Norway
Accidental Hydrogen Release in Gc-laboratory: A Case Study
Oct 2015
Publication
A 50-litre standard hydrogen gas cylinder was temporarily placed in a laboratory to supply hydrogen gas to a flame ionization detector (FID) for use in gas chromatography (GC). On 20 January 2015 the safety relief valve on the pressure regulator failed and released about 0.34 kg of hydrogen into the laboratory. The gas cloud did not ignite so there was no injury or damage. The results of a full investigation with a complete course of action and reconstruction are presented that verify the cause of the leakage and estimate the gas concentration of the dispersion and gas cloud. A preliminary simulation of the likely explosion is provided. If the gas cloud had ignited the explosion would most likely have caused significant structural damage to doors windows and possibly the walls.
Can the Addition of Hydrogen to Natural Gas Reduce the Explosion Risk?
Sep 2009
Publication
One of the main benefits sought by including hydrogen in the alternative fuels mix is emissions reduction – eventually by 100%. However in the near term there is a very significant cost differential between fossil fuels and hydrogen. Hythane (a blend of hydrogen and natural gas) can act as a viable next step on the path to an ultimate hydrogen economy as a fuel blend consisting of 8−30 % hydrogen in methane can reduce emissions while not requiring significant changes in existing infrastructure. This work seeks to evaluate whether hythane may be safer than both hydrogen and methane under certain conditions. This is due to the fact hythane combines the positive safety properties of hydrogen (strong buoyancy high diffusivity) and methane (much lower flame speeds and narrower flammability limits as compared to hydrogen). For this purpose several different mixture compositions (e.g. 8 % 20 % and 30 % hydrogen) are considered. The evaluation of (a) dispersion characteristics (which are more positive than for methane) (b) combustion characteristics (which are closer to methane than hydrogen) and (c) Combined dispersion + explosion risk is performed. This risk is expected to be comparable to that of pure methane possibly lower in some situations and definitely lower than for pure hydrogen. The work is performed using the CFD software FLACS that has been well-validated for safety studies of both natural gas/methane and hydrogen systems. The first part of the work will involve validating the flame speeds and flammability limits predicted by FLACS against values available in literature. The next part of the work involves validating the overpressures predicted by the CFD tool for combustion of premixed mixtures of methane and hydrogen with air against available experimental data. In the end practical systems such as vehicular tunnels garages etc. is used to demonstrate positive safety benefits of hythane with comparisons to similar simulations for both hydrogen and methane.
Status, Gaps and Recommendations Regarding Standardisation and the Use of Hydrogen in Sustainable Buildings
Sep 2013
Publication
The use of and interpretation of Regulations Codes and Standards is important input when developing hydrogen systems and applications. This paper presents the work related to standardisation undertaken by DNV as part of the EU supported project H2SusBuild. During the H2SusBuild project a renewable (solar and wind) based full scale energy system with components for hydrogen storage hydrogen production by electrolysis and hydrogen consumption by fuel cell and burner was built and integrated into an existing office building in Lavrion Greece. The relevant standards identified and applied the standardisation gaps identified and the recommendations made for further standardisation activities are presented.
Vented Hydrogen Deflagrations in Containers: Effect of Congestion for Homogeneous Mixtures
Sep 2017
Publication
This paper presents results from an experimental study of vented hydrogen deflagrations in 20-foot ISO containers. The scenarios investigated include 14 tests with explosion venting through the doors of the containers and 20 tests with venting through openings in the roof. The parameters investigated include hydrogen concentration vent area type of venting device and the level of congestion inside the containers. All tests involved homogeneous and initially quiescent hydrogen-air mixtures. The results demonstrate the strong effect of congestion on the maximum reduced explosion pressures which typically is not accounted for in current standards and guidelines for explosion protection. The work is a deliverable from work package 2 (WP2) in the project “Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations” or HySEA which receives funding from the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) under grant agreement no. 671461.
Safe Hydrogen Fuel Handling and Use for Efficient Implementation – SH2IFT
Sep 2019
Publication
The SH2IFT project combines social and technical scientific methods to address knowledge gaps regarding safe handling and use of gaseous and liquid hydrogen. Theoretical approaches will be complemented by fire and explosion experiments with emphasis on topics of strategic importance to Norway such as tunnel safety maritime applications etc. Experiments include Rapid Phase Transition Boiling Liquid Expanding Vapour Explosion and jet fires. This paper gives an overview of the project and preliminary results.
Heading for Hydrogen - The Oil and Gas Industry’s Outlook for Hydrogen, From Ambition to Reality
May 2020
Publication
The future of hydrogen energy is wrapped up with the future of natural gas renewable energy and carbon capture and storage (CCS). This yields useful synergies but also political economic and technical complexity. Nevertheless our survey of more than 1000 senior oil and gas professionals suggests a more certain future for hydrogen and that the time is right to begin scaling the hydrogen economy.
Hytunnel Project to Investigate the Use of Hydrogen Vehicles in Road Tunnels
Sep 2009
Publication
Hydrogen vehicles may emerge as a leading contender to replace today’s internal combustion engine powered vehicles. A Phenomena Identification and Ranking Table exercise conducted as part of the European Network of Excellence on Hydrogen Safety (HySafe) identified the use of hydrogen vehicles in road tunnels as a topic of important concern. An internal project called HyTunnel was duly established within HySafe to review identify and analyse the issues involved and to contribute to the wider activity to establish the true nature of the hazards posed by hydrogen vehicles in the confined space of a tunnel and their relative severity compared to those posed by vehicles powered by conventional fuels including compressed natural gas (CNG). In addition to reviewing current hydrogen vehicle designs tunnel design practice and previous research a programme of experiments and CFD modelling activities was performed for selected scenarios to examine the dispersion and explosion hazards potentially posed by hydrogen vehicles. Releases from compressed gaseous hydrogen (CGH2) and liquid hydrogen (LH2) powered vehicles have been studied under various tunnel geometries and ventilation regimes. The findings drawn from the limited work done so far indicate that under normal circumstances hydrogen powered vehicles do not pose a significantly higher risk than those powered by petrol diesel or CNG but this needs to be confirmed by further research. In particular obstructions at tunnel ceiling level have been identified as a potential hazard in respect to fast deflagration or even detonation in some circumstances which warrants further investigation. The shape of the tunnel tunnel ventilation and vehicle pressure relief device (PRD) operation are potentially important parameters in determining explosion risks and the appropriate mitigation measures.
3D Risk Management for Hydrogen Installations (HY3DRM)
Oct 2015
Publication
This paper introduces the 3D risk management (3DRM) concept with particular emphasis on hydrogen installations (Hy3DRM). The 3DRM framework entails an integrated solution for risk management that combines a detailed site-specific 3D geometry model a computational fluid dynamics (CFD) tool for simulating flow-related accident scenarios methodology for frequency analysis and quantitative risk assessment (QRA) and state-of-the-art visualization techniques for risk communication and decision support. In order to reduce calculation time and to cover escalating accident scenarios involving structural collapse and projectiles the CFD-based consequence analysis can be complemented with empirical engineering models reduced order models or finite element analysis (FEA). The paper outlines the background for 3DRM and presents a proof-of-concept risk assessment for a hypothetical hydrogen filling station. The prototype focuses on dispersion fire and explosion scenarios resulting from loss of containment of gaseous hydrogen. The approach adopted here combines consequence assessments obtained with the CFD tool FLACS-Hydrogen from Gexcon and event frequencies estimated with the Hydrogen Risk Assessment Models (HyRAM) tool from Sandia to generate 3D risk contours for explosion pressure and radiation loads. For a given population density and set of harm criteria it is straightforward to extend the analysis to include personnel risk as well as risk-based design such as detector optimization. The discussion outlines main challenges and inherent limitations of the 3DRM concept as well as prospects for further development towards a fully integrated framework for risk management in organizations.
Simulating Vented Hydrogen Deflagrations: Improved Modelling in the CFD Tool Flacs-Hydrogen
Sep 2019
Publication
This paper describes validation of the computational fluid dynamics tool FLACS-Hydrogen. The validation study focuses on concentration and pressure data from vented deflagration experiments performed in 20-foot shipping containers as part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA) funded by the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU). The paper presents results for tests involving inhomogeneous hydrogen-air clouds generated from realistic releases performed during the HySEA project. For both experiments and simulations the peak overpressures obtained for the stratified mixtures are higher than those measured for lean homogeneous mixtures with the same amount of hydrogen. Using an in-house version of FLACS-Hydrogen with the numerical solver Flacs3 and improved physics models results in significantly improved predictions of the peak overpressures compared to the predictions by the standard Flacs2 solver. The paper includes suggestions for further improvements to the model system.
Numerical Simulations of a Large Hydrogen Release in a Process Plant
Sep 2009
Publication
This paper describes a series of numerical simulations with release and ignition of hydrogen. The objective of this work was to re-investigate the accidental explosion in an ammonia plant which happened in Norway in 1985 with modern CFD tools. The severe hydrogen-air explosion led to two fatalities and complete destruction of the factory building where the explosion occurred. A case history of the accident was presented at the 1.st ICHS in Pisa 2005.<br/>The numerical simulations have been performed with FLACS a commercial CFD simulation tool for gas dispersion and gas explosions. The code has in the recent years been validated in the area of hydrogen dispersion and explosions.<br/>The factory building was 100 m long 10 m wide and 7 m high. A blown-out gasket in a water pump led to release of hydrogen from a large reservoir storing gaseous hydrogen at 3.0 MPa. The accident report estimated a total mass of released hydrogen between 10 and 20 kg. The location of the faulty gasket is known but the direction of the accidental release is not well known and has been one of the topics of our investigations. Several simulations have been performed to investigate the mixing process of hydrogen-air clouds and the development of a flammable gas cloud inside the factory building resulting in a simulation matrix with dispersions in all axis directions. Simulations of ignition of the different gas clouds were carried out and resulting pressure examined. These results have been compared with the damages observed during the accident investigation.<br/>We have also performed FLACS simulations to study the effect of natural venting and level of congestion. The height of the longitudinal walls has been varied leading to different vent openings at floor level at the ceiling and a combination of the two. This was done to investigate the effects of congestion with regards to gas cloud formation.<br/>The base case simulation appears to be in good accordance to the observed damages from the accident. The simulations also show that the build up of the gas cloud strongly depends on the direction of the jet and degree of ventilation. The CFD study has given new insights to the accident and the results are a clear reminder of the importance of natural venting in hydrogen safety.
Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen
Feb 2020
Publication
Production of iron and steel releases seven percent of the global greenhouse gas (GHG) emissions. Incremental changes in present primary steel production technologies would not be sufficient to meet the emission reduction targets. Replacing coke used in the blast furnaces as a reducing agent with hydrogen produced from water electrolysis has the potential to reduce emissions from iron and steel production substantially. Mass and energy flow model based on an open-source software (Python) has been developed in this work to explore the feasibility of using hydrogen direct reduction of iron ore (HDRI) coupled with electric arc furnace (EAF) for carbon-free steel production. Modeling results show that HDRI-EAF technology could reduce specific emissions from steel production in the EU by more than 35% at present grid emission levels (295 kgCO2/MWh). The energy consumption for 1 ton of liquid steel (tls) production through the HDRI-EAF route was found to be 3.72 MWh which is slightly more than the 3.48 MWh required for steel production through the blast furnace (BF) basic oxygen furnace route (BOF). Pellet making and steel finishing processes have not been considered. Sensitivity analysis revealed that electrolyzer efficiency is the most important factor affecting the system energy consumption while the grid emission factor is strongly correlated with the overall system emissions.
H2FC European Infrastructure; Research Opportunities to Focus on Scientific and Technical Bottlenecks
Sep 2013
Publication
The European Strategy Forum on Research Infrastructures (ESFRI) recognizes in its roadmap for Research Infrastructures that ?in the near future hydrogen as an energy carrier derived from various other fuels and fuel cells as energy transformers are expected to come into a major role for mobility but also for different other mobile and stationary applications? |1|. This modern hydrogen driven society lags far behind the reality. Because of that it is conform to question the current situation concerning the belief that already most is comprehensively investigated and developed concerning hydrogen technology is correct and already done. From that it appears the hydrogen technology is market ready only partial and not prepared in a sufficient way to get finally included and adopted in modern hydrogen driven society and especially the acceptance of the society is a critical. Beside this critical view through society several scientific and technical bottlenecks still discoverable. Nevertheless it is possible to foster furthermore science and development on hydrogen technology. The ?Integrating European Infrastructure? was created to support science and development of hydrogen and fuel cell technologies towards European strategy for sustainable competitive and secure energy also while identifying scientific and technical bottlenecks to support solutions based on. Its acronym is H2FC European Infrastructure and was formed to integrate the European R&D community around rare and/or unique infrastructural elements that will facilitate and significantly enhance the research and development of hydrogen and fuel cell technology.
A Barrier Analysis of a Generic Hydrogen Refuelling Station
Sep 2009
Publication
Any technical installation need appropriate safety barriers installed to prevent or mitigate any adverse effects concerning people property and environment. In this context a safety barrier is a series of elements each consisting of a technical system or human action that implement a planned barrier function to prevent control or mitigate the propagation of a condition or event into an undesired condition or event. This is also important for new technologies as hydrogen refuelling stations being operated at very high pressures up to 900bar. In order to establish the needed barriers a hazard identification of the installation has to be carried out to identify the possible hazardous events. In this study this identification was done using the generic layout of a future large hydrogen refuelling station that has been developed by the EU NoE HySafe. This was based on experiences with smaller scale refuelling stations that has been in operation for several years e.g. being used in the former CUTE and ECTOS projects. Using this approach the object of the study is to support activities to further improve the safety performance of future larger refuelling stations. This will again help to inform the authorities and the public to achieve a proper public awareness and to support building up a realistic risk and safety perception of the safety on such future refuelling stations. In the second step the hazardous events that may take place and the barriers installed to stop hazards and their escalation are analysed also using in-house developed software to model the barriers and to quantify their performance. The paper will present an overview and discuss the state-of-the-art of the barriers established in the generic refuelling station.
Hazard Distance Nomograms for a Blast Wave from a Compressed Hydrogen Tank Rupture in a Fire
Sep 2017
Publication
Nomograms for assessment of hazard distances from a blast wave generated by a catastrophic rupture of stand-alone (stationary) and onboard compressed hydrogen cylinder in a fire are presented. The nomograms are easy to use hydrogen safety engineering tools. They were built using the validated and recently published analytical model. Two types of nomograms were developed – one for use by first responders and another for hydrogen safety engineers. The paper underlines the importance of an international effort to unify harm and damage criteria across different countries as the discrepancies identified by the authors gave the expected results of different hazard distances for different criteria.
Hydrogen as an Energy Carrier: An Evaluation of Emerging Hydrogen Value Chains
Nov 2018
Publication
Some 3% of global energy consumption today is used to produce hydrogen. Only 0.002% of this hydrogen about 1000 tonnes per annum(i) is used as an energy carrier. Yet as this timely position paper from DNV GL indicates hydrogen can become a major clean energy carrier in a world struggling to limit global warming.<br/>The company’s recently published 2018 Energy Transition Outlook(1) projects moderate uptake of hydrogen in this role towards 2050 then significant growth towards 2100. Building on that this position paper provides a more granular analysis of hydrogen as an energy carrier.
Ia-HySafe Standard Benchmark Exercise Sbep-V21- Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage at Low Release Rates
Sep 2011
Publication
The successful Computational Fluid Dynamics (CFD) benchmarking activity originally started within the EC-funded Network of Excellence HySafe (2004-2009) continues within the research topics of the recently established “International Association of Hydrogen Safety” (IA-HySafe). The present contribution reports the results of the standard benchmark problem SBEP-V21. Focus is given to hydrogen dispersion and accumulation within a non-ventilated ambient pressure garage both during the release and post-release periods but for very low release rates as compared to earlier work (SBEP-V3). The current experiments were performed by CEA at the GARAGE facility under highly controlled conditions. Helium was vertically released from the centre of the 5.76 m (length) x 2.96 m (width) x 2.42 m (height) facility 22 cm from the floor from a 29.7 mm diameter opening at a volumetric rate of 18 L/min (0.027 g/s equivalent hydrogen release rate compared to 1 g/s for SBEP-V3) and for a period of 3740 seconds. Helium concentrations were measured with 57 catharometric sensors at various locations for a period up to 1.1 days. The simulations were performed using a variety of CFD codes and turbulence models. The paper compares the results predicted by the participating partners and attempts to identify the reasons for any observed disagreements.
HIAD – Hydrogen Incident and Accident Database
Sep 2011
Publication
The Hydrogen Incident and Accident Database (HIAD) is being developed as a repository of systematic data describing in detail hydrogen-related undesired events (incidents or accidents). It is an open web-based information system serving various purposes such as a data source for lessons learnt risk communication and partly risk assessment. The paper describes the features of the three HIAD modules – the Data Entry Module (DEM) the Data Retrieval Module (DRM) and the Data Analysis Module (DAM) – and the potential impact the database may have on hydrogen safety. The importance of data quality assurance process is also addressed.
Hydrogen Explosions in 20’ ISO Container
Oct 2015
Publication
This paper describes a series of explosion experiments in inhomogeneous hydrogen air clouds in a standard 20′ ISO container. Test parameter variations included nozzle configuration jet direction reservoir back pressure time of ignition after release and degree of obstacles. The paper presents the experimental setup resulting pressure records and high speed videos. The explosion pressures from the experiments without obstacles were in the range of 0.4–7 kPa. In the experiments with obstacles the gas exploded more violently producing pressures in order of 100 kPa.
On the Use of Hydrogen in Confined Spaces: Results from the Internal Project InsHyde
Sep 2009
Publication
Alexandros G. Venetsanos,
Paul Adams,
Inaki Azkarate,
A. Bengaouer,
Marco Carcassi,
Angunn Engebø,
E. Gallego,
Olav Roald Hansen,
Stuart J. Hawksworth,
Thomas Jordan,
Armin Keßler,
Sanjay Kumar,
Vladimir V. Molkov,
Sandra Nilsen,
Ernst Arndt Reinecke,
M. Stöcklin,
Ulrich Schmidtchen,
Andrzej Teodorczyk,
D. Tigreat,
N. H. A. Versloot and
L. Boon-Brett
The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally InsHyde served to integrate proposals from HySafe work packages and existing external research projects towards a common effort. Following a state of the art review InsHyde activities expanded into experimental and simulation work. Dispersion experiments were performed using hydrogen and helium at the INERIS gallery facility to evaluate short and long term dispersion patterns in garage like settings. A new facility (GARAGE) was built at CEA and dispersion experiments were performed there using helium to evaluate hydrogen dispersion under highly controlled conditions. In parallel combustion experiments were performed by FZK to evaluate the maximum amount of hydrogen that could be safely ignited indoors. The combustion experiments were extended later on by KI at their test site by considering the ignition of larger amounts of hydrogen in obstructed environments outdoors. An evaluation of the performance of commercial hydrogen detectors as well as inter-lab calibration work was jointly performed by JRC INERIS and BAM. Simulation work was as intensive as the experimental work with participation from most of the partners. It included pre-test simulations validation of the available CFD codes against previously performed experiments with significant CFD code inter-comparisons as well as CFD application to investigate specific realistic scenarios. Additionally an evaluation of permeation issues was performed by VOLVO CEA NCSRD and UU by combining theoretical computational and experimental approaches with the results being presented to key automotive regulations and standards groups. Finally the InsHyde project concluded with a public document providing initial guidance on the use of hydrogen in confined spaces.
Results of the HySafe CFD Validation Benchmark SBEPV5
Sep 2007
Publication
The different CFD tools used by the NoE HySafe partners are applied to a series of integral complex Standard Benchmark Exercise Problems (SBEPs). All benchmarks cover complementarily physical phenomena addressing application relevant scenarios and refer to associated experiments with an explicit usage of hydrogen. After the blind benchmark SBEPV1 and SBEPV3 with subsonic vertical release in a large vessel and in a garage like facility SBEPV4 with a horizontal under-expanded jet release through a small nozzle SBEPV5 covers the scenario of a subsonic horizontal jet release in a multi-compartment room.<br/>As the associated dispersion experiments conducted by GEXCON Norsk Hydro and STATOIL were disclosed to the participants the whole benchmark was conducted openly. For the purpose of validation only the low momentum test D27 had to be simulated.<br/>The experimental rig consists of a 1.20 m x 0.20 m x 0.90 m (Z vertical) vessel divided into 12 compartments partially even physically by four baffle plates. In each compartment a hydrogen concentration sensor is mounted. There is one vent opening at the wall opposite the release location centrally located about 1 cm above floor with dimensions 0.10 m (Y) times 0.20 m (Z). The first upper baffle plate close to the release point is on a sensitive location as it lies nearly perfectly in the centre of the buoyant jet and thus separates the flow into the two compartments. The actual release was a nominally constant flow of 1.15 norm liters for 60 seconds. With a 12mm nozzle diameter this corresponds to an average exit velocity of 10.17 m/s.<br/>6 CFD packages have been applied by 7 HySafe partners to simulate this experiment: ADREAHF by NCSRD FLACS by GexCon and DNV KFX by DNV FLUENT by UPM and UU CFX by HSE/HSL and GASFLOW by FZK. The results of the different participants are compared against the experimental data. Sensitivity studies were conducted by FZK using GASFLOW and by DNV applying KFX.<br/>Conclusions based on the comparisons and the sensitivity studies related to the performance of the applied turbulence models and discretisation schemes in the release and diffusion phase are proposed. These are compared to the findings of the previous benchmark exercises.
No more items...