Malaysia
Hydrogen Fuel Cells for Sustainable Energy: Development and Progress in Selected Developed Countries
Jan 2021
Publication
The sustainable development goals concept towards zero carbon emission set forth by the Paris Agreement is the foundation of decarbonisation implemented in most developed countries worldwide. One of the efforts in the decarbonisation of the environment is through hydrogen fuel cell technology. A fuel cell is an energy converter device that produces electricity via the electrochemical reaction with water as the by-product. The application of fuel cells is strongly related to the economic aspect including local and infrastructure costs making it more relevant to be implemented in a developed country. This work presents a short review of the development and progress of hydrogen fuel cells in a developed country such as Japan Germany USA Denmark and China (in transition between developing to developed status); which championed hydrogen fuel cell technology in their region.
Optimization and Sustainability of Gasohol/hydrogen Blends for Operative Spark Ignition Engine Utilization and Green Environment
Aug 2022
Publication
One of the many technical benefits of green diesel (GD) is its ability to be oxygenated lubricated and adopted in diesel engines without requiring hardware modifications. The inability of GD to reduce exhaust tail emissions and its poor performance in endurance tests have spurred researchers to look for new clean fuels. Improving gasohol/hydrogen blend (GHB) spark ignition is critical to its long-term viability and accurate demand forecasting. This study employed the Response Surface Methodology (RSM) to identify the appropriate GHB and engine speed (ES) for efficient performance and lower emissions in a GHB engine. The RSM model output variables included brake specific fuel consumption (BSFC) brake thermal efficiency (BTE) hydrocarbon (HC) carbon dioxide (CO2) and carbon monoxide (CO) while the input variables included ES and GHB. The Analysis of Variance-assisted RSM revealed that the most affected responses are BSFC and BTE. Based on the desirability criteria the best values for the GHB and the ES were determined to be 20% and 1500 rpm respectively while the validation between experimental and numerical results was calculated to be 4.82. As a result the RSM is a useful tool for predicting the optimal GHB and ES for optimizing spark-ignition engine characteristics and ensuring benign environment.
Solid Oxide Fuel Cell-Based Polygeneration Systems in Residential Applications: A Review of Technology, Energy Planning and Guidelines for Optimizing the Design
Oct 2022
Publication
Solid oxide fuel cells are an emerging energy conversion technology suitable for high-temperature power generation with proper auxiliary heat. Combining SOFCs and polygeneration has produced practical applications for modern energy system designs. Even though many researchers have reviewed these systems’ technologies opportunities and challenges reviews regarding the optimal strategy for designing and operating the systems are limited. Polygeneration is more complicated than any other energy generation type due to its ability to generate many types of energy from various prime movers. Moreover integration with other applications such as vehicle charging and fueling stations increases the complication in making the system optimally serve the loads. This study elaborates on the energy planning and guidelines for designing a polygeneration system especially for residential applications. The review of polygeneration technologies also aligns with the current research trend of developing green technology for modern and smart homes in residential areas. The proposed guideline is expected to solve the complication in other applications and technologies and design the polygeneration system optimally.
A Comparison of Alternative Fuels for Shipping in Terms of Lifecycle Energy and Cost
Dec 2021
Publication
Decarbonization of the shipping sector is inevitable and can be made by transitioning into low‐ or zero‐carbon marine fuels. This paper reviews 22 potential pathways including conventional Heavy Fuel Oil (HFO) marine fuel as a reference case “blue” alternative fuel produced from natural gas and “green” fuels produced from biomass and solar energy. Carbon capture technology (CCS) is installed for fossil fuels (HFO and liquefied natural gas (LNG)). The pathways are compared in terms of quantifiable parameters including (i) fuel mass (ii) fuel volume (iii) life cycle (Well‐To‐ Wake—WTW) energy intensity (iv) WTW cost (v) WTW greenhouse gas (GHG) emission and (vi) non‐GHG emissions estimated from the literature and ASPEN HYSYS modelling. From an energy perspective renewable electricity with battery technology is the most efficient route albeit still impractical for long‐distance shipping due to the low energy density of today’s batteries. The next best is fossil fuels with CCS (assuming 90% removal efficiency) which also happens to be the lowest cost solution although the long‐term storage and utilization of CO2 are still unresolved. Biofuels offer a good compromise in terms of cost availability and technology readiness level (TRL); however the non‐GHG emissions are not eliminated. Hydrogen and ammonia are among the worst in terms of overall energy and cost needed and may also need NOx clean‐up measures. Methanol from LNG needs CCS for decarbonization while methanol from biomass does not and also seems to be a good candidate in terms of energy financial cost and TRL. The present analysis consistently compares the various options and is useful for stakeholders involved in shipping decarbonization.
Outlook of Fermentative Hydrogen Production Techniques: An Overview of Dark, Photo and Integrated Dark-photo Fermentative Approach to Biomass
Jan 2019
Publication
Biomass can be a sustainable choice for bioenergy production worldwide. Biohydrogen production using fermentative conversion of biomass has gained great interest during the last decade. Besides being an efficient transportation fuel biohydrogen can also be also be a low-carbon source of heat and electricity. Microbes assisted conversion (bioconversion) can be take place either in presence or absence of light. This is called photofermentation or dark-fermentation respectively. This review provides an overview of approaches of fermentative hydrogen production. This includes: dark photo and integrated fermentative modes of hydrogen production; the molecular basis behind its production and diverse range of its applicability industrially. Mechanistic understanding of the metabolic pathways involved in biomass-based fermentative hydrogen production are also reviewed.
Combustion Characteristics of Hydrogen Direct Injection in a Helium–oxygen Compression Ignition Engine
Jul 2022
Publication
The ignition of hydrogen in compression ignition (CI) engines by adding noble gas as a working gas can yield excellent thermal efficiency due to its high specific heat ratio. This paper emphasizes the potential of helium–oxygen atmosphere for hydrogen combustion in CI engines and provides data on the engine configuration. A simulation was conducted using Converge CFD software based on the Yanmar NF19SK engine parameters. Helium–oxygen atmosphere compression show promising hydrogen autoignition results with the in-cylinder temperature was significantly higher than that of air during the compression stroke. In a compression ignition engine with a low compression ratio (CR) and intake temperature helium–oxygen atmosphere is recognized as the best working gas for hydrogen combustion. The ambient intake temperature was sufficient for hydrogen ignition in low CR with minimal heat flux effect. The best intake temperature for optimum engine efficiency in a low CR engine is 340 K and the engine compression ratio for optimum engine efficiency at ambient intake temperature is CR12 with an acceptable cylinder wall heat flux value. The helium–oxygen atmosphere as a working gas for hydrogen combustion in CI engines should be consider based on the parameter provided for clean energy transition with higher thermal efficiency.
Study of Heat Loss Mechanism in Argon-circulated Hydrogen Engine Combustion Chamber Wall Surface Conditions
Jul 2022
Publication
Hydrogen fuel in internal combustion engine gives a very big advantage to the transportation sector especially in solving the greenhouse emission problem. However there are only few research discovered the ability of argon as a working gas in hydrogen combustion in internal combustion engine. The high temperature rises from the argon compression tend to result in heat loss problem. This research aims to study the heat loss mechanism on wall surface condition in the combustion chamber. Experiments were conducted to study the effects of different heat flux sensor locations and the effect of ignition delay on heat flux. Local heat flux measurement was collected and images were observed using high speed shadowgraph images. The ignition delay that occurred near the combustion wall will result in larger heat loss throughout the combustion process. Higher ambient pressure results in a bigger amount of heat flux value. Other fundamental characteristics were obtained and discussed which may help in contributing the local heat loss data of an argon-circulated hydrogen engine in future engine operation.
Renewable-based Zero-carbon Fuels for the Use of Power Generation: A Case Study in Malaysia Supported by Updated Developments Worldwide
Apr 2021
Publication
The existing combustion-centered energy mix in Malaysia has shown that replacing fossil fuels with zero-carbon alternative fuels could be a better approach to achieve the reduction of the carbon footprint of the power generation industry. In this study the potential of zero-carbon alternative fuels generated from renewable sources such as green hydrogen and green ammonia was addressed in terms of the production transport storage and utilization in Malaysia’s thermal power plants. The updated developments associated to green hydrogen and green ammonia across the globe have also been reviewed to support the existing potential in Malaysia. Though green hydrogen and green ammonia are hardly commercialized in Malaysia for the time being numerous potentialities have been identified in utilizing these fuels to achieve the zero-carbon power generation market in Malaysia. The vast and strategic location of natural gas network in Malaysia has the potential to deliver green hydrogen with minimal retrofitting required. Moreover there are active participation of Malaysia’s academic institutions in the development of water electrolysis that is the core process to convert the electricity from renewables plant into hydrogen. Malaysia also has the capacity to use its abundance of depleted gas reservoirs for the storage of green hydrogen. A large number of GT plants in Malaysia would definitely have the potential to utilize hydrogen co-firing with natural gas to minimize the amount of carbon dioxide (CO2) released. The significant number of ammonia production plants in Malaysia could provide a surplus of ammonia to be used as an alternative fuel for power plants. With regard to the energy policy in Malaysia positive acceptance of the implementation of renewable energy has been shown with the introduction of various energy policies aimed at promoting the incorporation of renewables into the energy mix. However there is still inadequate support for the implementation of alternative zero-carbon fuels in Malaysia.
Hydrogen Energy as Future of Sustainable Mobility
May 2022
Publication
Conventional fuels for vehicular applications generate hazardous pollutants which have an adverse effect on the environment. Therefore there is a high demand to shift towards environment-friendly vehicles for the present mobility sector. This paper highlights sustainable mobility and specifically sustainable transportation as a solution to reduce GHG emissions. Thus hydrogen fuel-based vehicular technologies have started blooming and have gained significance following the zero-emission policy focusing on various types of sustainable motilities and their limitations. Serving an incredible deliverance of energy by hydrogen fuel combustion engines hydrogen can revolution various transportation sectors. In this study the aspects of hydrogen as a fuel for sustainable mobility sectors have been investigated. In order to reduce the GHG (Green House Gas) emission from fossil fuel vehicles researchers have paid their focus for research and development on hydrogen fuel vehicles and proton exchange fuel cells. Also its development and progress in all mobility sectors in various countries have been scrutinized to measure the feasibility of sustainable mobility as a future. This paper is an inclusive review of hydrogen-based mobility in various sectors of transportation in particular fuel cell cars that provides information on various technologies adapted with time to add more towards perfection. When compared to electric vehicles with a 200-mile range fuel cell cars have a lower driving cost in all of the 2035 and 2050 scenarios. To stimulate the use of hydrogen as a passenger automobile fuel the cost of a hydrogen fuel cell vehicle (FCV) must be brought down to at least the same level as an electric vehicle. Compared to gasoline cars fuel cell vehicles use 43% less energy and generate 40% less CO2.
Utilization of Hydrogen in Gas Turbines: A Comprehensive Review
Feb 2022
Publication
The concerns regarding the consumption of traditional fuels such as oil and coal have driven the proposals for several cleaner alternatives in recent years. Hydrogen energy is one of the most attractive alternatives for the currently used fossil fuels with several superiorities such as zero-emission and high energy content. Hydrogen has numerous advantages compared to conventional fuels and as such has been employed in gas turbines (GTs) in recent years. The main benefit of using hydrogen in power generation with the GT is the considerably lower emission of greenhouse gases. The performance of the GTs using hydrogen as a fuel is influenced by several factors including the performance of the components the operating condition ambient condition etc. These factors have been investigated by several scholars and scientists in this field. In this article studies on hydrogen-fired GTs are reviewed and their results are discussed. Furthermore some recommendations are proposed for the upcoming works in this field.
Combustion Characteristics of Hydrogen in a Noble Gas Compression Ignition Engine
Jul 2021
Publication
Hydrogen eliminates carbon emissions from compression ignition (CI) engines while noble gases eliminate nitrogen oxide (NOx) emissions by replacing nitrogen. Noble gases can increase the in-cylinder temperature during the compression stroke due to their high specific heat ratio. This paper aims to find the optimum parameters for hydrogen combustion in an argon–oxygen atmosphere and to study hydrogen combustion in all noble gases providing hydrogen combustion data with suitable engine parameters to predict hydrogen ignitability under different conditions. Simulations are performed with Converge CFD software based on the Yanmar NF19SK direct injection CI (DICI) engine parameters. The results are validated with the experimental results of hydrogen combustion in an argon–oxygen atmosphere with a rapid compression expansion machine (RCEM) and modifications of the hydrogen injection timing and initial temperature are proposed. Hydrogen ignition in an argon atmosphere is dependent on a minimum initial temperature of 340 K but the combustion is slightly unstable. Helium and neon are found to be suitable for hydrogen combustion in low compression ratio (CR) engines. However krypton and xenon require temperature modification and a high CR for stable ignition. Detailed parameter recommendations are needed to improve hydrogen ignitability in conventional diesel engines with the least engine modification.
A Review on Production and Implementation of Hydrogen as a Green Fuel in Internal Combustion Engines
Nov 2022
Publication
Huge and continuously growing non-renewable energy consumption due to human daily activities is accountable for the fossil fuel source crisis in recent decades. The growing concern about the emissions from internal combustion engines also impels the development of new energy sources to replace or reduce conventional non-renewable energy usage. In this context hydrogen is found to be a promising solution in internal combustion engines to address these issues. The novelty of this review is to provide an overview of the use of hydrogen as internal combustion fuel covering the operations in both spark-ignition (SI) and compression-ignition (CI) engines. Majority of the studies had shown that hydrogen enrichment fuels marked incredible engine performance in terms of thermal efficiency fuel consumption and energy consumption. In addition reductions in exhaust emissions such as smoke soot HC CO CO2 and NOx can be achieved in both SI and CI engines with proper operating conditions. Moreover outstanding combustion behaviours were observed in both internal combustion engines with the application of hydrogen fuel. These enhancements were mainly attributed to the physico-chemical properties of hydrogen which exhibits higher calorific value and rapid flaming speed as discussed in this paper. To summarize hydrogen utilisation in the IC and SI engines aided improvements in engine performance exhaust emissions and combustion behaviours under appropriate operating conditions and minor engine modifications such as ignition system and iridium spark plug for SI engines.
Integrated Energy System Powered a Building in Sharjah Emirates in the United Arab Emirates
Jan 2023
Publication
In this study a green hydrogen system was studied to provide electricity for an office building in the Sharjah emirate in the United Arab Emirates. Using a solar PV a fuel cell a diesel generator and battery energy storage; a hybrid green hydrogen energy system was compared to a standard hybrid system (Solar PV a diesel generator and battery energy storage). The results show that both systems adequately provided the power needed for the load of the office building. The cost of the energy for both the basic and green hydrogen energy systems was 0.305 USD/kWh and 0.313 USD/kWh respectively. The cost of the energy for both systems is very similar even though the capital cost of the green hydrogen energy system was the highest value; however the replacement and operational costs of the basic system were higher in comparison to the green hydrogen energy system. Moreover the impact of the basic system in terms of the carbon footprint was more significant when compared with the green hydrogen system. The reduction in carbon dioxide was a 4.6 ratio when compared with the basic system.
Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia
Feb 2023
Publication
The world has relied on fossil fuel energy for a long time producing many adverse effects. Long-term fossil fuel dependency has increased carbon emissions and accelerated climate change. In addition fossil fuels are also depleting and will soon be very costly. Moreover the expensive national electricity grid has yet to reach rural areas and will be cut off in inundation areas. As such alternative and carbon-free hydrogen fuel cell energy is highly recommended as it solves these problems. The reviews find that (i) compared to renewable energy such as solar biomass and hydropower a fuel cell does not require expensive transmission through an energy grid and is carbon-free and hence it is a faster agent to decelerate climate change; (ii) fuel cell technologies have reached an optimum level due to the high-efficiency production of energy and they are environmentally friendly; (iii) the absence of a policy on hydrogen fuel cells will hinder investment from private companies as they are not adequately regulated. It is thus recommended that countries embarking on hydrogen fuel cell development have a specific policy in place to allow the government to fund and regulate hydrogen fuel cells in the energy generation mix. This is essential as it provides the basis for alternative energy governance development and management of a country.
Parametric Study and Electrocatalyst of Polymer Electrolyte Membrane (PEM) Electrolysis Performance
Jan 2023
Publication
An investigation was conducted to determine the effects of operating parameters for various electrode types on hydrogen gas production through electrolysis as well as to evaluate the efficiency of the polymer electrolyte membrane (PEM) electrolyzer. Deionized (DI) water was fed to a single-cell PEM electrolyzer with an active area of 36 cm2 . Parameters such as power supply (50–500 mA/cm2 ) feed water flow rate (0.5–5 mL/min) water temperature (25−80 ◦C) and type of anode electrocatalyst (0.5 mg/cm2 PtC [60%] 1.5 mg/cm2 IrRuOx with 1.5 mg/cm2 PtB 3.0 mg/cm2 IrRuOx and 3.0 mg/cm2 PtB) were varied. The effects of these parameter changes were then analyzed in terms of the polarization curve hydrogen flowrate power consumption voltaic efficiency and energy efficiency. The best electrolysis performance was observed at a DI water feed flowrate of 2 mL/min and a cell temperature of 70 ◦C using a membrane electrode assembly that has a 3.0 mg/cm2 IrRuOx catalyst at the anode side. This improved performance of the PEM electrolyzer is due to the reduction in activation as well as ohmic losses. Furthermore the energy consumption was optimal when the current density was about 200 mA/cm2 with voltaic and energy efficiencies of 85% and 67.5% respectively. This result indicates low electrical energy consumption which can lower the operating cost and increase the performance of PEM electrolyzers. Therefore the optimal operating parameters are crucial to ensure the ideal performance and durability of the PEM electrolyzer as well as lower its operating costs.
Investigation of Performance of Anion Exchange Membrane (AEM) Electrolysis with Different Operating Conditions
Mar 2023
Publication
In this work the performance of anion exchange membrane (AEM) electrolysis is evaluated. A parametric study is conducted focusing on the effects of various operating parameters on the AEM efficiency. The following parameters—potassium hydroxide (KOH electrolyte concentration (0.5–2.0 M) electrolyte flow rate (1–9 mL/min) and operating temperature (30–60 ◦C)—were varied to understand their relationship to AEM performance. The performance of the electrolysis unit is measured by its hydrogen production and energy efficiency using the AEM electrolysis unit. Based on the findings the operating parameters greatly influence the performance of AEM electrolysis. The highest hydrogen production was achieved with the operational parameters of 2.0 M electrolyte concentration 60 ◦C operating temperature and 9 mL/min electrolyte flow at 2.38 V applied voltage. Hydrogen production of 61.13 mL/min was achieved with an energy consumption of 48.25 kW·h/kg and an energy efficiency of 69.64%.
Sustainable Hydrogen Energy in Aviation - A Narrative Review
Feb 2023
Publication
In the modern world zero-carbon society has become a new buzzword of the era. Many projects have been initiated to develop alternatives not only to the environmental crisis but also to the shortage of fossil fuels. With successful projects in automobile technology hydrogen fuel is now being tested and utilized as a sustainable green fuel in the aviation sector which will lead to zero carbon emission in the future. From the mid-20th century to the early 21st numerous countries and companies have funded multimillion projects to develop hydrogen-fueled aircraft. Empirical data show positive results for various projects. Consequently large companies are investing in various innovations undertaken by researchers under their supervision. Over time the efficiency of hydrogen-fueled aircraft has improved but the lack of refueling stations large production cost and consolidated carbon market share have impeded the path of hydrogen fuel being commercialized. In addition the Unmanned Aerial Vehicle (UAV) is another important element of the Aviation industry Hydrogen started to be commonly used as an alternative fuel for heavy-duty drones using fuel cell technology. The purpose of this paper is to provide an overview of the chronological development of hydrogen-powered aircraft technology and potential aviation applications for hydrogen and fuel cell technology. Furthermore the major barriers to widespread adoption of hydrogen technology in aviation are identified as are future research opportunities.
Multi-criteria Optimisation of Fermentative and Solar-driven Electrolytic Hydrogen and Electricity Supply-demand Network with Hybrid Storage System
May 2023
Publication
Harnessing renewable resources such as solar energy and biogenic waste for hydrogen production offers a path toward a carbon-neutral industrial economy. This study suggests the development of a renewable-based hydrogen and power supply facility (HPSF) that relies on fermentation and solar-driven electrolysis technologies to achieve penetration of renewable hydrogen and electricity in the industrial symbiosis. Literature studies reported that the hybrid battery-hydrogen storage system could effectively improve the sustainability and reliability of renewable energy supplies yet its application under diurnal and seasonal renewable resource variations has not been well studied. Hence this work develops a multi-criteria optimisation framework for the configuration design of the proposed HPSF that concurrently targets industrial hydrogen and electrical loads with the consideration of diurnal and seasonal renewable resource variations. Case scenarios with different storage applications are presented to evaluate the role of storage in improving economic and environmental sustainability. The results show that the application of hybrid storage with molten carbonate fuel cell (MCFC) systems is preferred from a comprehensive sustainability standpoint which improves the sustainability-weighted return-on investment metric (SWROIM) score by 4%/yr compared to HPSF without storage application. On the other hand the application of a single-battery system is the most economical solution with a return on investment (ROI) of 0.7%/yr higher than the hybrid storage approach. The research outcome could provide insights into the integration of fermentative and solar-driven electrolytic hydrogen production technologies into the industrial symbiosis to further enhance a sustainable economy.
Hydrogen Fuel Cell Legal Framework in the United States, Germany, and South Korea—A Model for a Regulation in Malaysia
Feb 2021
Publication
As a party to the United Nation Framework Convention on Climate Change (UNFCCC) Malaysia is committed to reduce its greenhouse gases (GHG) emission intensity of gross domestic product (GDP) by 45% by 2030 relative to the emission intensity of GDP in 2005. One of the ways for Malaysia to reduce its GHG emission is to diversify its energy mix and to include hydrogen fuel cell (HFC) in its energy mix. Since Malaysia does not have any legal framework for HFCs it is best to see how other countries are doing and how can it be replicated in Malaysia. This paper reviews the HFC legal framework in the United States Germany and South Korea as these countries are among those that have advanced themselves in this technology. The researchers conducted a library-based research and obtained the related materials from online databases and public domain. Based on the reviews the researchers find that these countries have a proper legal framework in place for HFC. With these legal frameworks funds will be available to support research and development as well as demonstration of HFC. Thus it is recommended that Malaysia to have a proper HFC legal framework in place in order to support the development of the HFC industry.
Industrial and Academic Collaboration Strategies on Hydrogen Fuel Cell Technology Development in Malaysia
Nov 2013
Publication
Hydrogen fuel cells are electrochemical power generators of high conversion efficiency and incredibly clean operation. Throughout the world the growth of fuel cell research and application has been very rapid in the last ten years where successful pilot projects on many areas have been implemented. In Malaysia approximately RM40 million has been granted to academic research institutions for fuel cell study and development. Recently Malaysia saw the emergence of its first hydrogen fuel cell developer signaling the readiness of the industrial sector to be involved in marketing the potential of fuel cells. Focusing mainly on Polymer Electrolyte Membrane fuel cell technology this paper demonstrates the efforts by Malaysian institutions both industrial and academic to promote hydrogen fuel cell education training application R&D as well as technology transfer. Emphasis is given to the existing collaboration between G-Energy Technologies and UniversitiTeknologi MARA that culminates with the successful application of a locally developed fuel cell system for a single-seated vehicle. Briefs on the potential of realizing a large-scale utilization of this clean technology into Malaysia’s mainstream power industry domestic consumers and energy consuming industries is also discussed. Key challenges are also identified where pilot projects government policy and infrastructural development is central to strengthen the prospect of hydrogen fuel cell implementation in Malaysia.
No more items...