Korea, Republic of
The Environmental Impacts of Future Global Sales of Hydrogen Fuel Cell Vehicles
Oct 2024
Publication
During the last decade developing more sustainable transportation modes has become a primary objective for car manufacturers and governments around the world to mitigate environmental issues such as climate change the continuous increase in greenhouse gas (GHG) emissions and energy depletion. The use of hydrogen fuel cell technology as a source of energy in electric vehicles is considered an emerging and promising technology that could contribute significantly to addressing these environmental issues. In this study the effects of Hydrogen Fuel Cell Battery Electric Vehicles (HFCBEVs) on global GHG emissions compared to other technologies such as BEVs were determined based on different relevant factors such as predicted sales for 2050 (the result of the developed prediction model) estimated daily traveling distance estimated future average global electricity emission factors future average Battery Electric Vehicle (BEV) emission factors future global hydrogen production emission factors and future average HFCBEV emission factors. As a result the annual GHG emissions produced by passenger cars that are expected to be sold in 2050 were determined by considering BEV sales in the first scenario and HFCBEV replacement in the second scenario. The results indicate that the environmental benefits of HFCBEVs are expected to increase over time compared to those of BEVs due to the eco-friendly methods that are expected to be used in hydrogen production in the future. For instance in 2021 HFCBEVs could produce more GHG emissions than BEVs by 54.9% per km of travel whereas in 2050 BEVs could produce more GHG emissions than HFCBEVs by 225% per km of travel.
Heat Integration of Liquid Hydrogen-Fueled Hybrid Electric Ship Propulsion System
Nov 2023
Publication
This study introduced the methodology for integrating ethylene glycol/water mixture (GW) systems which supply heat energy to the liquid hydrogen (LH2 ) fuel gas supply system (FGSS) and manage the temperature conditions of the battery system. All systems were designed and simulated based on the power demand of a 2 MW class platform supply vessel assumed as the target ship. The LH2 FGSS model is based on Aspen HYSYS V14 and the cell model that makes up the battery system is implemented based on a Thevenin model with four parameters. Through three different simulation cases the integrated GW system significantly reduced electric power consumption for the GW heater during ship operations achieving reductions of 1.38% (Case 1) 16.29% (Case 2) and 27.52% (Case 3). The energy-saving ratio showed decreases of 1.86% (Case 1) 21.01% (Case 2) and 33.80% (Case 3) in overall energy usage within the GW system. Furthermore an examination of the battery system’s thermal management in the integrated GW system demonstrated stable cell temperature control within ±3 K of the target temperature making this integration a viable solution for maintaining normal operating temperatures despite relatively higher fluctuations compared to an independent GW system.
Comparative Life Cycle Greenhouse Gas Analysis of Clean Hydrogen Pathways: Assessing Domestic Production and Overseas Import in South Korea
Sep 2023
Publication
The development of a Clean Hydrogen Standard based on life-cycle greenhouse gas (GHG) emissions is gaining prominence on the international agenda. Thus a framework for assessing life-cycle GHG emissions for clean hydrogen pathways is necessary. In this study the comprehensive datasets and effects of various scenarios encompassing hydrogen production carriers (liquid hydrogen ammonia methylcyclohexane) carbon capture and storage (CCS) target analysis year (2021 2030) to reflect trends of greening grid electricity and potential import countries on aggregated life-cycle GHG emissions were presented. South Korea was chosen as a case study region and the low-carbon alternatives were suggested for reducing aggregated emissions to meet the Korean standard (5 kgCO2e/kgH2). First capturing and storing nearly entire (>90%) CO2 from fossil- and waste-based production pathways is deemed essential. Second when repurposing the use of hydrogen that was otherwise used internally applying a penalty for substitution is appropriate leading to results notably exceeding the standard. Third for electrolysis-based hydrogen using renewable or nuclear electricity is essential. Lastly when hydrogen is imported in a well-to-point-of-delivery (WtP) perspective using renewable electricity during hydrogen conversion into a carrier and reusing the produced hydrogen for endothermic reconversion reaction are recommended. By implementing the developed calculation framework to other countries' cases it was observed that importing hydrogen to regions having scope of WtP or above (e.g. well-to-wheel) might not meet the threshold due to additional emissions from importation processes. Additionally for hydrogen carriers undergoing the endothermic reconversion the approach to reduce WtP emissions (reusing produced hydrogen) may conflict with the approach to reduce well-to-gate (WtG) emission (using external fossilbased fuel). The discrepancy highlights the need to set a broader scope of emissions assessment to effectively promote the life-cycle emission reduction efforts of hydrogen importers. This study contributes to the field of clean hydrogen GHG emission assessment offering a robust database and calculation framework while addressing the effects of greening grid electricity and CCS implementation proposing low-carbon alternatives and GHG assessment scope to achieve global GHG reduction.
Comparative Analysis of Marine Alternative Fuels for Offshore Supply Vessels
Nov 2024
Publication
This paper provides an in-depth analysis of alternative fuels including liquefied natural gas (LNG) hydrogen ammonia and biofuels assessing their feasibility based on operational requirements availability safety concerns and the infrastructure needed for large-scale adoption. Moreover it examines hybrid and fully electric propulsion systems considering advancements in battery technology and the integration of renewable energy sources such as wind and solar power to further reduce SOV emissions. Key findings from this research indicate that LNG serves as a viable short- to medium-term solution for reducing GHG emissions in the SOV sector due to its relatively lower carbon content compared to MDO and HFO. This paper finally insists that while LNG presents an immediate opportunity for emission reduction in the SOV sector a combination of hydrogen ammonia and hybrid propulsion systems will be necessary to meet long-term decarbonisation goals. The findings underscore the importance of coordinated industry efforts technological innovation and supportive regulatory frameworks to overcome the technical economic and infrastructural challenges associated with decarbonising the maritime industry.
Economic and Environmental Potential of Green Hydrogen Carriers (GHCs) Produced via Reduction of Amine-capture CO2
Jun 2023
Publication
Hydrogen is deemed as a crucial component in the transition to a carbon-free energy system and researchers are actively working to realize the hydrogen economy. While hydrogen derived from renewable energy sources is a promising means of providing clean energy to households and industries its practical usage is currently hindered by difficulties in transportation and storage. Due to the extreme operating conditions required for liquefying hydrogen various hydrogen carriers are being considered which can be transported and stored at mild operating conditions and provide hydrogen at the site of usage. Among various candidates green hydrogen carriers obtained via carbon dioxide utilization have been proposed as an economically and environmentally feasible option. Herein the potential of using methanol and formic acid as green hydrogen carriers are evaluated regarding various production and dehydrogenation pathways within a hydrogen distribution system including the recycle of carbon dioxide. Recent progress in carbon dioxide utilization processes especially conversion of carbon dioxide captured in amine solutions have demonstrated promising results for methanol and formic acid production. This study analyzes seven scenarios that consider carbon dioxide utilization-based thermocatalytic and electrochemical methanol and formic acid production as well as different dehydrogenation pathways and compares them to the scenario of delivering liquefied hydrogen. The scenarios are thoroughly analyzed via techno-economic analysis and life cycle assessment methods. The results of the study indicate that methanol-based options are economically viable reducing the cost up to 43% compared to liquefied hydrogen delivery. As for formic acid only the electrochemical production method is profitable retaining 10% less cost compared to liquefied hydrogen delivery. In terms of environmental impact all of the scenarios show higher global warming impact values than liquefied hydrogen distribution. However results show that in an optimistic case where wind electricity is widely used electrochemical formic acid production is competitive with liquefied hydrogen distribution retaining 39% less global warming impact values. This is because high conversion can be achieved at mild operating conditions for the production and dehydrogenation reactions of formic acid reducing the input of utilities other than electricity. This study suggests that while methanol can be a shortterm solution for hydrogen distribution electrochemical formic acid production may be a viable long-term option.
Recent Research Progresses and Challenges for Practical Application of Large-Scale Solar Hydrogen Production
Dec 2024
Publication
Solar hydrogen production is a promising pathway for sustainable CO2 -free hydrogen production. It is mainly classified into three systems: photovoltaic electrolysis (PV-EC) photoelectrochemical (PEC) system and particulate photocatalytic (PC) system. However it still has trouble in commercialization due to the limitation of performance and economic feasibility in the large-scale system. In this review the challenges of each large-scale system are respectively summarized. Based on this summary recent approaches to solving these challenges are introduced focusing on core components fabrication processes and systematic designs. In addition several demonstrations of large-scale systems under outdoor conditions and performances of upscaled systems are introduced to understand the current technical level of solar-driven hydrogen production systems for commercialization. Finally the future outlooks and perspectives on the practical application of large-scale solar-driven hydrogen production are discussed.
Proactive Emergency Response Strategies for First Responders to Hydrogen Gas Leakages in Vehicles
Feb 2024
Publication
The widespread use of fossil fuels in automobiles has become a concern particularly in light of recent frequent natural disasters prompting a shift towards eco-friendly vehicles to mitigate greenhouse gas emissions. This shift is evident in the rapidly increasing registration rates of hydrogen vehicles. However with the growing presence of hydrogen vehicles on roads a corresponding rise in related accidents is anticipated posing new challenges for first responders. In this study computational fluid dynamics analysis was performed to develop effective response strategies for first responders dealing with high-pressure hydrogen gas leaks in vehicle accidents. The analysis revealed that in the absence of blower intervention a vapor cloud explosion from leaked hydrogen gas could generate overpressure exceeding 13.8 kPa potentially causing direct harm to first responders. In the event of a hydrogen vehicle accident requiring urgent rescue activities the appropriate response strategy must be selected. The use of blowers can aid in developing a variety of strategies by reducing the risk of a vapor cloud explosion. Consequently this study offers a tailored response strategy for first responders in hydrogen vehicle leak scenarios emphasizing the importance of situational assessment at the incident site.
Development of Liquid Organic Hydrogen Carriers for Hydrogen Storage and Transport
Jan 2024
Publication
The storage and transfer of energy require a safe technology to mitigate the global environmental issues resulting from the massive application of fossil fuels. Fuel cells have used hydrogen as a clean and efficient energy source. Nevertheless the storage and transport of hydrogen have presented longstanding problems. Recently liquid organic hydrogen carriers (LOHCs) have emerged as a solution to these issues. The hydrogen storage technique in LOHCs is more attractive than those of conventional energy storage systems like liquefaction compression at high pressure and methods of adsorption and absorption. The release and acceptance of hydrogen should be reversible by LOHC molecules following favourable reaction kinetics. LOHCs comprise liquid and semi-liquid organic compounds that are hydrogenated to store hydrogen. These hydrogenated molecules are stored and transported and finally dehydrogenated to release the required hydrogen for supplying energy. Hydrogenation and dehydrogenation are conducted catalytically for multiple cycles. This review elaborates on the characteristics of different LOHC molecules based on their efficacy as energy generators. Additionally different catalysts used for both hydrogenation and dehydrogenation are discussed.
Process Design and Improvement for Hydrogen Production Based on Thermodynamic Analysis: Practical Application to Real-world On-site Hydrogen Refueling Stations
Sep 2023
Publication
An energy source transition is necessary to realize carbon neutrality emphasizing the importance of a hydrogen economy. The transportation sector accounted for 27% of annual carbon emissions in 2019 highlighting the increasing importance of transitioning to hydrogen vehicles and establishing hydrogen refueling stations (HRSs). In particular HRSs need to be prioritized for deploying hydrogen vehicles and developing hydrogen supply chains. Thus research on HRS is important for achieving carbon neutrality in the transportation sector. In this study we improved the efficiency and scaled up the capacity of an on-site HRS (based on steam methane reforming with a hydrogen production rate of 30 Nm3/h) in Seoul Korea. This HRS was a prototype with low efficiency and capacity. Its efficiency was increased through thermodynamic analysis and heat exchanger network synthesis. Furthermore the process was scaled up from 30 Nm3/h to 150 Nm3/h to meet future hydrogen demand. The results of exergy analysis indicated that the exergy destruction in the reforming reactor and heat exchanger accounted for 58.1% and 19.8% respectively of the total exergy destruction. Thus the process was improved by modifying the heat exchanger network to reduce the exergy losses in these units. Consequently the thermal and exergy efficiencies were increased from 75.7% to 78.6% and from 68.1% to 70.4% respectively. The improved process was constructed and operated to demonstrate its performance. The operational and simulation data were similar within the acceptable error ranges. This study provides guidelines for the design and installation of low-carbon on-site HRSs.
Explosion Replication Test of FCEV Hydrogen Tank
Sep 2023
Publication
Due to the increased interest in alternative energy sources hydrogen device safety has become paramount. In this study we induced the explosion of a hydrogen tank from a fuel cell electric vehicle (FCEV) by igniting a fire beneath it and disabling the built-in temperature pressure relief device. Three Type 4 tanks were injected gaseous hydrogen at pressures of 700 350 and 10 bar respectively. The incident pressure generated by the tank explosion was measured by pressure transducers positioned at various points around the tank. A protective barrier was installed to examine its effect on the resulting damage and the reflected pressure was measured along the barrier. The internal pressure and external temperature of the tanks were measured in multiple locations. The 700- and 350-bar hydrogen tanks exploded approximately 10 and 16 min after burner ignition respectively. The 10-bar hydrogen tank did not explode but ruptured approximately 29 min after burner ignition The explosions generated blast waves fireballs and fragments. The impact on the surrounding area was evaluated and we verified that the blast pressure fireballs and fragments were almost completely blocked by the protective barrier. The results of this study are expected to improve safety on an FCEV accident scene.
Pathways to the Hydrogen Economy: A Multidimensional Analysis of the Technological Innovation Systems of Germany and South Korea
Aug 2023
Publication
The global trend towards decarbonization and the demand for energy security have put hydrogen energy into the spotlight of industry politics and societies. Numerous governments worldwide are adopting policies and strategies to facilitate the transition towards hydrogen-based economies. To assess the determinants of such transition this study presents a comparative analysis of the technological innovation systems (TISs) for hydrogen technologies in Germany and South Korea both recognized as global front-runners in advancing and implementing hydrogen-based solutions. By providing a multi-dimensional assessment of pathways to the hydrogen economy our analysis introduces two novel and crucial elements to the TIS analysis: (i) We integrate the concept of ‘quality infrastructure’ given the relevance of safety and quality assurance for technology adoption and social acceptance and (ii) we emphasize the social perspective within the hydrogen TIS. To this end we conducted 24 semi-structured expert interviews applying qualitative open coding to analyze the data. Our results indicate that the hydrogen TISs in both countries have undergone significant developments across various dimensions. However several barriers still hinder the further realization of a hydrogen economy. Based on our findings we propose policy implications that can facilitate informed policy decisions for a successful hydrogen transition.
Oxy-fuel Combustion-based Blue Hydrogen Production with the Integration of Water Electrolysis
Jun 2023
Publication
Blue hydrogen is gaining attention as an intermediate step toward achieving eco-friendly green hydrogen production. However the general blue hydrogen production requires an energy-intensive process for carbon capture and storage resulting in low process efficiency. Additionally the hydrogen production processes steam methane reforming (SMR) and electrolysis emits waste heat and byproduct oxygen respectively. To solve these problems this study proposes an oxy-fuel combustion-based blue hydrogen production process that integrates fossil fuel-based hydrogen production and electrolysis processes. The proposed processes are SMR + SOEC and SMR + PEMEC whereas SMR solid oxide electrolysis cell (SOEC) and proton exchange membrane electrolysis cell (PEMEC) are also examined for comparison. In the proposed processes the oxygen produced by the electrolyzer is utilized for oxy-fuel combustion in the SMR process and the resulting flue gas containing CO2 and H2O is condensed to easily separate CO2. Additionally the waste heat from the SMR process is recovered to heat the feed water for the electrolyzer thereby maximizing the process efficiency. Techno-economic sensitivity and greenhouse gas (GHG) analyses were conducted to evaluate the efficiency and feasibility of the proposed processes. The results show that SMR + SOEC demonstrated the highest thermal efficiency (85.2%) and exergy efficiency (80.5%) exceeding the efficiency of the SMR process (78.4% and 70.4% for thermal and exergy efficiencies respectively). Furthermore the SMR + SOEC process showed the lowest levelized cost of hydrogen of 6.21 USD/kgH2. Lastly the SMR + SOEC demonstrated the lowest life cycle GHG emissions. In conclusion the proposed SMR + SOEC process is expected to be a suitable technology for the transition from gray to green hydrogen.
Jet Flame Risk Analysis for Safe Response to Hydrogen Vehicle Accidents
Jun 2023
Publication
With an increase in the use of eco-friendly vehicles such as hybrid electric and hydrogen vehicles in response to the global climate crisis accidents related to these vehicles have also increased. Numerical analysis was performed to optimize the safety of first responders responding to hydrogen vehicle accidents wherein hydrogen jet flames occur. The influence range of the jet flame generated through a 1.8-mm-diameter nozzle was analyzed based on five discharge angles (90 75 60 45 and 30◦ ) between the road surface and the downward vertical. As the discharge angle decreases toward the road surface the risk area that could cause damage moves from the center of the vehicle to the rear; at a discharge angle of 90◦ the range above 9.5 kW/m2 was 1.59 m and 4.09 m to the front and rear of the vehicle respectively. However at a discharge angle of 30◦ it was not generated at the front but was 10.39 m to the rear. In response to a hydrogen vehicle accident first responders should perform rescue activities approaching from a diagonal direction to the vehicle front to minimize injury risk. This study can be used in future hydrogen vehicle design to develop the response strategy of the first responders.
A Web-based Decision Support System (DSS) for Hydrogen Refueling Station Location and Supply Chain Optimisation
Jun 2023
Publication
This study presents a novel web-based decision support system (DSS) that optimizes the locations of hydrogen refueling stations (HRSs) and hydrogen supply chains (HSCs). The system is developed with a design science approach that identifies key design requirements and features through interviews and literature reviews. Based on the findings a system architecture and data model were designed incorporating scenario management optimization model visualization and data management components. The DSS provides a two-stage solution model that links demand to HRSs and production facilities to HRSs. A prototype is demonstrated with a plan for 2025 and 2030 in the Republic of Korea where 450 to 660 stations were deployed nationwide and linked to production facilities. User evaluation confirmed the effectiveness of the DSS in solving optimization problems and its potential to assist the government and municipalities in planning hydrogen infrastructure.
Advances in Catalysts for Hydrogen Production: A Comprehensive Review of Materials and Mechanisms
Feb 2025
Publication
This review explores the recent advancements in catalyst technology for hydrogen production emphasizing the role of catalysts in efficient and sustainable hydrogen generation. This involves a comprehensive analysis of various catalyst materials including noble metals transition metals carbon-based nanomaterials and metal–organic frameworks along with their mechanisms and performance outcomes. Major findings reveal that while noble metal catalysts such as platinum and iridium exhibit exceptional activity their high cost and scarcity necessitate the exploration of alternative materials. Transition metal catalysts and single-atom catalysts have emerged as promising substitutes demonstrating their potential for enhancing catalytic efficiency and stability. These findings underscore the importance of interdisciplinary approaches to catalyst design which can lead to scalable and economically viable hydrogen production systems. The review concludes that ongoing research should focus on addressing challenges related to catalyst stability scalability and the integration of renewable energy sources paving the way for a sustainable hydrogen economy. By fostering innovation in catalyst development this work aims to contribute to the transition towards cleaner energy solutions and a more resilient energy future.
Roadmap for the Decarbonization of Domestic Passenger Ferries in the Republic of Korea
Feb 2025
Publication
This study examines the steps to lower air emissions in South Korea’s domestic shipping sector. It highlights the significant contributions of the sector to air pollution and greenhouse gas emissions emphasizing its impact on environmental sustainability and climate change mitigation. By looking at the current shipping energy use and emissions the research identifies ways to reduce the environmental impact of domestic shipping. Data was collected from domestic ferry routes and the fuel use was reviewed with respect to existing global technologies for reducing emissions. The results show that operational changes and current energy-efficient technologies can quickly cut emissions. Furthermore a long-term plan is suggested involving the development of new ship designs and the use of net-zero fuels like biofuels methanol hydrogen and ammonia. These efforts aim to meet climate goals targeting a 40% reduction in greenhouse emissions by 2030 and a 70% reduction by 2050 making South Korea’s shipping industry more sustainable and resilient.
Enhancing Safety through Optimal Placement of Components in Hydrogen Tractor: Rollover Angle Analysis
Feb 2024
Publication
Hydrogen tractors are being developed necessitating consideration of the variation in the center of gravity depending on the arrangement of components such as power packs and cooling modules that replace traditional engines. This study analyzes the effects of component arrangement on stability and rollover angle in hydrogen tractors through simulations and proposes an optimal configuration. Stability is evaluated by analyzing rollover angles in various directions with rotations around the tractor’s midpoint. Based on the analysis of rollover angles for Type 1 Type 2 and Type 3 hydrogen tractors Type 2 demonstrates superior stability compared to the other types. Specifically when comparing lateral rollover angles at 0◦ rotation Type 2 exhibits a 2% increase over Type 3. Upon rotations at 90◦ and 180◦ Type 2 consistently displays the highest rollover angles with differences ranging from approximately 6% to 12% compared to the other types. These results indicate that Type 2 with its specific component arrangement offers the most stable configuration among the three types of tractors. It is confirmed that the rollover angle changes based on component arrangement with a lower center of gravity resulting in greater stability. These findings serve as a crucial foundation for enhancing stability in the future design and manufacturing phases of hydrogen tractors.
CFD Thermo‑Hydraulic Evaluation of a Liquid Hydrogen Storage Tank with Different Insulation Thickness in a Small‑Scale Hydrogen Liquefier
Aug 2023
Publication
Accurate evaluation of thermo‑fluid dynamic characteristics in tanks is critically important for designing liquid hydrogen tanks for small‑scale hydrogen liquefiers to minimize heat leakage into the liquid and ullage. Due to the high costs most future liquid hydrogen storage tank designs will have to rely on predictive computational models for minimizing pressurization and heat leakage. Therefore in this study to improve the storage efficiency of a small‑scale hydrogen liquefier a three‑ dimensional CFD model that can predict the boil‑off rate and the thermo‑fluid characteristics due to heat penetration has been developed. The prediction performance and accuracy of the CFD model was validated based on comparisons between its results and previous experimental data and a good agreement was obtained. To evaluate the insulation performance of polyurethane foam with three different insulation thicknesses the pressure changes and thermo‑fluid characteristics in a partially liquid hydrogen tank subject to fixed ambient temperature and wind velocity were investigated nu‑ merically. It was confirmed that the numerical simulation results well describe not only the temporal variations in the thermal gradient due to coupling between the buoyance and convection but also the buoyancy‑driven turbulent flow characteristics inside liquid hydrogen storage tanks with differ‑ ent insulation thicknesses. In the future the numerical model developed in this study will be used for optimizing the insulation systems of storage tanks for small‑scale hydrogen liquefiers which is a cost‑effective and highly efficient approach.
Re-enacting the Hydrogen Tank Explosion of a Fuel-cell Electric Vehicle: An Experimental Study
May 2023
Publication
With the world-wide decision to reduce carbon emissions through the Paris Agreement (2015) the demand for hydrogen-fuelled vehicles has been increasing. Although hydrogen is not a toxic gas it has a wide flammable range (4e75%) and can explode due to static electricity. Therefore studies on hydrogen safety are urgently required. In this study an explosion was induced by applying fire to the lower part of a fuel cell electric vehicle (FCEV). Out of three compressed hydrogen storage tanks installed in the vehicle two did not have hydrogen fuel and one was filled with compressed gaseous hydrogen of 700 bar and forcedly deactivated its temperature-activated pressure relief device. The side-on overpressure transducers were installed by distance in main directions to measure the side-on overpressure generated by the vehicle explosion. A 10 m-long protective barrier was installed on which reflected overpressure displacement and acceleration were measured to examine the effect of attenuation of explosion damage in the event of an accident. The vehicle exploded approximately 11 min after ignition generating a blast wave fireballs and fragments. The results of the experiment showed that the protective barrier could almost completely block explosive pressure smoke and scattering generated during an explosion. Through Probit function analysis the probabilities of an accident occurring were derived based on peak overpressure peak impulse and scattering. The results of this study can be used to develop standard operating procedures (SOPs) for firefighters as the base data for setting the initial operation location and deriving the safe separation distance.
Expansion of Next-Generation Sustainable Clean Hydrogen Energy in South Korea: Domino Explosion Risk Analysis and Preventive Measures Due to Hydrogen Leakage from Hydrogen Re-Fueling Stations Using Monte Carlo Simulation
Apr 2024
Publication
Hydrogen an advanced energy source is growing quickly in its infrastructure and technological development. Urban areas are constructing convergence-type hydrogen refilling stations utilizing existing gas stations to ensure economic viability. However it is essential to conduct a risk analysis as hydrogen has a broad range for combustion and possesses significant explosive capabilities potentially leading to a domino explosion in the most severe circumstances. This study employed quantitative risk assessment to evaluate the range of damage effects of single and domino explosions. The PHAST program was utilized to generate quantitative data on the impacts of fires and explosions in the event of a single explosion with notable effects from explosions. Monte Carlo simulations were utilized to forecast a domino explosion aiming to predict uncertain events by reflecting the outcome of a single explosion. Monte Carlo simulations indicate a 69% chance of a domino explosion happening at a hydrogen refueling station if multi-layer safety devices fail resulting in damage estimated to be three times greater than a single explosion
Advances and Challenges in Thermoacoustic Network Modeling for Hydrogen and Ammonia Combustors
Jan 2025
Publication
The transition to low-carbon energy systems has heightened interest in hydrogen and ammonia as sustainable alternatives to traditional hydrocarbon fuels. However the development and operation of combustors utilizing these fuels like other combustion systems are challenged by thermoacoustic instabilities arising from the interaction between unsteady heat release and acoustic wave oscillations. Among many different methods for studying thermoacoustic instabilities thermoacoustic network models have played an important role in analyzing the essential dynamics of these instabilities in combustors operating with low-carbon fuels. This paper provides a comprehensive review of thermoacoustic network modeling techniques focusing specifically on their application to hydrogen- and ammonia-based combustion systems. We outline the key mathematical frameworks derived from fundamental equations of motion along with experimental validations and practical applications documented in existing studies. Furthermore current research gaps are identified and future directions are proposed to improve the reliability and effectiveness of thermoacoustic network models contributing to the advancement of efficient and stable low-carbon combustors.
Development of a Hydrogen Fuel Cell Hybrid Urban Air Mobility System Model Using a Hydrogen Metal Hydride Tank
Dec 2024
Publication
Hydrogen fuel cell-based UAM (urban air mobility) systems are gaining significant attention due to their advantages of higher energy density and longer flight durations compared to conventional battery-based UAM systems. To further improve the flight times of current UAM systems various hydrogen storage methods such as liquid hydrogen and hydrogen metal hydrides are being utilized. Among these hydrogen metal hydrides offer the advantage of high safety as they do not require the additional technologies needed for high-pressure gaseous hydrogen storage or the maintenance of cryogenic temperatures for liquid hydrogen. Furthermore because of the relatively slower dynamic response of hydrogen fuel cell systems compared to batteries they are often integrated into hybrid configurations with batteries necessitating an efficient power management system. In this study a UAM system was developed by integrating a hydrogen fuel cell system with hydrogen metal hydrides and batteries in a hybrid configuration. Additionally a state machine control approach was applied to a distribution valve for the endothermic reaction required for hydrogen desorption from the hydrogen metal hydrides. This design utilized waste heat generated by the fuel cell stack to facilitate hydrogen release. Furthermore a fuzzy logic control-based power management system was implemented to ensure efficient power distribution during flight. The results show that approximately 43% of the waste heat generated by the stack was recovered through the tank system.
Thermal Design of a Biohydrogen Production System Driven by Integrated Gasification Combined Cycle Waste Heat Using Dynamic Simulation
Apr 2022
Publication
Utilizing biological processes for hydrogen production via gasification is a promising alternative method to coal gasification. The present study proposes a dynamic simulation model that uses a one-dimensional heat-transfer analysis method to simulate a biohydrogen production system. The proposed model is based on an existing experimental design setup. It is used to simulate a biohydrogen production system driven by the waste heat from an integrated gasification combined cycle (IGCC) power plant equipped with carbon capture and storage technologies. The data from the simulated results are compared with the experimental measurement data to validate the developed model’s reliability. The results show good agreement between the experimental data and the developed model. The relative root-mean-square error for the heat storage feed-mixing and bioreactor tanks is 1.26% 3.59% and 1.78% respectively. After the developed model’s reliability is confirmed it is used to simulate and optimize the biohydrogen production system inside the IGCC power plant. The bioreactor tank’s time constant can be improved when reducing the operating volume of the feed-mixing tank by the scale factors of 0.75 and 0.50 leading to a 15.76% and 31.54% faster time constant respectively when compared with the existing design.
Helping the Climate by Replacing Liquefied Natural Gas with Liquefied Hydrogen or Ammonia?
Apr 2024
Publication
The war in Ukraine caused Europe to more than double its imports of liquefied natural gas (LNG) in only one year. In addition imported LNG remains a crucial source of energy for resource-poor countries such as Japan where LNG imports satisfy about a quarter of the country’s primary energy demand. However an increasing number of countries are formulating stringent decarbonization plans. Liquefied hydrogen and liquefied ammonia coupled with carbon capture and storage (LH2-CCS LNH3-CCS) are emerging as the front runners in the search for low-carbon alternatives to LNG. Yet little is currently known about the full environmental profile of LH2-CCS and LNH3-CCS because several characteristics of the two alternatives have only been analyzed in isolation in previous work. Here we show that the potential of these fuels to reduce greenhouse gas (GHG) emissions throughout the supply chain is highly uncertain. Our best estimate is that LH2-CCS and LNH3-CCS can reduce GHG emissions by 25%–61% relative to LNG assuming a 100 year global warming potential. However directly coupling LNG with CCS would lead to substantial GHG reductions on the order of 74%. Further under certain conditions emissions from LH2-CCS and LNH3-CCS could exceed those of LNG by up to 44%. These results question the suitability of LH2-CCS and LNH3-CCS for stringent decarbonization purposes.
Solar Hydrogen Production and Storage in Solid Form: Prospects for Materials and Methods
Sep 2024
Publication
Climatic changes are reaching alarming levels globally seriously impacting the environment. To address this environmental crisis and achieve carbon neutrality transitioning to hydrogen energy is crucial. Hydrogen is a clean energy source that produces no carbon emissions making it essential in the technological era for meeting energy needs while reducing environmental pollution. Abundant in nature as water and hydrocarbons hydrogen must be converted into a usable form for practical applications. Various techniques are employed to generate hydrogen from water with solar hydrogen production—using solar light to split water—standing out as a cost-effective and environmentally friendly approach. However the widespread adoption of hydrogen energy is challenged by transportation and storage issues as it requires compressed and liquefied gas storage tanks. Solid hydrogen storage offers a promising solution providing an effective and low-cost method for storing and releasing hydrogen. Solar hydrogen generation by water splitting is more efficient than other methods as it uses self-generated power. Similarly solid storage of hydrogen is also attractive in many ways including efficiency and cost-effectiveness. This can be achieved through chemical adsorption in materials such as hydrides and other forms. These methods seem to be costly initially but once the materials and methods are established they will become more attractive considering rising fuel prices depletion of fossil fuel resources and advancements in science and technology. Solid oxide fuel cells (SOFCs) are highly efficient for converting hydrogen into electrical energy producing clean electricity with no emissions. If proper materials and methods are established for solar hydrogen generation and solid hydrogen storage under ambient conditions solar light used for hydrogen generation and utilization via solid oxide fuel cells (SOFCs) will be an efficient safe and cost-effective technique. With the ongoing development in materials for solar hydrogen generation and solid storage techniques this method is expected to soon become more feasible and cost-effective. This review comprehensively consolidates research on solar hydrogen generation and solid hydrogen storage focusing on global standards such as 6.5 wt% gravimetric capacity at temperatures between −40 and 60 ◦C. It summarizes various materials used for efficient hydrogen generation through water splitting and solid storage and discusses current challenges in hydrogen generation and storage. This includes material selection and the structural and chemical modifications needed for optimal performance and potential applications.
Field Test Series for Development of Mitigation Barriers and its Designs Against Hydrogen Explosion
Sep 2023
Publication
A field test series where a composite pressure vessel for hydrogen is exploded by fire 1) to provide the facts and the data for the safety distance based on overpressure; 2) to validate the current status of mitigation barrier per KGS FP216 and further designs for developments of the codes and standards relating to hydrogen refueling stations. A pair of barriers to be tested are installed approximately 4 m apart standing face to face. The explosion source is a type-4 composite vessel of 175 L filled with compressed hydrogen up to 70 MPa. The vessel is in the middle of the barriers and the body part is heated with an LPG burner until it blows out. The incident overpressures from the blast are measured with 40 high-speed pressure sensors which are respectively installed 2 to 32 m away from the explosion. In the tests with the barrier constructed per the current status of KGS FP216 the explosion of the vessel resulted in partial destruction of the reinforced concrete barrier and made the steel plate barrier dissociated from the foundation then flew away approximately 25 m. The peak overpressure was 14.65 kPa at 32 m. The test data will be further analyzed to select the barriers for the subsequent tests and to develop the codes and standards for hydrogen refueling stations.
H2 URESONIC: Design of a Solar-Hydrogen University Renewable Energy System for a New and Innovative Campus
Feb 2024
Publication
The necessity to move to sustainable energy solutions has inspired an investigation of innovative technologies for satisfying educational institutions’ sustainable energy needs. The possibility of a solar-hydrogen storage system and its integration into university energy management is investigated in this article. The study opens by providing context noting the growing relevance of renewable energy in universities as well as the necessity for effective energy storage systems. The goal is to delve into solar-hydrogen technology outlining its components operating mechanism and benefits over typical storage systems. The chapter on Integration Design examines current university energy infrastructure identifies problems and provides ways for integrating solar-hydrogen systems seamlessly. This integration relies heavily on technological and economic considerations such as a cost-benefit analysis and scalability studies. Case studies include real-world examples performance measurements and significant insights learned from successful implementations. The chapter Future Prospects investigates new trends in solar-hydrogen technology as well as the impact of government legislation providing a forward-looking viewpoint for colleges considering adoption. The report concludes with a summary of significant findings emphasizing the benefits of solar-hydrogen integration and making recommendations for future implementations. The limitation of this research is that it only focuses on design and simulation as a phase of preliminary study.
Integrated Battery and Hydrogen Energy Storage for Enhanced Grid Power Savings and Green Hydrogen Utilization
Aug 2024
Publication
This study explores the integration and optimization of battery energy storage systems (BESSs) and hydrogen energy storage systems (HESSs) within an energy management system (EMS) using Kangwon National University’s Samcheok campus as a case study. This research focuses on designing BESSs and HESSs with specific technical specifications such as energy capacities and power ratings and their integration into the EMS. By employing MATLAB-based simulations this study analyzes energy dynamics grid interactions and load management strategies under various operational scenarios. Real-time data from the campus are utilized to examine energy consumption renewable energy generation grid power fluctuations and pricing dynamics providing key insights for system optimization. This study finds that a BESS manages energy fluctuations between 0.5 kWh and 3.7 kWh over a 24 h period with battery power remaining close to 4 W for extended periods. Grid power fluctuates between −5 kW and 75 kW while grid prices range from 75 to 120 USD/kWh peaking at 111 USD/kWh. Hydrogen energy storage varies from 1 kWh to 8 kWh with hydrogen power ranging from −40 kW to 40 kW. Load management keeps power stable at around 35 kW and PV power integration peaks at 48 kW by the 10th h. The findings highlight that BESSs and HESSs effectively manage energy distribution and storage improving system efficiency reducing energy costs by approximately 15% and enhancing grid stability by 20%. This study underscores the potential of BESSs and HESSs in stabilizing grid operations and integrating renewable energy. Future directions include advancements in storage technologies enhanced EMS capabilities through artificial intelligence and machine learning and the development of smart grid infrastructures. Policy recommendations stress the importance of regulatory support and stakeholder collaboration to drive innovation and scale deployment ensuring a sustainable energy future.
A Review on the Research Progress and Application of Compressed Hydrogen in the Marine Hydrogen Fuel Cell Power System
Jan 2024
Publication
The urgency to mitigate greenhouse gas emissions from maritime vessels has intensified due to the increasingly stringent directives set forth by the International Maritime Organization (IMO). These directives specifically address energy efficiency enhancements and emissions reduction within the shipping industry. In this context hydrogen is the much sought after fuel for all the global economies and its applications for transportation and propulsion in particular is crucial for cutting down carbon emissions. Nevertheless the realization of hydrogen-powered vessels is confronted by substantial technical hurdles that necessitate thorough examination. This study undertakes a comprehensive analysis encompassing diverse facets including distinct variations of hydrogen fuel cells hydrogen internal combustion engines safety protocols associated with energy storage as well as the array of policies and commercialization endeavors undertaken globally for the advancement of hydrogen-propelled ships. By amalgamating insights from these multifaceted dimensions this paper adeptly encapsulates the myriad challenges intrinsic to the evolution of hydrogen-fueled maritime vessels while concurrently casting a forward-looking gaze on their prospective trajectory.
Study of Thermal Behavior on Multi-tank Cascade System for Ship-borne Hydrogen Storage Tank Using a New Design Configuration
Feb 2025
Publication
Hydrogen tanks (HT) with different connection modes are an integral part of the shipborne hydrogen fuel cell system. To ensure the safe and reliable operation of the shipborne multi-tank cascade system this study innovatively develops 3D models of four different connection modes for the shipborne multi-tank cascade system namely Type-22 Type-211 Type-121 and Type-112. Through computational fluid dynamics (CFD) numerical simulation the variations in parameters of different multi-tank cascade systems during the hydrogen storage process are analyzed. The results indicate that the maximum temperature of Type-112 is 271.107K which is 2.220% 4.779% and 3.993% lower than that of Type-22 Type-211 and Type-121 respectively and thus the optimal parameters such as the initial temperature in the tank and pre-cooling temperature are derived. Type-112's maximum temperature is reduced by 14.02% and 16.66% compared to systems connected solely in series or in parallel. The study identifies the optimal structure and reasonable hydrogen storage parameters effectively reducing heat generation during the refueling process while optimizing space utilization thereby strongly ensuring the stability of hydrogen storage and opening up new avenues for addressing related hydrogen storage issues in the future.
Symmetry-Oriented Design Optimization for Enhancing Fatigue Life of Marine Liquid Hydrogen Storage Tanks Under Asymmetric Sloshing Loads
Sep 2025
Publication
Hydrogen fuel cells are gaining attention as an eco-friendly propulsion system for ships but the structural safety of storage tanks which store hydrogen at high pressure and supply it to the fuel cell is a critical concern. Marine liquid hydrogen storage tanks typically designed as rotationally symmetric structures face challenges when subjected to asymmetric wave-induced sloshing loads that break geometric symmetry and induce localized stress concentrations. This study conducted a fluid–structure interaction (FSI) analysis of a rotationally symmetric liquid hydrogen storage tank for marine applications to evaluate the impact of asymmetric liquid sloshing induced by wave loads on the tank structure and propose symmetry-guided structural improvement measures to ensure fatigue life. Sensitivity analysis using the finite difference method (FDM) revealed the asymmetric influences of design variables on stress distribution: increasing the thickness of triangular mounts (T1) reduced stress 3.57 times more effectively than circular ring thickness (T2) highlighting a critical symmetry-breaking feature in support geometry. This approach enables rapid and effective design modifications without complex optimization simulations. The study demonstrates that restoring structural symmetry through targeted reinforcement is essential to mitigate fatigue failure caused by asymmetric loading.
Stratified Hydrogen Combustion with Various Mixing Processes
Aug 2025
Publication
Hydrogen is recognized as a key alternative fuel for mitigating greenhouse-gas emissions owing to its high fuel efficiency and carbon-free combustion. In the stratified charge combustion (SCC) mode ensuring optimal air-fuel mixing in the combustion chamber is crucial because the local equivalence ratio has a dominant influence on combustion characteristics. Therefore this study aims to build a detailed understanding of stratified hydrogen combustion under various local equivalence ratios. Laser-induced breakdown spectroscopy (LIBS) was used to measure the local equivalence ratios in hydrogen jets at different mixture-formation times (MFTs) and laserignition points (LIPs). The results showed that shorter MFTs induced highly stratified mixtures with elevated local equivalence ratios exceeding 2.0 enhancing the laminar flame speed and maximizing the conversion of chemical energy into pressure gain resulting in a representative total heat release over three times higher compared to longer MFTs. Furthermore ignition near the injector tip produced leaner mixtures with equivalence ratios around 0.3 whereas downstream LIPs generated peak local equivalence ratios around 2.0 facilitating rapid flame propagation and increased heat release by 25 %.
Influence of Hydrogen on the Performance and Emissions Characteristics of a Spark Ignition Ammonia Direct Injection Engine
Oct 2023
Publication
Because ammonia is easier to store and transport over long distances than hydrogen it is a promising research direction as a potential carrier for hydrogen. However its low ignition and combustion rates pose challenges for running conventional ignition engines solely on ammonia fuel over the entire operational range. In this study we attempted to identify a stable engine combustion zone using a high-pressure direct injection of ammonia fuel into a 2.5 L spark ignition engine and examined the potential for extending the operational range by adding hydrogen. As it is difficult to secure combustion stability in a low-temperature atmosphere the experiment was conducted in a sufficiently-warmed atmosphere (90 ± 2.5 ◦C) and the combustion emission and efficiency results under each operating condition were experimentally compared. At 1500 rpm the addition of 10% hydrogen resulted in a notable 20.26% surge in the maximum torque reaching 263.5 Nm in contrast with the case where only ammonia fuel was used. Furthermore combustion stability was ensured at a torque of 140 Nm by reducing the fuel and air flow rates.
The Effect of Natural Ventilation through Roof Vents Following Hydrogen Leaks in Confined Spaces
Sep 2023
Publication
Hydrogen energy is gaining global popularity as a green energy source and its use is increasing. However hydrogen has a rapid diffusion rate and a broad combustion range; thus it is vital to take safety precautions during its storage. In this study we examined the change of hydrogen concentration in a confined space exposed to a hydrogen leak according to the size of the leakage hole and the leakage flow rate assuming an extreme situation. In addition we investigated rectangular vents (that serve as explosion panels in the event of an explosion) to assess their ventilation performance according to the area of the vent when used for emergency natural ventilation. The vent areas tested represented 12% 24% and 36% of the floor area and they were installed in the ceiling of the test enclosure. When exposed to a simulated hydrogen leak the enclosure acquired a hydrogen concentration of 1% which is 25% of the lower flammability limit (LFL) in less than 6 s across all test cases. The time to LFL varied from approximately 4–81 s. In an assessment of the emergency ventilation duration the ventilation time required to reach safe hydrogen concentrations decreased and showed less deviation as the vent size was increased. For the largest vent size tested the LFL was reached in <1 min; it took 145.6 s to acquire a 1 vol% of hydrogen which is relatively fast. However there were no significant differences between the performance of large and medium-sized vent areas. Therefore through the results we found that it is reasonable to apply the area Kv = 3.31 (24% of the floor area) or less when considering the design of a roof vent that can serve as both an emergency ventilation and an explosion vent. This suggests that it is difficult to expect an improvement in ventilation performance by simply increasing the area of the vent beyond a certain area. Through these results this study proposes a practical and novel method for future design and parameters of safety functions that protect areas where hydrogen is present.
A Thermodynamic Model for Cryogenic Liquid Hydrogen Fuel Tanks
Apr 2024
Publication
Hydrogen is used as a fuel in various fields such as aviation space and automobiles due to its high specific energy. Hydrogen can be stored as a compressed gas at high pressure and as a liquid at cryogenic temperatures. In order to keep liquid hydrogen at a cryogenic temperature the tanks for storing liquid hydrogen are required to have insulation to prevent heat leakage. When liquid hydrogen is vaporized by heat inflow a large pressure is generated inside the tank. Therefore a technology capable of predicting the tank pressure is required for cryogenic liquid hydrogen tanks. In this study a thermodynamic model was developed to predict the maximum internal pressure and pressure behavior of cryogenic liquid hydrogen fuel tanks. The developed model considers the heat inflow of the tank due to heat transfer the phase change from liquid to gas hydrogen and the fuel consumption rate. To verify the accuracy of the proposed model it was compared with the analyses and experimental results in the referenced literature and the model presented good results. A cryogenic liquid hydrogen fuel tank was simulated using the proposed model and it was confirmed that the storage time along with conditions such as the fuel filling ratio of liquid hydrogen and the fuel consumption rate should be considered when designing the fuel tanks. Finally it was confirmed that the proposed thermodynamic model can be used to sufficiently predict the internal pressure and the pressure behavior of cryogenic liquid hydrogen fuel tanks.
A Review on the Cost Analysis of Hydrogen Gas Storage Tanks for Fuel Cell Vehicles
Jul 2023
Publication
The most practical way of storing hydrogen gas for fuel cell vehicles is to use a composite overwrapped pressure vessel. Depending on the driving distance range and power requirement of the vehicles there can be various operational pressure and volume capacity of the tanks ranging from passenger vehicles to heavy-duty trucks. The current commercial hydrogen storage method for vehicles involves storing compressed hydrogen gas in high-pressure tanks at pressures of 700 bar for passenger vehicles and 350 bar to 700 bar for heavy-duty trucks. In particular hydrogen is stored in rapidly refillable onboard tanks meeting the driving range needs of heavy-duty applications such as regional and line-haul trucking. One of the most important factors for fuel cell vehicles to be successful is their cost-effectiveness. So in this review the cost analysis including the process analysis raw materials and manufacturing processes is reviewed. It aims to contribute to the optimization of both the cost and performance of compressed hydrogen storage tanks for various applications.
Recent Developments in Hydrogen Production, Storage, and Transportation: Challenges, Opportunities, and Perspectives
Jul 2024
Publication
Hydrogen (H2 ) is considered a suitable substitute for conventional energy sources because it is abundant and environmentally friendly. However the widespread adoption of H2 as an energy source poses several challenges in H2 production storage safety and transportation. Recent efforts to address these challenges have focused on improving the efficiency and cost-effectiveness of H2 production methods developing advanced storage technologies to ensure safe handling and transportation of H2 and implementing comprehensive safety protocols. Furthermore efforts are being made to integrate H2 into the existing energy infrastructure and explore new opportunities for its application in various sectors such as transportation industry and residential applications. Overall recent developments in H2 production storage safety and transportation have opened new avenues for the widespread adoption of H2 as a clean and sustainable energy source. This review highlights potential solutions to overcome the challenges associated with H2 production storage safety and transportation. Additionally it discusses opportunities to achieve a carbon-neutral society and reduce the dependence on fossil fuels.
A Study on the Thermal Behavior of Series and Parallel Connection Methods in the Process of Hydrogenation of Ship-Borne Hydrogen Storage Cylinder
Feb 2024
Publication
As a subdivision of the hydrogen energy application field ship-borne hydrogen fuel cell systems have certain differences from vehicle or other application scenarios in terms of their structural type safety environmental adaptability and test verification. The connection method of the ship-borne hydrogen storage cylinder (SHSC) is very important for the hydrogen fuel cell ship and the structural parameters of the SHSC are particularly important in the hydrogen refueling process. To ensure the safe and reliable operation of the hydrogen-powered ship research on the filling of the SHSC under different connection modes was carried out during refueling. In our study a thermal flow physical model of the SHSC was established to research the hydrogen refueling process of the series and parallel SHSCs. The influence of series and parallel modes of the SHSCs on the hydrogen refueling process was explored and the evolution law of the internal flow field pressure and temperature of series and parallel SHSCs under different filling parameters was analyzed by numerical simulation. Our results confirmed the superiority of the parallel modular approach in terms of thermal safety during refueling. The results can supply a technical basis for the future development of hydrogen refueling stations and ship-board hydrogenation control algorithms.
Hydrogen-Powered Marine Vessels: A Rewarding yet Challenging Route to Decarbonization
Aug 2025
Publication
The maritime industry while indispensable to global trade is a significant contributor to greenhouse gas (GHG) emissions accounting for approximately 3% of global emissions. As international regulatory bodies particularly the International Maritime Organization (IMO) push for ambitious decarbonization targets hydrogen-based technologies have emerged as promising alternatives to conventional fossil fuels. This review critically examines the potential of hydrogen fuels—including hydrogen fuel cells (HFCs) and hydrogen internal combustion engines (H2ICEs)—for maritime applications. It provides a comprehensive analysis of hydrogen production methods storage technologies onboard propulsion systems and the associated techno-economic and regulatory challenges. A detailed life cycle assessment (LCA) compares the environmental impacts of hydrogenpowered vessels with conventional diesel engines revealing significant benefits particularly when green or blue hydrogen sources are utilized. Despite notable hurdles—such as high production and retrofitting costs storage limitations and infrastructure gaps—hydrogen holds considerable promise in aligning maritime operations with global sustainability goals. The study underscores the importance of coordinated government policies technological innovation and international collaboration to realize hydrogen’s potential in decarbonizing the marine sector.
Accident Analysis Modeling and Case Study of Hydrogen Refueling Station Using Root Cause Analysis (RCA)
Jun 2025
Publication
As the global transition to carbon neutrality accelerates hydrogen energy has emerged as a key alternative to fossil fuels due to its potential to reduce carbon emissions. Many countries including Korea are constructing hydrogen refueling stations; however safety concerns persist due to accidents caused by equipment failures and human errors. While various accident analysis models exist the application of the root cause analysis (RCA) technique to hydrogen refueling station accidents remains largely unexplored. This study develops an RCA modeling map specifically for hydrogen refueling stations to identify not only direct and indirect causes of accidents but also root causes and applies it to actual accident cases to provide basic data for identifying the root causes of future hydrogen refueling station accidents. The RCA modeling map developed in this study uses accident cause investigation data from accident investigation reports over the past five years which include information on the organizational structure and operational status of hydrogen refueling stations as well as the RCA handbook. The primary defect sources identified were equipment defect personal defect and other defects. The problem categories which were the substructures of the primary defect source “equipment defect” consisted of four categories: the equipment design problem the equipment installation/fabrication problem the equipment reliability program problem and the equipment misuse problem. Additionally the problem categories which were the substructures of the primary defect source “personal defect” consisted of two categories: the company employee problem and the contract employee problem. The problem categories which were the substructures of the primary defect source “other defects” consisted of three categories: sabotage/horseplay natural phenomena and other. Compared to existing accident investigation reports which identified only three primary causes the RCA modeling map revealed nine distinct causes demonstrating its superior analytical capability. In conclusion the proposed RCA modeling map provides a more systematic and comprehensive approach for investigating accident causes at hydrogen refueling stations which could significantly improve safety practices and assist in quickly identifying root causes more efficiently in future incidents.
Enhancing Durability of Raney-Ni-based Electrodes for Hydrogen Evolution Reaction in Alkaline Water Electrolysis: Mitigating Reverse Current and H2 Bubble Effects using a NiP Protective Layer
Oct 2025
Publication
Raney Ni (R-Ni) electrodes are used as hydrogen evolution reaction catalysts in alkaline water electrolysis (AWE). However they are not durable because of reverse current-induced oxidation and catalyst damage from H2 bubbles. Reverse current triggers Ni phase changes and mechanical stress leading to catalyst delamination while bubbles block active sites increase resistance and cause structural damage. These issues have been addressed individually but not simultaneously. In this study a P-doped Ni (NiP) protective layer is electroplated on the R-Ni electrode to overcome both challenges. The NiP protective layer inhibits oxidation reducing Ni phase changes and preventing catalyst delamination. Enhanced surface wettability minimizes nucleation and facilitates faster bubble detachment reducing bubble-related damage. Electrochemical tests reveal that NiP/R-Ni exhibits a 26 mV lower overpotential than that of R-Ni at −400 mA cm−2 indicating higher catalytic activity. Accelerated degradation tests (ADTs) demonstrate the retention of the NiP/R-Ni catalyst layer with only a 25 mV increase in overpotential after ADT which is significantly less than that of R-Ni. Real-time impedance analysis reveals the presence of small rapidly detaching bubbles on NiP/R-Ni. Overall the NiP protective layer on R-Ni simultaneously mitigates both reverse current and H2 bubble-induced degradation improving catalytic activity and durability during AWE.
Hydrogen-Based Solutions for Enhancing Frequency Stability in Renewable Energy-Integrated Power Systems
Mar 2025
Publication
With the increasing adoption of renewable energy sources such as solar and wind power it is essential to achieve carbon neutrality. However several shortcomings including their intermittence pose significant challenges to the stability of the electrical grid. This study explores hydrogen-based technologies such as fuel cells and water electrolysis systems as an effective solution to improve frequency stability and address the problems of power grid reliability. Using power system analysis programs modeling and simulations performed on IEEE-25 Bus and Jeju Island systems demonstrate the potential of these technologies to mitigate reductions reduce transmission constraints and stabilize frequencies. The results show that hydrogen-based systems are important factors enabling sustainable energy transition.
Effect of Injection Timing on Gas Jet Developments in a Hydrogen Low-pressure Direct-injection Spark-ignition Engine
Sep 2025
Publication
Injection timing in low-pressure hydrogen direct injection (H2LPDI) engines plays a critical role in optimising gas jet structure and mixture formation due to the complex and transient nature of ambient air flow and density inside the cylinder. This study systematically investigates the macroscopic characteristics of gas jet development at five distinct injection timings from 210 to 120 ◦CA bTDC with the intake valve closure (IVC) as a reference point in a motored inline four-cylinder spark-ignition engine at 2000 rpm and 160 Nm load using low-pressure injection of 3.5 MPa. Optical access was made with two endoscopes: one for high-speed imaging and the other for laser insertion to realise laser shadowgraph imaging of the gas jet delivered using a side-mounted outwardopening pintle nozzle injector. The experimental results reveal spatial and temporal variations in jet morphology penetration spreading angle and mixture dispersion as a function of injection timing. Pre-IVC injection (210 ◦CA bTDC) produced a narrow mean cone angle of ~40◦ and the highest penetration-rate proxy (0.49) whereas postIVC injection (120 ◦CA bTDC) retained a wider ~53◦ cone yet reduced the penetration rate to 0.28 while increasing the sheet-based mixing index from − 0.084 to − 0.106. Pre-IVC injection occurring under low ambient pressure and with active intake airflow was found to produce elongated jets with enhanced penetration and mixing rates though accompanied by substantial cyclic variations. Conversely post-IVC injection was strongly influenced by a fully developed tumble flow which redirected the jet trajectory towards the pent-roof and facilitated mixing through increased turbulence. However the elevated air density constrained the jet penetration. At-IVC injection resulted in a more uniform and stable jet structure. However the lack of convective flow constrained the overall mixing effectiveness. Quantitative analysis of jet spreading angle pixel intensity gradient and centroid movement using 100 consecutive cycles confirms the critical role of injection timing in shaping the gas jet development as suggested by the images.
Socio-political Determinants of Public Acceptance of Green Hydrogen
Mar 2025
Publication
Green hydrogen produced through renewable energy sources is emerging as a pivotal element in global energy transitions. Despite its potential public acceptance remains a critical barrier to its large-scale implementation. This study aims to identify the socio-political and demographic determinants of public acceptance of green hydrogen. Using advanced variable selection methods including ridge lasso and elastic net regression we analyzed perceptions of climate change trust in government policies and demographic characteristics. The findings reveal that individuals prioritizing climate change over economic growth perceiving its impacts as severe and recognizing it as South Korea’s most pressing issue are more likely to accept green hydrogen. Trust in the government’s climate change response also emerged as a key factor. Demographic characteristics such as younger age higher income advanced education smaller family size and conservative political ideology were significantly associated with greater acceptance. These results highlight the importance of raising public awareness about the urgency of climate change and enhancing trust in government policies to promote societal acceptance of green hydrogen. Policymakers should consider these factors when developing strategies to advance the adoption of green hydrogen technologies and foster sustainable energy transitions.
Combining Babool Wood-derived Producer Gas and Hydrogen with Biodiesel as Efficienct Strategies for Dual-fuel Diesel Engine in Advancing Sustainable Energy
Sep 2025
Publication
The present investigation aims to provide a comparative assessment of using hydrogen-enriched wood waste-derived producer gas (PG) for a dual-fuel diesel engine fueled with a 20% Jatropha biodiesel/80% diesel blend (BD20) with the traditional mode. The experiments were conducted at 23°bTDC of injection timing 240 bar of injection pressure 17.5:1 of compression ratio and 1500 rpm of engine speed under various engine loads. Gas carburetor induction (GCI) port injection (PI) and inlet manifold injection (IMI) methods were used to supply H2-enriched PG while B20 is directly injected into the combustion chamber. Among all the combinations the IMI method provided the highest brake thermal efficiency of 30.91% the lowest CO emission of 0.08% and smoke opacity discharge of 49.26 HSU while NOx emission reached 1744.32 ppm which was lower than that of the PI mode. Furthermore the IMI method recorded the highest heat release rate of 91.17 J/°CA and peak cylinder pressure of 83.29 bar reflecting superior combustion quality. Finally using the IMI method for H2-enriched PG in dual-fuel diesel engines could improve combustion efficiency reduce greenhouse gas emissions and improve fuel economy showing that the combination of BD20 with H2-enriched PG offers a cleaner more sustainable and economically viable technology.
Experimental Study on the Operation of Pressure Safety Valve in the Liquid Hydrogen Environment
Sep 2025
Publication
In this study a liquid hydrogen (LH2) safety valve evaluation device was developed to enable safe and stable performance testing of pressure safety valves (PSVs) under realistic cryogenic and high-pressure conditions. The device was designed for flexible use by mounting all components on a mobile frame equipped with wheels and the pressurization rate inside the vessel was controlled through a boil-off gas (BOG) generator. Two experiments were conducted to investigate the effect of LH2 production rate on PSV operation. When the production of LH2 increased by about 2.4 times the number of PSV operations rose from 15 to 20 and the operating pressure range shifted slightly upward from 10.68~12.53 bar to 10.68~13.2 bar while remaining within the instrument’s error margin. These results indicate that repeated valve cycling and increased hydrogen production contribute to gradual changes in PSV operating characteristics. Additionally the minimum temperature experienced by the PSV decreased with repeated operations reaching approximately 77.9 K. The developed evaluation system provides an effective platform for analyzing PSV performance under realistic LH2 production and storage conditions.
Thermodynamics Analysis of Generation of Green Hydrogen and Methanol through Carbon Dioxide Capture
Oct 2025
Publication
This extensive study delves into analyzing carbon dioxide (CO2)-capturing green hydrogen plant exploring its operation using multiple electrolysis techniques and examining their efficiency and impact on environment. The solar energy is used for the electrolysis to make hydrogen. Emitted CO2 from thermal power plants integrate with green hydrogen and produces methanol. It is a process crucial for mitigating environmental damage and fostering sustainable energy practices. The findings demonstrated that solid oxide electrolysis is the most effective process by which hydrogen can be produced with significant rate of 90 % efficiency. Moreover proton exchange membrane (PEM) becomes a viable and common method with an 80 % efficiency whereas the alkaline electrolysis has a moderate level of 63 % efficiency. Additionally it was noted that the importance of seasonal fluctuations where the capturing of CO2 is maximum in summer months and less in the winter is an important factor to consider in order to maximize the working of the plant and the allocation of resources.
A Framework for the Configuration and Operation of EV/FCEV Fast-Charging Stations Integrated with DERs Under Uncertainty
Oct 2025
Publication
The integration of electric vehicles (EVs) and fuel-cell electric vehicles (FCEVs) requires accessible and profitable facilities for fast charging. To promote fast-charging stations (FCSs) a systematic analysis that encompasses both planning and operation is required including the incorporation of multi-energy resources and uncertainty. This paper presents an optimization framework that addresses a joint strategy for the configuration and operation of an EV/FCEV fast-charging station (FCS) integrated with distributed energy resources (DERs) and hydrogen systems. The framework incorporates uncertainties related to solar photovoltaic (PV) generation and demand for EVs/FCEVs. The proposed joint strategy comprises a four-phase decision-making framework. Phase 1 involves modeling EV/FECE demand while Phase 2 focuses on determining an optimal long-term infrastructure configuration. Subsequently in Phase 3 the operator optimizes daily power scheduling to maximize profit. A real-time uncertainty update is then executed in Phase 4 upon the realization of uncertainty. The proposed optimization framework formulated as mixed-integer quadratic programming (MIQP) considers configuration investment operational maintenance and penalty costs for excessive grid power usage. A heuristic algorithm is proposed to solve this problem. It yields good results with significantly less computational complexity. A case study shows that under the most adverse conditions the proposed joint strategy increases the FCS owner’s profit by 3.32% compared with the deterministic benchmark.
No more items...