector thus enabling a more sustainable deployment of renewable energy sources. Vietnam endowed with abundant renewable energy potential—particularly solar and wind—has a strong foundation for green hydrogen. This emerging energy source holds significant potential to support the strategic objectives in recent national energy policies aligning with the country’s socio-economic development. However despite this promise the integration of green hydrogen into Vietnam’s energy system remains limited. This paper provides a critical review of the current landscape of green hydrogen in Vietnam examining both the opportunities and challenges associated with its production and deployment. Special attention is given to regulatory frameworks infrastructure readiness and economic viability. Additionally the study also explores the potential of green hydrogen in enhancing energy security within the context of the national energy transition.
Development of an Experimental Setup for Testing X52 Steel SENT Specimens in Electrolytic Hydrogen to Explore Repurposing Potential of Pipelines
Apr 2025
Publication
Hydrogen is considered a key alternative to fossil fuels in the broader context of ecological transition. Repurposing natural gas pipelines for hydrogen transport is one of the challenges of this approach. However hydrogen can diffuse into metallic lattices leading to hydrogen embrittlement (HE). For this reason typically ductile materials can experience unexpected brittle fractures and it is therefore necessary to assess the HE propensity of the current pipeline network to ensure its fitness for hydrogen transport. This study examines the relationship between the microstructure of the circumferential weld joint in X52 pipeline steel and hydrogen concentration introduced electrolytically. Base material heat affected zone and fused zone were subjected to 1800 3600 7200 and 14400 s of continuous charging with a current density J = − 10 mA/cm2 in an acid solution. Results showed that the fusion zone absorbed the most hydrogen across all charging times while the base material absorbed more hydrogen than the heat-affected zone due to the presence of non-metallic inclusions. Fracture toughness was assessed using single edge notch tension specimens (SENT) in air and electrolytic hydrogen. Results indicate that the base material is particularly vulnerable to hydrogen environments exhibiting the greatest reduction in toughness when exposed to hydrogen compared to air.
Multi-Fuel SOFC System Modeling for Ship Propulsion: Comparative Performance Analysis and Feasibility Assessment of Ammonia, Methanol and Hydrogen as Marine Fuels
Oct 2025
Publication
To reduce fossil fuel dependency in shipping adopting alternative fuels and innovative propulsion systems is essential. Solid Oxide Fuel Cells (SOFC) powered by hydrogen carriers represent a promising solution. This study investigates a multi-fuel SOFC system for ocean-going vessels capable of operating with ammonia methanol or hydrogen thus enhancing bunkering flexibility. A thermodynamic model is developed to simulate the performance of a 3 kW small-scale system subsequently scaling up to a 10 MW configuration to meet the power demand of a container ship used as the case study. Results show that methanol is the most efficient fueling option reaching a system efficiency of 58% while ammonia and hydrogen reach slightly lower values of about 55% and 51% respectively due to higher auxiliary power consumption. To assess technical feasibility two installation scenarios are considered for accommodating multiple fuel tanks. The first scenario seeks the optimal fuel share equivalent to the diesel tank’s chemical energy (17.6 GWh) minimizing mass increase. The second scenario optimizes the fuel share within the available tank volume (1646 m3 ) again minimizing mass penalties. In both cases feasibility results have highlighted that changes are needed in terms of cargo reduction equal to 20.3% or alternatively in terms of lower autonomy with an increase in refueling stops. These issues can be mitigated by the benefits of increased bunkering flexibility
Simulation of a Hybrid Plant with ICE/HT-PEMFC and On-Site Hydrogen Production from Methane Steam Reforming
Oct 2025
Publication
Hydrogen-based technologies prominently fuel cells are emerging as strategic solutions for decarbonization. They offer an efficient and clean alternative to fossil fuels for electricity generation making a tangible contribution to the European Green Deal climate objectives. The primary issue is the production and transportation of hydrogen. An on-site hydrogen production system that includes CO2 capture could be a viable solution. The proposed power system integrates an internal combustion engine (ICE) with a steam methane reformer (SMR) equipped with a CO2 capture and energy storage system to produce “blue hydrogen”. The hydrogen fuels a high-temperature polymer electrolyte membrane (HTPEM) fuel cell. A battery pack incorporated into the system manages rapid fluctuations in electrical load ensuring stability and continuity of supply and enabling the fuel cell to operate at a fixed point under nominal conditions. This hybrid system utilizes natural gas as its primary source reducing climate-altering emissions and representing an efficient and sustainable solution. The simulation was conducted in two distinct environments: Thermoflex code for the integration of the engine reformer and CO2 capture system; and Matlab/Simulink for fuel cell and battery pack sizing and dynamic system behavior analysis in response to user-demanded load variations with particular attention to energy flow management within the simulated electrical grid. The main results show an overall efficiency of the power system of 39.9% with a 33.5% reduction in CO2 emissions compared to traditional systems based solely on internal combustion engines.
Sustainable Hydrogen Production from Nuclear Energy
Aug 2025
Publication
The rapid increase in global warming requires that sustainable energy choices aimed at achieving net-zero greenhouse gas emissions be implemented as soon as possible. This objective emerging from the European Green Deal and the UN Climate Action could be achieved by using clean and efficient energy sources such as hydrogen produced from nuclear power. “Renewable” hydrogen plays a fundamental role in decarbonizing both the energy-intensive industrial and transport sectors while addressing the global increase in energy consumption. In recent years several strategies for hydrogen production have been proposed; however nuclear energy seems to be the most promising for applications that could go beyond the sole production of electricity. In particular nuclear advanced reactors that operate at very high temperatures (VHTR) and are characterized by coolant outlet temperatures ranging between 550 and 1000 ◦C seem the most suitable for this purpose. This paper describes the potential use of nuclear energy in coordinated and coupled configurations to support clean hydrogen production. Operating conditions energy requirements and thermodynamic performance are described. Moreover gaps that require additional technology and regulatory developments are outlined. The intermediate heat exchanger which is the key component for the integration of nuclear hybrid energy systems was studied by varying the thermal power to determine physical parameters needed for the feasibility study. The latter consisting of the comparative cost evaluation of some nuclear hydrogen production methods was carried out using the HEEP code developed by the IAEA. Preliminary results are presented and discussed.
Feasibility Assessment and Response Surface Optimisation of a Fuel Cell-integrated Sustainable Wind Farm in Italy
Sep 2025
Publication
This study explores the design and feasibility of a novel fuel cell-powered wind farm for residential electricity hydrogen/oxygen production and cooling/heating via a compression chiller. Wind turbine energy powers Proton Exchange Membrane (PEM) electrolyzers and a compression chiller unit. The proposed system was modeled using EES thermodynamic software and its economic viability was assessed. A case study across seven Italian regions with varying wind potentials evaluated the system’s feasibility in diverse weather conditions. Multi-objective optimization using Response Surface Methodology (RSM) determined the number of wind turbines as optimum number of electrolyzers & fuel cell units. Optimization results indicated that 37 wind turbines 1 fuel cell unit and 2 electrolyzer units yielded an exergy efficiency of 27.98 % and a cost rate of 619.9 $/h. TOPSIS analysis suggested 32 wind turbines 2 electrolyzers and 2 reverse osmosis units as an alternative configuration. Further twelve different scenarios were examined to enhance the distribution of wind farmgenerated electricity among the grid electrolyzers and reverse osmosis systems. revealing that directing 25 % to reverse osmosis 20 % to electrolyzers and 55 % to grid sales was optimal. Performance analysis across seven Italian cities (Turin Bologna Florence Palermo Genoa Milan and Rome) identified Genoa Palermo and Bologna as the most suitable locations due to favorable wind conditions. Implementing the system in Genoa the optimal site could produce 28435 MWh of electricity annually prevent 5801 tons of CO2 emissions (equivalent to 139218 $). Moreover selling this clean electricity to the grid could meet the annual clean electricity needs of approximately 5770 people in Italy
Towards Decarbonizing Gas: A Generic Optimal Gas Flow Model with Linepack Constraints for Assessing the Feasibility of Hydrogen Blending in Existing Gas Networks
Aug 2025
Publication
Hydrogen blending into natural gas networks is a promising pathway to decarbonize the gas sector but requires bespoke fluid-dynamic models to accurately capture the properties of hydrogen and assess its feasibility. This paper introduces a generalizable optimal transient gas flow model for transporting homogeneous natural gashydrogen mixtures in large-scale networks. Designed for preliminary planning the model assesses whether a network can operate under a given hydrogen blending ratio without violating existing constraints such as pressure limits pipeline and compressor capacity. A distinguishing feature of the model is a multi-day linepack management strategy that engenders realistic linepack profiles by precluding mathematically feasible but operationally unrealistic solutions thereby accurately reflecting the flexibility of the gas system. The model is demonstrated on Western Australia’s 7560 km transmission network using real system topology and demand data from several representative days in 2022. Findings reveal that the system can accommodate up to 20 % mol hydrogen potentially decarbonizing 7.80 % of gas demand.
Biohydrogen Production from Industrial Waste: The Role of Pretreatment Methods
Oct 2025
Publication
This study aimed to investigate the effectiveness of dark fermentation in biohydrogen production from agro-industrial wastes including apple pomace brewer’s grains molasses and potato powder subjected to different pretreatment methods. The experiments were conducted at a laboratory scale using 1000 cm3 anaerobic reactors at a temperature of 35 ◦C and anaerobic sludge as the inoculum. The highest yield of hydrogen was obtained from pre-treated apple pomace (101 cm3/g VS). Molasses a less complex substrate compared to the other raw materials produced 25% more hydrogen yield following pretreatment. Methanogens are sensitive to high temperatures and low-pH conditions. Nevertheless methane constituted 1–6% of the total biogas under these conditions. The key factor was appropriate treatment of the inoculum to limit competition from methanogens. Increasing the inoculum dose from 150 cm3/dm3 to 250 cm3/dm3 had no further effect on biogas production. The physicochemical parameters and VFA data confirmed the stability and usefulness of activated sludge as a source of microbial cultures for H2 production via dark fermentation.
Evaluation of Passenger Train Safety in the Event of a Liquid Hydrogen Release from a Freight Train in a Tunnel Along an Italian High-Speed/High-Capacity Rail Line
Oct 2025
Publication
The global shift towards cleaner energy sources is driving the adoption of hydrogen as an environmentally friendly alternative to fossil fuels. Among the forms currently available Liquid Hydrogen (LH2) offers high energy density and efficient storage making it suitable for large-scale transport by rail. However the flammability of hydrogen poses serious safety concerns especially when transported through confined spaces such as railway tunnels. In case of an accidental LH2 release from a freight train the rapid accumulation and potential ignition of hydrogen could cause catastrophic consequences especially if freight and passenger trains are present simultaneously in the same tunnel tube. In this study a three-dimensional computational fluid dynamics model was developed to simulate the dispersion and explosion of LH2 following an accidental leak from a freight train’s cryo-container in a single-tube double-track railway tunnel when a passenger train queues behind it on the same track. The overpressure results were analyzed using probit functions to estimate the fatality probabilities for the passenger train’s occupants. The analysis suggests that a significant number of fatalities could be expected among the passengers. However shorter users’ evacuation times from the passenger train’s wagons and/or longer distances between the two types of trains might reduce the number of potential fatalities. The findings by providing additional insight into the risks associated with LH2 transport in railway tunnels indicate the need for risk mitigation measures and/or traffic management strategies.
Exploring the Potential of Ammonia as a Fuel: Advances in Combustion Understanding and Large-scale Furnace Applications
Sep 2025
Publication
From an environmental standpoint carbon-free energy carriers such as ammonia and hydrogen are essential for future energy systems. However their hightemperature chemical behavior remains insufficiently understood posing challenges for the development and optimization of advanced combustion technologies. Ammonia in particular is globally available and cost-effective especially for energy-intensive industries. The addition of ammonia or hydrogen to methane significantly reduces the accuracy of existing predictive models. Therefore validated and detailed data are urgently needed to enable reliable design and performance predictions. This review highlights the compatibility of ammonia with existing combustion infrastructure facilitating a smoother transition to more sustainable heating methods without the need for entirely new systems. Applications in high-temperature heating processes such as metal processing ceramics and glass production and power generation are of particular interest. This review focuses on the systematic assessment of alternative fuel mixtures comprising ammonia and hydrogen as well as natural gas with particular consideration of existing safety-related parameters and combustion characteristics. Fundamental quantities such as the laminar burning velocity are discussed in the context of their relevance for fuel mixtures and their scalability toward turbulent flame propagation which is of critical importance for industrial burner and reactor design. The influence of fuel composition on ignition limits is examined as these are essential parameters for safety margin definitions and operational boundary conditions. Furthermore flame stability in mixed-fuel systems is addressed to evaluate the practical feasibility and robustness of combustion under varying process conditions. A detailed overview of current diagnostic and analysis methods follows encompassing both pollutant measurement techniques and the detection of key radical species. These diagnostics form the experimental basis for reaction kinetics modeling and mechanism validation. Given the importance of emission formation in combustion systems a dedicated subsection summarizes major emission trends even though a comprehensive treatment would exceed the scope of this review. Thermal radiation effects which are highly relevant for heat transfer and system efficiency in large-scale applications are then reviewed. In parallel current developments in numerical simulation approaches for industrial-scale combustion systems are presented including aspects of model accuracy boundary conditions and computational efficiency. The review also incorporates insights from materials engineering particularly regarding high-temperature material performance corrosion resistance and compatibility with combustion products. Based on these interdisciplinary findings operational strategies for high-temperature furnaces are outlined and selected industrial reference systems are briefly presented. This integrated approach aims to support the design optimization and safe operation of next-generation combustion technologies utilizing carbon-free or low-carbon fuels.
Learning in Green Hydrogen Production: Insights from a Novel European Dataset
Jun 2025
Publication
The cost reduction of electrolysers is critical for scaling up green hydrogen production and achieving decarbonization targets. This study presents a novel and comprehensive dataset of electrolyser projects in Europe. It includes full cost and capacity details for each project and capturing project-specific characteristics such as technology type location and project type for the period 2005–2030. We apply the learning curve methodology to assess cost reductions across different electrolyser technologies and project sizes. Our findings indicate a significant learning effect for PEM and AEL electrolysers in the last 20 years with learning rates of 32.1% and 22.9% respectively. While AEL cost reductions are primarily driven by scaling effects PEM electrolysers benefit from both technological advancements and economies of scale. Small-scale electrolysers exhibit a stronger learning effect (25%) whereas large-scale projects show no clear cost reductions due to their early stage of deployment. Projections based on our learning rates suggest that reaching Europe’s 2030 target of 40 GW electrolyser capacity would require an estimated total investment of 14 billion EUR. These results align closely with previous studies and such predictions are closed to estimates from other organization. The dataset is publicly available allowing for further analysis and periodic updates to track cost trends.
Underground Hydrogen Storage Suitability Index: A Geological Tool for Evaluating and Ranking Storage Sites
Jun 2025
Publication
Underground Hydrogen Storage (UHS) is a promising solution to maximize the use of hydrogen as an energy carrier. This study presents a standardized methodology for assessing UHS quality by introducing the Underground Hydrogen Storage Suitability Index (UHSSI) which integrates three sub-indices: the Caprock Potential Index (CPI) the Reservoir Quality Index (RQI) and the Site Potential Index (SPI). Parameters such as porosity permeability lithology caprock thickness depth temperature and salinity are evaluated and ranked from 0 (unsuitable) to 5 (excellent). The methodology was validated using data from six worldwide sites including salt caverns and aquifers. Sites like Moss Bluff Clemens Dome and Spindletop (USA) scored highly while Teesside (UK) Lobodice (Czech Republic) and Beynes (France) were classified as unsuitable due to shallow depths and microbial activity. A software tool the UHSSI Calculator was developed to automate site evaluations. This approach offers a cost-effective tool for preliminary screening and supports the safer development of UHS.
Hydrogen Generation through Solar Photocatalytic Processes: A Review of the Configuration and the Properties of Effective Metal-Based Semiconductor Nanomaterials
Oct 2017
Publication
Photocatalytic water splitting and organic reforming based on nano-sized composites are gaining increasing interest due to the possibility of generating hydrogen by employing solar energy with low environmental impact. Although great efforts in developing materials ensuring high specific photoactivity have been recently recorded in the literature survey the solar-to-hydrogen energy conversion efficiencies are currently still far from meeting the minimum requirements for real solar applications. This review aims at reporting the most significant results recently collected in the field of hydrogen generation through photocatalytic water splitting and organic reforming with specific focus on metal-based semiconductor nanomaterials (e.g. metal oxides metal (oxy)nitrides and metal (oxy)sulfides) used as photocatalysts under UVA or visible light irradiation. Recent developments for improving the photoefficiency for hydrogen generation of most used metal-based composites are pointed out. The main synthesis and operating variables affecting photocatalytic water splitting and organic reforming over metal-based nanocomposites are critically evaluated.
Net-Zero Backup Solutions for Green Ammonia Hubs Based on Hydrogen Power Generation
Jun 2025
Publication
This paper explores cleaner and techno-economically viable solutions to provide electricity heat and cooling using green hydrogen (H2) and green ammonia (NH3) across the entire decarbonized value chain. We propose integrating a 100% hydrogen-fueled internal combustion engine (e.g. Jenbacher JMS 420) as a stationary backup solution and comparing its performance with other backup technologies. While electrochemical storage systems or battery energy storage systems (BESSs) offer fast and reliable short-term energy buffering they lack flexibility in relocation and typically involve higher costs for extended backup durations. Through five case studies we highlight that renewable-based energy supply requires additional capacity to bridge longer periods of undersupply. Our results indicate that for cost reasons battery–electric solutions alone are not economically feasible for longterm backup. Instead a more effective system combines both battery and hydrogen storage where batteries address daily fluctuations and hydrogen engines handle seasonal surpluses. Despite lower overall efficiency gas engines offer favorable investment and operating costs in backup applications with low annual operating hours. Furthermore the inherent fuel flexibility of combustion engines eventually will allow green ammonia-based backup systems particularly as advancements in small-scale thermal cracking become commercially available. Future studies will address CO2 credit recognition carbon taxes and regulatory constraints in developing more effective dispatch and master-planning solutions.
Green Hydrogen Generation by Water Photoelectrolysis: Economic and Environmental Analysis
Mar 2025
Publication
Water photoelectrolysis cells based on photoelectrochemical water splitting seem to be an interesting alternative to other traditional green hydrogen generation processes (e.g. water electrolysis). Unfortunately the practical application of this technology is currently hindered by several difficulties: low solar-to-hydrogen (STH) efficiency expensive electrode materials etc. A novel concept based on a tandem photoelectrolysis cell configuration with an anion-conducting membrane separating the photoanode from the photocathode has already been proposed in the literature. This approach allows the use of low-cost metal oxide electrodes and nickel-based co-catalysts. In this paper we conducted a study to evaluate the economic and environmental sustainability of this technology using the environmental life cycle cost. Preliminary results have revealed two main interesting aspects: the negligible percentage of externalities in the total cost.
Digital Twin Framework for Energy Transition in Gas Networks Based on Open-Source Tools: Methodology and Case Study in Southern Italy
Oct 2025
Publication
The ongoing digitalization of energy infrastructure is a crucial enabler for improving efficiency reliability and sustainability in gas distribution networks especially in the context of decarbonization and the integration of alternative energy carriers (e.g. renewable gases including biogas green hydrogen). This study presents the development and application of a Digital Twin framework for a real-world gas distribution network developed using open-source tools. The proposed methodology covers the entire digital lifecycle: from data acquisition through smart meters and GIS mapping to 3D modelling and simulation using tools such as QGIS FreeCAD and GasNetSim. Consumption data are collected processed and harmonized via Python-based workflows hourly simulations of network operation including pressure flow rate and gas quality indicators like the Wobbe Index. Results demonstrate the effectiveness of the Digital Twin in accurately replicating real network behavior and supporting scenario analyses for the introduction of greener energy vectors such as hydrogen or biomethane. The case study highlights the flexibility and transparency of the workflow as well as the critical importance of data quality and availability. The framework provides a robust basis for advanced network management optimization and planning offering practical tools to support the energy transition in the gas sector.
Wetting of the Microporous Layer at the Cathode of an Anion Exchange Membrane Water Electrolyzer
Aug 2025
Publication
Water management is crucial for the performance of anion exchange membrane water electrolyzers (AEM-WEs) to maintain membrane hydration and enable phase separation between hydrogen gas and liquid water. Therefore careful material selection for the anode and cathode is essential to enhance reactant/product transport and optimize water management under ‘dry cathode’ conditions. This study investigates the wetting characteristics of two commercially available porous transport layers (PTLs) used in AEM-WE: carbon paper and carbon paper with a microporous layer (MPL). Wettability was measured under static quasi-static and dynamic conditions to assess the effect of water and electrolytes (NaOH KOH K2CO3) across concentrations (up to 1 M) and operational temperatures (20 °C to 92 °C). Carbon paper exhibits mild hydrophobicity (advancing contact angles of ∼120° however with receding contact angle ∼0°) whereas carbon paper with MPL demonstrates superhydrophobicity (advancing and receding contact angles >145° and low contact angle hysteresis) maintaining a stable Cassie-Baxter wetting state. Dynamic wetting experiments confirmed the robustness of the superhydrophobicity in carbon paper with MPL facilitating phase separation between hydrogen gas and liquid water. The presence of supporting electrolytes did not significantly affect wettability and the materials retained hydrophobic properties across different temperatures. These findings highlight the importance of MPLs in optimizing water transport and gas rejection within AEM-WEs ensuring efficient and stable operation under “dry cathode” conditions. These PTLs (with and without the addition of the MPL) were integrated into AEM-WE and polarization curves were run. Preliminary data in a specific condition suggested the presence of the MPL within the PTL enhance AEM-WE performance.
Techno-Economic Analysis of Marine Hybrid Clusters for Use in Chile and Mexico
Oct 2025
Publication
This study assesses the feasibility and profitability of marine hybrid clusters combining wave energy converters (WECs) and offshore wind turbines (OWTs) to power households and marine aquaculture. Researchers analyzed two coastal sites: La Serena Chile with high and consistent wave energy resources and Ensenada Mexico with moderate and more variable wave power. Two WEC technologies Wave Dragon (WD) and Pelamis (PEL) were evaluated alongside lithium-ion battery storage and green hydrogen production for surplus energy storage. Results show that La Serena’s high wave power (26.05 kW/m) requires less hybridization than Ensenada’s (13.88 kW/m). The WD device in La Serena achieved the highest energy production while PEL arrays in Ensenada were more effective. The PEL-OWT cluster proved the most cost-effective in Ensenada whereas the WD-OWT performed better in La Serena. Supplying electricity for seaweed aquaculture particularly in La Serena proves more profitable than for households. Ensenada’s clusters generate more surplus electricity suitable for the electricity market or hydrogen conversion. This study emphasizes the importance of tailoring emerging WEC systems to local conditions optimizing hybridization strategies and integrating consolidated industries such as aquaculture to enhance both economic and environmental benefits.
e-REFORMER for Sustainable Hydrogen Production: Enhancing Efficiency in the Steam Methane Reforming Process
Aug 2025
Publication
Electrifying heat supply in chemical processes offers a strategic pathway to reduce CO2 emissions associated with fossil fuel combustion. This study investigates the retrofit of an existing terrace-wall Steam Methane Reformer (SMR) in an ammonia plant by replacing fuel-fired burners with electric resistance heaters in the radiant section. The proposed e-REFORMER concept is applied to a real-world case producing hydrogen-rich syngas at 29000 Nm3 /h with simulation and energy analysis performed using Aspen HYSYS®. The results show that electric heating reduces total thermal input by 3.78 % lowers direct flue gas CO2 emissions by 91.56 % and improves furnace thermal efficiency from 85.6 % to 88.9 % (+3.3 %). The existing furnace design and convection heat recovery system are largely preserved maintaining process integration and plant operability. While the case study reflects a medium-scale plant the methodology applies to larger facilities and supports integration with decarbonised power grids and Carbon Capture Utilisation and Storage (CCUS) technologies. This work advances current literature by addressing full-system integration of electrification within hydrogen and ammonia production chains offering a viable pathway to improve energy efficiency and reduce industrial emissions.
Hydrogen Energy Systems for Decarbonizing Smart Cities and Industrial Applications: A Review
Oct 2025
Publication
Hydrogen is increasingly recognized as a key energy vector for achieving deep decarbonization across urban and industrial sectors. Supporting global efforts to reduce greenhouse gas (GHG) emissions and achieve the Sustainable Development Goals (SDGs) it is essential to understand the multi-sectoral role of the hydrogen value chain spanning production storage and end-use applications with particular emphasis on smart city systems and industrial processes. Green hydrogen production technologies including alkaline water electrolysis (AWE) proton exchange membrane (PEM) electrolysis anion exchange membrane (AEM) electrolysis and solid oxide electrolysis cells (SOECs) are evaluated in terms of efficiency scalability and integration potential. Storage pathways are examined across physical storage (compressed gas cryo-compressed and liquid hydrogen) material-based storage (solid-state absorption in metal hydrides and chemical carriers such as LOHCs and ammonia) and geological storage (salt caverns depleted gas reservoirs and deep saline aquifers) highlighting their suitability for urban and industrial contexts. In the smart city domain hydrogen is analyzed as an enabler of zero-emission transportation low-carbon residential and commercial heating and renewable-integrated smart grids with long-duration storage capabilities. System-level studies demonstrate that coordinated integration of these applications can deliver higher overall energy efficiency deeper reductions in life-cycle GHG emissions and improved resilience of urban energy systems compared with sector-specific approaches. Policy frameworks safety standards and digitalization strategies are reviewed to illustrate how hydrogen infrastructure can be embedded into interconnected urban energy systems. Furthermore industrial applications focus on hydrogen’s potential to decarbonize energy-intensive processes and enable sector coupling between electricity heat and manufacturing. The environmental implications of hydrogen deployment are also considered including resource efficiency life-cycle emissions and ecosystem impacts. In contrast to reviews addressing isolated aspects of hydrogen technologies this study synthesizes technological infrastructural and policy dimensions integrating insights from over 400 studies to highlight the multifaceted role of hydrogen in sustainable urban development and industrial decarbonization and the added benefits achievable through coordinated cross-sector deployment strategies.
Hydrogen Cargo Bikes as a Data-driven Solution for Last-mile Decarbonization
Oct 2025
Publication
The growing demand for low-emission urban freight has intensified efficiency challenges in lastmile delivery especially in dense city centres. This study assesses hydrogen-powered cargo bikes as a scalable zero-emission alternative to fossil fuel vans and battery-electric cargo bikes. Using real-world logistics data from Rome we apply simulation models including Monte Carlo cost analysis Artificial Intelligence driven routing K-means station placement and fleet scaling. Results show hydrogen bikes deliver 15% more parcels daily than electric counterparts reduce refuelling detours by 31.4% and lower per-trip fuel use by 32%. They can cut up to 120 metric tons of CO2 annually per 100-bike fleet. While battery-electric cargo bikes remain optimal for short trips hydrogen bikes offer superior uptime range and rapid refuelling—ideal for highfrequency mid-distance logistics. Under supportive pricing and infrastructure hydrogen cargo bikes represent a resilient and sustainable solution for decarbonizing last-mile delivery in city areas.
Ammonia–Hydrogen Dual-Fuel Combustion: Strategies for Optimizing Performance and Reducing Emissions in Internal Combustion Engines
Jun 2025
Publication
The urgent need to mitigate climate change and reduce greenhouse gas emissions has accelerated the search for sustainable and scalable energy carriers. Among the different alternatives ammonia stands out as a promising carbon-free fuel thanks to its high energy density efficient storage and compatibility with existing infrastructure. Moreover it can be produced through sustainable green processes. However its application in internal combustion engines is limited by several challenges including low reactivity narrow flammability limits and high ignition energy. These factors can compromise combustion efficiency and contribute to increased unburned ammonia emissions. To address these limitations hydrogen has emerged as a complementary fuel in dual-fuel configurations with ammonia. Hydrogen’s high reactivity enhances flame stability ignition characteristics and combustion efficiency while reducing emissions of unburned ammonia. This review examines the current status of dual-fuel ammonia and hydrogen combustion strategies in internal combustion engines and summarizes the experimental results. It highlights the potential of dual-fuel systems to optimize engine performance and minimize emissions. It identifies key challenges knowledge gaps and future research directions to support the development and widespread adoption of ammonia–hydrogen dual-fuel technologies.
Green Hydrogen in the Alps: Mapping Local Stakeholders Perspectives and Identifying Opportunities for Decarbonization
Jun 2025
Publication
The effects of climate change and reliance on fossil fuels in the Alps highlight the need for energy sufficiency improved efficiency and renewable energy deployment to support decarbonization goals. Hydrogen has gained attention as a versatile zero-emission energy carrier with the potential to drive cleaner energy solutions and sustainable tourism in Alpine regions. This study shares findings from a hydrogen survey conducted within the Interreg Alpine Space AMETHyST project which included questionnaires and roundtable discussions across Alpine territories. The survey explored hydrogen’s role in decarbonizing the Alps gathering insights from local stakeholders about their knowledge expertise needs and targets for hydrogen solutions. It also mapped existing hydrogen initiatives. Results revealed strong interest in hydrogen implementation with many territories eager to launch projects. However high investment and operational costs along with associated risks are key barriers. The absence of clear local hydrogen strategies and of a comprehensive regulatory framework also poses significant challenges. Incentivization schemes could facilitate initiatives and foster local hydrogen economies. The most promising application areas for hydrogen in the Alps are private and public mobility sectors. The residential sector particularly in tourist accommodations also presents potential. Regardless of specific uses developing renewable energy capacity and infrastructure is essential to create green hydrogen ecosystems that can store excess renewable energy from intermittent sources for later use.
Human Toxicity Potential: A Lifecycle Evaluation in Current and Future Frameworks for Hydrogen-Based and Battery Electric Buses in the European Union
Sep 2025
Publication
In recent years governments have promoted the shift to low-emission transport systems with electric and hydrogen vehicles emerging as key alternatives for greener urban mobility. Evaluating zero- or near-zero tailpipe solutions requires a Lifecycle Assessment (LCA) approach accounting for emissions from energy production components and vehicle manufacturing. Such studies mainly address Greenhouse Gas (GHG) emissions while other pollutants are often overlooked. This study compares the Human Toxicity Potential (HTP) of Battery Electric Vehicles (BEVs) Fuel Cell Vehicles (FCVs) Hydrogen Internal Combustion Engine Vehicles (H2ICEVs) and hybrid H2ICEVs for public transport in the European Union. Current and future scenarios (2024 2030 2050) are examined considering evolving energy mixes and manufacturing impacts. Results underline that BEVs are characterized by the highest HTP in 2024 and that this trend is maintained even in future scenarios. As for hydrogen-based powertrains they show lower HTPs similar among them. This work underlines that current efforts must be intensified especially for BEVs to further limit harmful emissions from the mobility sector.
The Green Transition in Commercial Aviation
Aug 2025
Publication
This paper provides a comprehensive review of novel aviation technologies analyzing the advancements and challenges associated with the transition to sustainable air transport. The study explores three key pillars: unconventional aerodynamic configurations novel propulsion systems and advanced materials. Unconventional airframe architectures such as box-wing blended-wing-body and truss-braced wings demonstrate potential for improved aerostructural efficiency and reduced fuel consumption compared to traditional tube-and-wing designs. Aeropropulsive innovations as distributed propulsion boundary layer ingestion and advanced turbofan configurations are also promising in this regard. Significant progress in propulsion technologies including hybrid-electric hydrogen and extensive use of sustainable aviation fuels (SAF) plays a pivotal role in reducing air transport greenhouse gas emissions. However energy storage limitations and infrastructure constraints remain critical challenges and hence in the near future SAF could represent the most feasible solution. The introduction of advanced lightweight materials could further enhance aircraft overall performance. The results presented and discussed in this paper show that there is no a unique solution to the problem of the sustainability of air transport but a combination of all the novel technologies is necessary to achieve the ambitious environmental goals for the air transport of the future.
Designing Off-grid Hybrid Renewable Energy Systems under Uncertainty: A Two-Stage Stochastic Programming Approach
Aug 2025
Publication
The decarbonization of remote energy systems presents both technical and economic challenges due to their dependance on fossil fuels and the variability of renewable energy sources. This study introduces a Two-Stage Stochastic Programming approach to optimize Hybrid Renewable Energy Systems under uncertainty in renewable energy production. The methodology is applied to the island of Pantelleria aiming to minimize Total Annualized Costs and CO2 emissions using an ε-constraint approach. Results show that within the set of optimized configurations stricter CO2 emissions constraints increase costs due to the need for oversized components to ensure supply reliability. Nevertheless even the zeroemissions scenario offers significant economic benefits compared to the current diesel-based system. Total Annualized Costs are reduced from 15.5 M€ to 8.10 M€ in the deterministic case and to 9.37 M€ in the stochastic one. The additional cost in the stochastic configuration is offset by improved reliability ensuring demand is met under all scenarios. A sensitivity analysis on electricity demand reveals the necessity of further larger components leading to a 27.0% cost increase in a fully renewable scenario with stochastic optimization for a 10% demand increase. These findings highlight the importance of stochastic optimization in designing cost-effective off-grid renewable energy systems.
Synergistic Coupling of Waste Heat and Power to Gas via PEM Electrolysis for District Heating Applications
Sep 2025
Publication
This work explores the integration of Proton Exchange Membrane (PEM) electrolysis waste heat with district heating networks (DHN) aiming to enhance the overall energy efficiency and economic viability of hydrogen production systems. PEM electrolysers generate substantial amounts of low-temperature waste heat during operation which is often dissipated and left unutilised. By recovering such thermal energy and selling it to district heating systems a synergistic energy pathway that supports both green hydrogen production and sustainable urban heating can be achieved. The study investigates how the electrolyser’s operating temperature ranging between 50 and 80 ◦C influences both hydrogen production and thermal energy availability exploring trade-offs between electrical efficiency and heat recovery potential. Furthermore the study evaluates the compatibility of the recovered heat with common heat emission systems such as radiators fan coils and radiant floors. Results indicate that valorising waste heat can enhance the overall system performance by reducing the electrolyser’s specific energy consumption and its levelized cost of hydrogen (LCOH) while supplying carbon-free thermal energy for the end users. This integrated approach contributes to the broader goal of sector coupling offering a pathway toward more resilient flexible and resource-efficient energy systems.
High-Performance Two-Stroke Opposed-Piston Hydrogen Engine: Numerical Study on Injection Strategies, Spark Positioning and Water Injection to Mitigate Pre-Ignition
Sep 2025
Publication
In the pursuit of zero-emission mobility hydrogen represents a promising fuel for internal combustion engines. However its low volumetric energy density poses challenges especially for high-performance applications where compactness and lightweight design are crucial. This study investigates the feasibility of an innovative hydrogen-fueled two-stroke opposed-piston (2S-OP) engine targeting a specific power of 130 kW/L and an indicated thermal efficiency above 40%. A detailed 3D-CFD analysis is conducted to evaluate mixture formation combustion behavior abnormal combustion and water injection as a mitigation strategy. Innovative ring-shaped multi-point injection systems with several designs are tested demonstrating the impact of injector channels’ orientation on the final mixture distribution. The combustion analysis shows that a dual-spark configuration ensures faster combustion compared to a single-spark system with a 27.5% reduction in 10% to 90% combustion duration. Pre-ignition is identified as the main limiting factor strongly linked to mixture stratification and high temperatures. To suppress it water injection is proposed. A 55% evaporation efficiency of the water mass injected lowers the in-cylinder temperature and delays pre-ignition onset. Overall the study provides key design guidelines for future high-performance hydrogen-fueled 2S-OP engines.
Development of a MILP Optimization Framework to Design Grid-connected Microgrids: Enhancing Operational Synergy Among Wind, Solar, Batteries, and Hydrogen Storage
Sep 2025
Publication
By integrating Renewable Energy Sources (RES) and storage devices Hybrid Energy Systems (HESs) represent a promising solution for decarbonizing isolated and remote communities. Proper sizing and management of systems comprising a variety of components requires however more advanced methods than conventional energy systems. This study proposes a novel Mixed Integer Linear Programming (MILP) framework for the simultaneous design of a grid-connected HES supported by renewable generators. Unlike the standard design approach based on parametric dispatch strategies this framework simultaneously optimizes the energy management of each system configuration under analysis. The novel approach is applied to size a combination of Li-Ion batteries an alkaline electrolyzer H2 tanks and a PEM fuel cell to maximize the NPV of a system including a wind turbine and a photovoltaic field. Managing thousands of variables at the same time the framework simultaneously optimizes how all components are used to fulfill the load and balance the input/export of power within a limited electrical network. Results show that the combination of BESS and H2 can provide for both the need for short- and long-term energy storage and that the MILP optimization can effectively allocate the energy flows and produce 558 k€ of revenues per year 15.5% of the initial investment cost of 3.6 M€. The investment cost of the system is recovered in six years and presents an NPV of 5.51 M€ after 20 years. Results from the proposed method are also compared to common approaches based on rule-based parametric dispatch strategies demonstrating the superiority of MILP for the design and management of complex HESs.
Hydrogen Direct Reduced Iron Melting in an Electric Arc Furnace: Benefits of In Situ Monitoring
Oct 2025
Publication
The transition toward environmentally friendly steelmaking using hydrogen direct reduced iron as feed material in electric arc furnaces will eventually require process adjustments due to changes in the pellet properties when compared to e.g. blast furnace pellets. To this end the melting of hydrogen direct reduced iron pellets with 68 and 100% reduction degrees and Fe content of 67.24% was investigated in a laboratory-scale electric arc furnace. The presence of iron oxide-rich slag had a significant effect on the arc movement on the melt and an inhibiting effect on iron evaporation. The melting was monitored with video recording and optical emission spectroscopy. The videos were used to monitor the melting behavior whereas optical emissions revealed iron gangue elements and hydrogen from the pellets radiating in the plasma. Furthermore the flow of the melt is well seen in the videos as well as the movement of slag droplets on the melt surface. After the experiments the metal had silica-rich inclusions whereas slag had mostly penetrated into the crucible. The most notable differences in melting behavior can be attributed to the iron oxide-rich slag its interaction with the arc and penetration into the crucible and how it affects the arc movement and heat transfer.
No more items...