Malaysia
A Review on Recent Progress in the Integrated Green Hydrogen Production Processes
Feb 2022
Publication
The thermochemical water‐splitting method is a promising technology for efficiently con verting renewable thermal energy sources into green hydrogen. This technique is primarily based on recirculating an active material capable of experiencing multiple reduction‐oxidation (redox) steps through an integrated cycle to convert water into separate streams of hydrogen and oxygen. The thermochemical cycles are divided into two main categories according to their operating temperatures namely low‐temperature cycles (<1100 °C) and high‐temperature cycles (<1100 °C). The copper chlorine cycle offers relatively higher efficiency and lower costs for hydrogen production among the low‐temperature processes. In contrast the zinc oxide and ferrite cycles show great potential for developing large‐scale high‐temperature cycles. Although several challenges such as energy storage capacity durability cost‐effectiveness etc. should be addressed before scaling up these technologies into commercial plants for hydrogen production. This review critically examines various aspects of the most promising thermochemical water‐splitting cycles with a particular focus on their capabilities to produce green hydrogen with high performance redox pairs stability and the technology maturity and readiness for commercial use.
A Comprehensive Review of Microbial Electrolysis Cells (MEC) Reactor Designs and Configurations for Sustainable Hydrogen Gas Production
Nov 2015
Publication
Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles. A cutting edge technology called a microbial electrolysis cell (MEC) can achieve sustainable and clean hydrogen production from a wide range of renewable biomass and wastewaters. Enhancing the hydrogen production rate and lowering the energy input are the main challenges of MEC technology. MEC reactor design is one of the crucial factors which directly influence on hydrogen and current production rate in MECs. The rector design is also a key factor to upscaling. Traditional MEC designs incorporated membranes but it was recently shown that membrane-free designs can lead to both high hydrogen recoveries and production rates. Since then multiple studies have developed reactors that operate without membranes. This review provides a brief overview of recent advances in research on scalable MEC reactor design and configurations.
Optimization and Sustainability of Gasohol/hydrogen Blends for Operative Spark Ignition Engine Utilization and Green Environment
Aug 2022
Publication
One of the many technical benefits of green diesel (GD) is its ability to be oxygenated lubricated and adopted in diesel engines without requiring hardware modifications. The inability of GD to reduce exhaust tail emissions and its poor performance in endurance tests have spurred researchers to look for new clean fuels. Improving gasohol/hydrogen blend (GHB) spark ignition is critical to its long-term viability and accurate demand forecasting. This study employed the Response Surface Methodology (RSM) to identify the appropriate GHB and engine speed (ES) for efficient performance and lower emissions in a GHB engine. The RSM model output variables included brake specific fuel consumption (BSFC) brake thermal efficiency (BTE) hydrocarbon (HC) carbon dioxide (CO2) and carbon monoxide (CO) while the input variables included ES and GHB. The Analysis of Variance-assisted RSM revealed that the most affected responses are BSFC and BTE. Based on the desirability criteria the best values for the GHB and the ES were determined to be 20% and 1500 rpm respectively while the validation between experimental and numerical results was calculated to be 4.82. As a result the RSM is a useful tool for predicting the optimal GHB and ES for optimizing spark-ignition engine characteristics and ensuring benign environment.
Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia
Feb 2023
Publication
The world has relied on fossil fuel energy for a long time producing many adverse effects. Long-term fossil fuel dependency has increased carbon emissions and accelerated climate change. In addition fossil fuels are also depleting and will soon be very costly. Moreover the expensive national electricity grid has yet to reach rural areas and will be cut off in inundation areas. As such alternative and carbon-free hydrogen fuel cell energy is highly recommended as it solves these problems. The reviews find that (i) compared to renewable energy such as solar biomass and hydropower a fuel cell does not require expensive transmission through an energy grid and is carbon-free and hence it is a faster agent to decelerate climate change; (ii) fuel cell technologies have reached an optimum level due to the high-efficiency production of energy and they are environmentally friendly; (iii) the absence of a policy on hydrogen fuel cells will hinder investment from private companies as they are not adequately regulated. It is thus recommended that countries embarking on hydrogen fuel cell development have a specific policy in place to allow the government to fund and regulate hydrogen fuel cells in the energy generation mix. This is essential as it provides the basis for alternative energy governance development and management of a country.
Solid Oxide Fuel Cell-Based Polygeneration Systems in Residential Applications: A Review of Technology, Energy Planning and Guidelines for Optimizing the Design
Oct 2022
Publication
Solid oxide fuel cells are an emerging energy conversion technology suitable for high-temperature power generation with proper auxiliary heat. Combining SOFCs and polygeneration has produced practical applications for modern energy system designs. Even though many researchers have reviewed these systems’ technologies opportunities and challenges reviews regarding the optimal strategy for designing and operating the systems are limited. Polygeneration is more complicated than any other energy generation type due to its ability to generate many types of energy from various prime movers. Moreover integration with other applications such as vehicle charging and fueling stations increases the complication in making the system optimally serve the loads. This study elaborates on the energy planning and guidelines for designing a polygeneration system especially for residential applications. The review of polygeneration technologies also aligns with the current research trend of developing green technology for modern and smart homes in residential areas. The proposed guideline is expected to solve the complication in other applications and technologies and design the polygeneration system optimally.
Hydrogen Energy as Future of Sustainable Mobility
May 2022
Publication
Conventional fuels for vehicular applications generate hazardous pollutants which have an adverse effect on the environment. Therefore there is a high demand to shift towards environment-friendly vehicles for the present mobility sector. This paper highlights sustainable mobility and specifically sustainable transportation as a solution to reduce GHG emissions. Thus hydrogen fuel-based vehicular technologies have started blooming and have gained significance following the zero-emission policy focusing on various types of sustainable motilities and their limitations. Serving an incredible deliverance of energy by hydrogen fuel combustion engines hydrogen can revolution various transportation sectors. In this study the aspects of hydrogen as a fuel for sustainable mobility sectors have been investigated. In order to reduce the GHG (Green House Gas) emission from fossil fuel vehicles researchers have paid their focus for research and development on hydrogen fuel vehicles and proton exchange fuel cells. Also its development and progress in all mobility sectors in various countries have been scrutinized to measure the feasibility of sustainable mobility as a future. This paper is an inclusive review of hydrogen-based mobility in various sectors of transportation in particular fuel cell cars that provides information on various technologies adapted with time to add more towards perfection. When compared to electric vehicles with a 200-mile range fuel cell cars have a lower driving cost in all of the 2035 and 2050 scenarios. To stimulate the use of hydrogen as a passenger automobile fuel the cost of a hydrogen fuel cell vehicle (FCV) must be brought down to at least the same level as an electric vehicle. Compared to gasoline cars fuel cell vehicles use 43% less energy and generate 40% less CO2.
A Review on Production and Implementation of Hydrogen as a Green Fuel in Internal Combustion Engines
Nov 2022
Publication
Huge and continuously growing non-renewable energy consumption due to human daily activities is accountable for the fossil fuel source crisis in recent decades. The growing concern about the emissions from internal combustion engines also impels the development of new energy sources to replace or reduce conventional non-renewable energy usage. In this context hydrogen is found to be a promising solution in internal combustion engines to address these issues. The novelty of this review is to provide an overview of the use of hydrogen as internal combustion fuel covering the operations in both spark-ignition (SI) and compression-ignition (CI) engines. Majority of the studies had shown that hydrogen enrichment fuels marked incredible engine performance in terms of thermal efficiency fuel consumption and energy consumption. In addition reductions in exhaust emissions such as smoke soot HC CO CO2 and NOx can be achieved in both SI and CI engines with proper operating conditions. Moreover outstanding combustion behaviours were observed in both internal combustion engines with the application of hydrogen fuel. These enhancements were mainly attributed to the physico-chemical properties of hydrogen which exhibits higher calorific value and rapid flaming speed as discussed in this paper. To summarize hydrogen utilisation in the IC and SI engines aided improvements in engine performance exhaust emissions and combustion behaviours under appropriate operating conditions and minor engine modifications such as ignition system and iridium spark plug for SI engines.
Estimates of the Decarbonization Potential of Alternative Fuels for Shipping as a Function of Vessel Type, Cargo, and Voyage
Oct 2022
Publication
Fuel transition can decarbonize shipping and help meet IMO 2050 goals. In this paper HFO with CCS LNG with CCS bio-methanol biodiesel hydrogen ammonia and electricity were studied using empirical ship design models from a fleet-level perspective and at the Tank-ToWake level to assist operators technology developers and policy makers. The cargo attainment rate CAR (i.e. cargo that must be displaced due to the low-C propulsion system) the ES (i.e. TTW energy needed per ton*n.m.) the CS (economic cost per ton*n.m.) and the carbon intensity index CII (gCO2 per ton*n.m.) were calculated so that the potential of the various alternatives can be compared quantitatively as a function of different criteria. The sensitivity of CAR towards ship type fuel type cargo type and voyage distance were investigated. All ship types had similar CAR estimates which implies that considerations concerning fuel transition apply equally to all ships (cargo containership tankers). Cargo type was the most sensitive factor that made a ship either weight or volume critical indirectly impacting on the CAR of different fuels; for example a hydrogen ship is weight-critical and has 2.3% higher CAR than the reference HFO ship at 20000 nm. Voyage distance and fuel type could result in up to 48.51% and 11.75% of CAR reduction. In addition to CAR the ES CS and CII for a typical mission were calculated and it was found that HFO and LNG with CCS gave about 20% higher ES and CS than HFO and biodiesel had twice the cost while ammonia methanol and hydrogen had 3–4 times the CS of HFO and electricity about 20 times suggesting that decarbonisation of the world’s fleet will come at a large cost. As an example of including all factors in an effort to create a normalized scoring system an equal weight was allocated to each index (CAR ES CS and CII). Biodiesel achieved the highest score (80%) and was identified as the alternative with the highest potential for a deep-seagoing containership followed by ammonia hydrogen bio-methanol and CCS. Electricity has the lowest normalized score of 33%. A total of 100% CAR is achievable by all alternative fuels but with compromises in voyage distance or with refuelling. For example a battery containership carrying an equal amount of cargo as an HFO-fuelled containership can only complete 13% of the voyage distance or needs refuelling seven times to complete 10000 n.m. The results can guide decarbonization strategies at the fleet level and can help optimise emissions as a function of specific missions.
Sustainable Hydrogen Energy in Aviation - A Narrative Review
Feb 2023
Publication
In the modern world zero-carbon society has become a new buzzword of the era. Many projects have been initiated to develop alternatives not only to the environmental crisis but also to the shortage of fossil fuels. With successful projects in automobile technology hydrogen fuel is now being tested and utilized as a sustainable green fuel in the aviation sector which will lead to zero carbon emission in the future. From the mid-20th century to the early 21st numerous countries and companies have funded multimillion projects to develop hydrogen-fueled aircraft. Empirical data show positive results for various projects. Consequently large companies are investing in various innovations undertaken by researchers under their supervision. Over time the efficiency of hydrogen-fueled aircraft has improved but the lack of refueling stations large production cost and consolidated carbon market share have impeded the path of hydrogen fuel being commercialized. In addition the Unmanned Aerial Vehicle (UAV) is another important element of the Aviation industry Hydrogen started to be commonly used as an alternative fuel for heavy-duty drones using fuel cell technology. The purpose of this paper is to provide an overview of the chronological development of hydrogen-powered aircraft technology and potential aviation applications for hydrogen and fuel cell technology. Furthermore the major barriers to widespread adoption of hydrogen technology in aviation are identified as are future research opportunities.
Controlling the Pressure of Hydrogen-natural Gas Mixture in an Inclined Pipeline
Feb 2020
Publication
This paper discusses the optimal control of pressure using the zero-gradient control (ZGC) approach. It is applied for the first time in the study to control the optimal pressure of hydrogen natural gas mixture in an inclined pipeline. The solution to the flow problem is first validated with existing results using the Taylor series approximation regression analysis and the Runge-Kutta method combined. The optimal pressure is then determined using ZGC where the optimal set points are calculated without having to solve the non-linear system of equations associated with the standard optimization problem. It is shown that the mass ratio is the more effective parameter compared to the initial pressure in controlling the maximum variation of pressure in a gas pipeline.
An Overview of the Recent Advances of Additive‐Improved Mg(BH4)2 for Solid‐State Hydrogen Storage Material
Jan 2022
Publication
Recently hydrogen (H2) has emerged as a superior energy carrier that has the potential to replace fossil fuel. However storing H2 under safe and operable conditions is still a challenging process due to the current commercial method i.e. H2 storage in a pressurised and liquified state which requires extremely high pressure and extremely low temperature. To solve this problem re‐ search on solid‐state H2 storage materials is being actively conducted. Among the solid‐state H2 storage materials borohydride is a potential candidate for H2 storage owing to its high gravimetric capacity (majority borohydride materials release >10 wt% of H2). Mg(BH4)2 which is included in the borohydride family shows promise as a good H2 storage material owing to its high gravimetric capacity (14.9 wt%). However its practical application is hindered by high thermal decomposition temperature (above 300 °C) slow sorption kinetics and poor reversibility. Currently the general research on the use of additives to enhance the H2 storage performance of Mg(BH4)2 is still under investigation. This article reviews the latest research on additive‐enhanced Mg(BH4)2 and its impact on the H2 storage performance. The future prospect and challenges in the development of additive‐ enhanced Mg(BH4)2 are also discussed in this review paper. To the best of our knowledge this is the first systematic review paper that focuses on the additive‐enhanced Mg(BH4)2 for solid‐state H2 storage.
Outlook of Fermentative Hydrogen Production Techniques: An Overview of Dark, Photo and Integrated Dark-photo Fermentative Approach to Biomass
Jan 2019
Publication
Biomass can be a sustainable choice for bioenergy production worldwide. Biohydrogen production using fermentative conversion of biomass has gained great interest during the last decade. Besides being an efficient transportation fuel biohydrogen can also be also be a low-carbon source of heat and electricity. Microbes assisted conversion (bioconversion) can be take place either in presence or absence of light. This is called photofermentation or dark-fermentation respectively. This review provides an overview of approaches of fermentative hydrogen production. This includes: dark photo and integrated fermentative modes of hydrogen production; the molecular basis behind its production and diverse range of its applicability industrially. Mechanistic understanding of the metabolic pathways involved in biomass-based fermentative hydrogen production are also reviewed.
Hydrogen Energy Vision 2060: Hydrogen as Energy Carrier in Malaysian Primary Energy Mix – Developing P2G Case
Mar 2021
Publication
The transition of Malaysia from fossil fuels to renewable energy sources provides significant challenges and opportunities for various energy sectors. Incorporation of H2 in the primary energy mix requires a deal of complexity in its relation to production transportation and end-use. The Sarawak State Government in Malaysia implemented a hydrogen energy roadmap for the year 2005–2030 on the state-level but despite the great enthusiasm and full support given by the government the development of hydrogen technology is still far from its goals. This is due to several factors that hinder its progress including (1) inability of hydrogen to be integrated with current primary energy infrastructure (2) limited technology resources to produce sustainable hydrogen and (3) lack of technical expertise in the field of hydrogen. In this paper a potential national roadmap and milestones are presented based on the power-to-gas (P2G) approach combined with its implications on the national natural gas (NG) pipeline network. Besides that the long-term and short-term strategies and implementation mechanisms are discussed in detail. Furthermore complete research schemes are formulated to be inline with the presented vision to further enhance technology development and implementation.
Combustion Characteristics of Hydrogen Direct Injection in a Helium–oxygen Compression Ignition Engine
Jul 2022
Publication
The ignition of hydrogen in compression ignition (CI) engines by adding noble gas as a working gas can yield excellent thermal efficiency due to its high specific heat ratio. This paper emphasizes the potential of helium–oxygen atmosphere for hydrogen combustion in CI engines and provides data on the engine configuration. A simulation was conducted using Converge CFD software based on the Yanmar NF19SK engine parameters. Helium–oxygen atmosphere compression show promising hydrogen autoignition results with the in-cylinder temperature was significantly higher than that of air during the compression stroke. In a compression ignition engine with a low compression ratio (CR) and intake temperature helium–oxygen atmosphere is recognized as the best working gas for hydrogen combustion. The ambient intake temperature was sufficient for hydrogen ignition in low CR with minimal heat flux effect. The best intake temperature for optimum engine efficiency in a low CR engine is 340 K and the engine compression ratio for optimum engine efficiency at ambient intake temperature is CR12 with an acceptable cylinder wall heat flux value. The helium–oxygen atmosphere as a working gas for hydrogen combustion in CI engines should be consider based on the parameter provided for clean energy transition with higher thermal efficiency.
Study of Heat Loss Mechanism in Argon-circulated Hydrogen Engine Combustion Chamber Wall Surface Conditions
Jul 2022
Publication
Hydrogen fuel in internal combustion engine gives a very big advantage to the transportation sector especially in solving the greenhouse emission problem. However there are only few research discovered the ability of argon as a working gas in hydrogen combustion in internal combustion engine. The high temperature rises from the argon compression tend to result in heat loss problem. This research aims to study the heat loss mechanism on wall surface condition in the combustion chamber. Experiments were conducted to study the effects of different heat flux sensor locations and the effect of ignition delay on heat flux. Local heat flux measurement was collected and images were observed using high speed shadowgraph images. The ignition delay that occurred near the combustion wall will result in larger heat loss throughout the combustion process. Higher ambient pressure results in a bigger amount of heat flux value. Other fundamental characteristics were obtained and discussed which may help in contributing the local heat loss data of an argon-circulated hydrogen engine in future engine operation.
Parametric Study and Electrocatalyst of Polymer Electrolyte Membrane (PEM) Electrolysis Performance
Jan 2023
Publication
An investigation was conducted to determine the effects of operating parameters for various electrode types on hydrogen gas production through electrolysis as well as to evaluate the efficiency of the polymer electrolyte membrane (PEM) electrolyzer. Deionized (DI) water was fed to a single-cell PEM electrolyzer with an active area of 36 cm2 . Parameters such as power supply (50–500 mA/cm2 ) feed water flow rate (0.5–5 mL/min) water temperature (25−80 ◦C) and type of anode electrocatalyst (0.5 mg/cm2 PtC [60%] 1.5 mg/cm2 IrRuOx with 1.5 mg/cm2 PtB 3.0 mg/cm2 IrRuOx and 3.0 mg/cm2 PtB) were varied. The effects of these parameter changes were then analyzed in terms of the polarization curve hydrogen flowrate power consumption voltaic efficiency and energy efficiency. The best electrolysis performance was observed at a DI water feed flowrate of 2 mL/min and a cell temperature of 70 ◦C using a membrane electrode assembly that has a 3.0 mg/cm2 IrRuOx catalyst at the anode side. This improved performance of the PEM electrolyzer is due to the reduction in activation as well as ohmic losses. Furthermore the energy consumption was optimal when the current density was about 200 mA/cm2 with voltaic and energy efficiencies of 85% and 67.5% respectively. This result indicates low electrical energy consumption which can lower the operating cost and increase the performance of PEM electrolyzers. Therefore the optimal operating parameters are crucial to ensure the ideal performance and durability of the PEM electrolyzer as well as lower its operating costs.
Wettability of Shale–brine–H2 System and H2-brine Interfacial Tension for Assessment of the Sealing Capacities of Shale Formations During Underground Hydrogen Storage
Jul 2022
Publication
Replacement of fossil fuels with clean hydrogen has been recognized as the most feasible approach of implementing CO2-free hydrogen economy globally. However large-scale storage of hydrogen is a critical component of hydrogen economy value chain because hydrogen is the lightest molecule and has moderately low volumetric energy content. To achieve successful storage of buoyant hydrogen at the subsurface and convenient withdrawal during the period of critical energy demand the integrity of the underground storage rock and overlying seal (caprock) must be assured. Presently there is paucity of information on hydrogen wettability of shale and the interfacial properties of H2/brine system. In this research contact angles of shale/H2/brine system and hydrogen/brine interfacial tension (IFT) were measured using Krüss drop shape analyzer (DSA 100) at 50 ◦C and varying pressure (14.7–1000 psi). A modified form of sessile drop approach was used for the contact angles measurement whereas the H2- brine IFT was measured through the pendant drop method. H2-brine IFT values decreased slightly with increasing pressure ranging between 63.68◦ at 14.7 psia and 51.29◦ at 1000 psia. The Eagle-ford shale with moderate total organic carbon (TOC) of 3.83% attained fully hydrogen-wet (contact angle of 99.9◦ ) and intermediate-wet condition (contact angle of 89.7◦ ) at 14.7 psi and 200 psi respectively. Likewise the Wolf-camp shale with low TOC (0.30%) attained weakly water-wet conditions with contact angles of 58.8◦ and 62.9◦ at 14.7 psi and 200 psi respectively. The maximum height of hydrogen that can be securely trapped by the Wolf-camp shale was approximately 325 meters whereas the value was merely 100 meters for the Eagle-ford shale. Results of this study will aid in assessment of hydrogen storage capacity of organic-rich shale (adsorption trapping) as well as evaluation of the sealing potentials of low TOC shale (caprock) during underground hydrogen storage.
Decarbonizing the Future for the Transportation and Aviation Industries: Green Hydrogen as the Sustainable Fuel Solution
Jun 2025
Publication
The pressure to move to sustainable energy sources is obvious in today's fast changing energy environment. In this context green hydrogen appears as a beacon of hope with the potential to reinvent the paradigms of energy consumption particularly in the transportation and aviation sectors. Hydrogen has long been intriguing owing to its unique characteristics. It is not only an energy transporter; it has the power to alter the game. Its growing significance is due to its capacity to decarbonize energy generation. Traditional hydrogen generation techniques have contributed considerably to world CO2 emissions accounting for over 2% of total emissions. This environmental problem is successfully addressed by the development of green hydrogen which is created from renewable energy sources. The International Energy Agency (IEA) predicts a 25 to 30 percent increase in global energy consumption by 2040 which is a very grim scenario. If continue to rely on coal and oil this growing demand will result in greater CO2 emissions exacerbating climate change's consequences. In this situation green hydrogen is not only an option but a need. Because green hydrogen has properties with conventional fuels it can be simply integrated into current infrastructure. This harmonic integration ensures that the shift to hydrogen-based solutions in these sectors would not demand a complete redesign of the present systems assuring cost-effectiveness and practicality. However like with any energy source green hydrogen has obstacles. Its combustibility and probable explosiveness have been cited as causes for concern. However developments in safety measures have successfully mitigated these dangers ensuring that hydrogen may be used safely and efficiently across various applications. A further difficulty is its energy density particularly in comparison to conventional fuels. While its energy-to-weight ratio may be good its bulk poses challenges particularly in the aviation industry where space is at a premium. Beyond its direct use as a fuel green hydrogen has potential in auxiliary capacities. It may be used as a dependable backup energy source during power outages as well as in a variety of different sectors and uses ranging from manufacturing to residential. Green hydrogen's adaptability demonstrates its potential to infiltrate all sectors of our economy. Storage is an important enabler for broad hydrogen use. Effective hydrogen storage technologies guarantee not only its availability but also its viability as a source of energy. Current research and advancements in this field are encouraging which strengthens the argument for green hydrogen. At conclusion green hydrogen is in the vanguard of sustainable energy solutions particularly for the transportation and aviation industries. In our collaborative quest of a sustainable future its unique features and environmental advantages make it a vital asset. As we explore further into the complexities of green hydrogen in this publication we want to shed light on its potential obstacles and future route.
Sustainable E-Fuels: Green Hydrogen, Methanol and Ammonia for Carbon-Neutral Transportation
Dec 2023
Publication
Increasingly stringent sustainability and decarbonization objectives drive investments in adopting environmentally friendly low and zero-carbon fuels. This study presents a comparative framework of green hydrogen green ammonia and green methanol production and application in a clear context. By harnessing publicly available data sources including from the literature this research delves into the evaluation of green fuels. Building on these insights this study outlines the production process application and strategic pathways to transition into a greener economy by 2050. This envisioned transformation unfolds in three progressive steps: the utilization of green hydrogen green ammonia and green methanol as a sustainable fuel source for transport applications; the integration of these green fuels in industries; and the establishment of mechanisms for achieving the net zero. However this research also reveals the formidable challenges of producing green hydrogen green ammonia and green methanol. These challenges encompass technological intricacies economic barriers societal considerations and far-reaching policy implications necessitating collaborative efforts and innovative solutions to successfully develop and deploy green hydrogen green ammonia and green methanol. The findings unequivocally demonstrate that renewable energy sources play a pivotal role in enabling the production of these green fuels positioning the global transition in the landscape of sustainable energy.
A Review on the Environmental Performance of Various Hydrogen Production Technologies: An Approach Towards Hydrogen Economy
Nov 2023
Publication
Demand for hydrogen has grown and continues to rise as a versatile energy carrier. Hydrogen can be produced from renewable and non-renewable energy sources. A wide range of technologies to produce hydrogen in an environmentally friendly way have been developed. As the life cycle assessment (LCA) approach has become popular recently including in the hydrogen energy system this paper comprehensively reviews the LCA of hydrogen production technology. A subdivision based on the trends in the LCA studies hydrogen production technology goal and scope definition system boundary and environmental performance of hydrogen production is discussed in this review. Thermochemical hydrogen production is the most studied technology in LCA. However utilizing natural resources especially wind power in the electrolysis process stands out as an environmentally preferable solution when compared to alternative production processes. It is crucial to rethink reactors and other production-related equipment to improve environmental performance and increase hydrogen production efficiency. Since most of the previous LCA studies were conducted in developed countries and only a few were from developing countries a way forward for LCA application on hydrogen in developing countries was also highlighted and discussed. This review provides a comprehensive insight for further research on hydrogen production technology from an LCA perspective.
No more items...