Poland
Investigating PEM Fuel Cells as an Alternative Power Source for Electric UAVs: Modeling, Optimization, and Performance Analysis
Sep 2024
Publication
Unmanned aerial vehicles (UAVs) have become an integral part of modern life serving both civilian and military applications across various sectors. However existing power supply systems such as batteries often fail to provide stable long-duration flights limiting their applications. Previous studies have primarily focused on battery-based power which offers limited flight endurance due to lower energy densities and higher system mass. Proton exchange membrane (PEM) fuel cells present a promising alternative providing high power and efficiency without noise vibrations or greenhouse gas emissions. Due to hydrogen’s high specific energy which is substantially higher than that of combustion engines and battery-based alternatives UAV operational time can be significantly extended. This paper investigates the potential of PEM fuel cells as an alternative power source for electric propulsion in UAVs. This study introduces an adaptive fully functioning PEM fuel cell model developed using a reduced-order modeling approach and optimized for UAV applications. This research demonstrates that PEM fuel cells can effectively double the flight endurance of UAVs compared to traditional battery systems achieving energy densities of around 1700 Wh/kg versus 150–250 Wh/kg for batteries. Despite a slight increase in system mass fuel cells enable significantly longer UAV operations. The scope of this study encompasses the comparison of battery-based and fuel cell-based propulsion systems in terms of power mass and flight endurance. This paper identifies the limitations and optimal applications for fuel cells providing strong evidence for their use in UAVs where extended flight time and efficiency are critical.
Green Transformation of Mining towards Energy Self-Sufficiency in a Circular Economy—A Case Study
Jul 2024
Publication
This article presents the concept of green transformation of the coal mining sector. Pump stations that belong to Spółka Restrukturyzacji Kopal´n S.A. (SRK S.A. Bytom Poland) pump out approximately 100 million m3 of mine water annually. These pump stations protect neighboring mines and lower-lying areas from flooding and protect subsurface aquifers from contamination. The largest cost component of maintaining a pumping station is the expenditure for purchasing electricity. Investment towards renewable energy sources will reduce the environmental footprint of pumping station operation by reducing greenhouse gas emissions. The concept of liquidation of an exemplary mining site in the context of a circular economy by proposing the development/revitalization of a coal mine site is presented. This concept involves the construction of a complex consisting of photovoltaic farms combined with efficient energy storage in the form of green hydrogen produced by water electrolysis. For this purpose the potential of liquidated mining sites will be utilized including the use of pumped mine wastewater. This article is conceptual. In order to reach the stated objective a body of literature and legal regulations was analyzed and an empirical study was conducted. Various scenarios for the operation of mine pumping stations have been proposed. The options presented provide full or nearly full energy self-sufficiency of the proposed pumping station operation concept. The effect of applying any option for upgrading the pumping station could result in the creation of jobs that are alternatives to mining jobs and a guarantee of efficient asset management.
Is the Polish Solar-to-Hydrogen Pathway Green? A Carbon Footprint of AEM Electrolysis Hydrogen Based on an LCA
Apr 2023
Publication
Efforts to direct the economies of many countries towards low-carbon economies are being made in order to reduce their impact on global climate change. Within this process replacing fossil fuels with hydrogen will play an important role in the sectors where electrification is difficult or technically and economically ineffective. Hydrogen may also play a critical role in renewable energy storage processes. Thus the global hydrogen demand is expected to rise more than five times by 2050 while in the European Union a seven-fold rise in this field is expected. Apart from many technical and legislative barriers the environmental impact of hydrogen production is a key issue especially in the case of new and developing technologies. Focusing on the various pathways of hydrogen production the essential problem is to evaluate the related emissions through GHG accounting considering the life cycle of a plant in order to compare the technologies effectively. Anion exchange membrane (AEM) electrolysis is one of the newest technologies in this field with no LCA studies covering its full operation. Thus this study is focused on a calculation of the carbon footprint and economic indicators of a green hydrogen plant on the basis of a life cycle assessment including the concept of a solar-to-hydrogen plant with AEM electrolyzers operating under Polish climate conditions. The authors set the range of the GWP indicators as 2.73–4.34 kgCO2eq for a plant using AEM electrolysis which confirmed the relatively low emissivity of hydrogen from solar energy also in relation to this innovative technology. The economic profitability of the investment depends on external subsidies because as developing technology the AEM electrolysis of green hydrogen from photovoltaics is still uncompetitive in terms of its cost without this type of support.
Assessment of Hydrogen Energy Industry Chain Based on Hydrogen Production Methods, Storage, and Utilization
Apr 2024
Publication
To reach climate neutrality by 2050 a goal that the European Union set itself it is necessary to change and modify the whole EU’s energy system through deep decarbonization and reduction of greenhouse-gas emissions. The study presents a current insight into the global energy-transition pathway based on the hydrogen energy industry chain. The paper provides a critical analysis of the role of clean hydrogen based on renewable energy sources (green hydrogen) and fossil-fuels-based hydrogen (blue hydrogen) in the development of a new hydrogen-based economy and the reduction of greenhouse-gas emissions. The actual status costs future directions and recommendations for low-carbon hydrogen development and commercial deployment are addressed. Additionally the integration of hydrogen production with CCUS technologies is presented.
Effects of Hydrogen, Methane, and Their Blends on Rapid-Filling Process of High-Pressure Composite Tank
Feb 2024
Publication
Alternative fuels such as hydrogen compressed natural gas and liquefied natural gas are considered as feasible energy carriers. Selected positive factors from the EU climate and energy policy on achieving climate neutrality by 2050 highlighted the need for the gradual expansion of the infrastructure for alternative fuel. In this research continuity equations and the first and second laws of thermodynamics were used to develop a theoretical model to explore the impact of hydrogen and natural gas on both the filling process and the ultimate in-cylinder conditions of a type IV composite cylinder (20 MPa for CNG 35 MPa and 70 MPa for hydrogen). A composite tank was considered an adiabatic system. Within this study based on the GERG-2008 equation of state a thermodynamic model was developed to compare and determine the influence of (i) hydrogen and (ii) natural gas on the selected thermodynamic parameters during the fast-filling process. The obtained results show that the cylinder-filling time depending on the cylinder capacity is approximately 36–37% shorter for pure hydrogen compared to pure methane and the maximum energy stored in the storage tank for pure hydrogen is approximately 28% lower compared to methane whereas the total entropy generation for pure hydrogen is approximately 52% higher compared to pure methane.
A Comparative Environmental Life Cycle Assessment Study of Hydrogen Fuel Electricity and Diesel Fuel for Public Buses
Aug 2023
Publication
Hydrogen fuel and electricity are energy carriers viewed as promising alternatives for the modernization and decarbonization of public bus transportation fleets. In order to choose development pathways that will lead transportation systems toward a sustainable future the authors developed an environmental model based on the Life Cycle Assessment approach. The model tested the impact of energy carrier consumption during driving as well as the electricity origin employed to power electric buses and produce hydrogen. Energy sources such as wind solar waste and grid electricity were investigated. The scope of the study included the life cycles of the energy carrier and the necessary infrastructure. The results were presented from two perspectives: the total environmental impact and global warming potential. In order to create a roadmap an original method for choosing sustainable development pathways was prepared. It was shown that the modernization of conventional bus fleets using hydrogen and electrical pathways can provide significant environmental benefits from both perspectives but especially in terms of global warming potential. It was emphasized that attention should be paid to the use of low- and zero-emission energy sources because their impact often strongly influenced the final environmental judgment. The energy carrier consumption also had a strong impact on the results obtained and that is why efforts should be made to reduce it. In addition it was confirmed that hydrogen and electricity production systems based on electricity generated by a waste-to-energy plant could be an environmentally reasonable dual solution for both sustainable waste management and meeting transport needs.
Analysis of Implementing Hydrogen Storage for Surplus Energy from PV Systems in Polish Households
Jul 2025
Publication
One of the methods for mitigating the duck curve phenomenon in photovoltaic (PV) energy systems is storing surplus energy in the form of hydrogen. However there is a lack of studies focused on residential PV systems that assess the impact of hydrogen storage on the reduction of energy flow imbalance to and from the national grid. This study presents an analysis of hydrogen energy storage based on real-world data from a household PV installation. Using simulation methods grounded in actual electricity consumption and hourly PV production data the research identified the storage requirements including the required operating hours and the capacity of the hydrogen tank. The analysis was based on a 1 kW electrolyzer and a fuel cell representing the smallest and most basic commercially available units and included a sensitivity analysis. At the household level—represented by a singlefamily home with an annual energy consumption and PV production of approximately 4–5 MWh over a two-year period—hydrogen storage enabled the production of 49.8 kg and 44.6 kg of hydrogen in the first and second years respectively. This corresponded to the use of 3303 kWh of PV-generated electricity and an increase in self-consumption from 30% to 64%. Hydrogen storage helped to smooth out peak energy flows from the PV system decreasing the imbalance from 5.73 kWh to 4.42 kWh. However while it greatly improves self-consumption its capacity to mitigate power flow imbalance further is constrained; substantial improvements would necessitate a much larger electrolyzer proportional in size to the PV system’s output.
Assessing the Role of Hydrogen in Sustainable Energy Futures: A Comprehensive Bibliometric Analysis of Research and International Collaborations in Energy and Environmental Engineering
Apr 2024
Publication
The main results highlighted in this article underline the critical significance of hydrogen technologies in the move towards carbon neutrality. This research focuses on several key areas including the production storage safety and usage of hydrogen alongside innovative approaches for assessing hydrogen purity and production-related technologies. This study emphasizes the vital role of hydrogen storage technology for the future utilization of hydrogen as an energy carrier and the advancement of technologies that facilitate effective safe and cost-efficient hydrogen storage. Furthermore bibliometric analysis has been instrumental in identifying primary research fields such as hydrogen storage hydrogen production efficient electrocatalysts rotary engines utilizing hydrogen as fuel and underground hydrogen storage. Each domain is essential for realizing a sustainable hydrogen economy reflecting the significant research and development efforts in hydrogen technologies. Recent trends have shown an increased interest in underground hydrogen storage as a method to enhance energy security and assist in the transition towards sustainable energy systems. This research delves into the technical economic and environmental facets of employing geological formations for large-scale seasonal and long-term hydrogen storage. Ultimately the development of hydrogen technologies is deemed crucial for meeting sustainable development goals particularly in terms of addressing climate change and reducing greenhouse gas emissions. Hydrogen serves as an energy carrier that could substantially lessen reliance on fossil fuels while encouraging the adoption of renewable energy sources aiding in the decarbonization of transport industry and energy production sectors. This in turn supports worldwide efforts to curb global warming and achieve carbon neutrality.
Research of Energy Efficiency and Environmental Performance of Vehicle Power Plant Converted to Work on Alternative Fuels
Apr 2024
Publication
The use of alternative fuels remains an important factor in solving the problem of reducing harmful substances caused by vehicles and decarbonising transport. It is also important to ensure the energy efficiency of vehicle power plants when using different fuels at a sufficient level. The article presents the results of theoretical and experimental studies of the conversion of diesel engine to alternative fuels with hydrogen admixtures. Methanol is considered as an alternative fuel which is a cheaper alternative to commercial diesel fuel. The chemical essence of improving the calorific value of alternative methanol fuel was investigated. Studies showed that the energy effect of burning an alternative mixture with hydrogen additives exceeds the effect of burning the same amount of methanol fuel. The increase in combustion energy and engine power is achieved as a result of heat from efficient use of the engine exhaust gases and chemical conversion of methanol. An experimental installation was created to study the work of a converted diesel engine on hydrogen–methanol mixtures and thermochemical regeneration processes. Experimental studies of the energy and environmental parameters of diesel engine converted to work on an alternative fuel with hydrogen admixtures have shown that engine power increases by 10–14% and emissions of harmful substances decrease.
Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures
Apr 2023
Publication
Currently the issue of creating decarbonized energy systems in various spheres of life is acute. Therefore for gas turbine power systems including hybrid power plants with fuel cells it is relevant to transfer the existing engines to pure hydrogen or mixtures of hydrogen with natural gas. However significant problems arise associated with the possibility of the appearance of flashback zones and acoustic instability of combustion an increase in the temperature of the walls of the flame tubes and an increase in the emission of nitrogen oxides in some cases. This work is devoted to improving the efficiency of gas turbine power systems by combusting pure hydrogen and mixtures of natural gas with hydrogen. The organization of working processes in the premixed combustion chamber and the combustion chamber with a sequential injection of ecological and energy steam for the “Aquarius” type power plant is considered. The conducted studies of the basic aerodynamic and energy parameters of a gas turbine combustor working on hydrogen-containing gases are based on solving the equations of conservation and transfer in a multicomponent reacting system. A four-stage chemical scheme for the burning of a mixture of natural gas and hydrogen was used which allows for the rational parameters of environmentally friendly fuel burning devices to be calculated. The premixed combustion chamber can only be recommended for operations on mixtures of natural gas with hydrogen with a hydrogen content not exceeding 20% (by volume). An increase in the content of hydrogen leads to the appearance of flashback zones and fuel combustion inside the channels of the swirlers. For the combustion chamber of the combined-cycle power plant “Vodoley” when operating on pure hydrogen the formation of flame flashback zones does not occur.
Green Hydrogen Production through Ammonia Decomposition Using Non-Thermal Plasma
Sep 2023
Publication
Liquid hydrogen carriers will soon play a significant role in transporting energy. The key factors that are considered when assessing the applicability of ammonia cracking in large-scale projects are as follows: high energy density easy storage and distribution the simplicity of the overall process and a low or zero-carbon footprint. Thermal systems used for recovering H2 from ammonia require a reaction unit and catalyst that operates at a high temperature (550–800 ◦C) for the complete conversion of ammonia which has a negative effect on the economics of the process. A non-thermal plasma (NTP) solution is the answer to this problem. Ammonia becomes a reliable hydrogen carrier and in combination with NTP offers the high conversion of the dehydrogenation process at a relatively low temperature so that zero-carbon pure hydrogen can be transported over long distances. This paper provides a critical overview of ammonia decomposition systems that focus on non-thermal methods especially under plasma conditions. The review shows that the process has various positive aspects and is an innovative process that has only been reported to a limited extent.
Hydrogen in the Strategies of the European Union Member States
Jan 2021
Publication
Energy and environmental challenges are two key issues related to the sustainable development of the Earth. Fossil fuels (oil coal and natural gas) still supply more than 85% of world energy consumption. Several nations around the globe are striving to provide access to clean and sustainable energy by 2030 (Hostettler et al. 2015). When the Paris Agreement entered into force in 2016 many countries have recently announced serious commitments to significantly reduce their carbon dioxide emissions promising to achieve “net zero” by 2050. he main goal is to limit global warming to well below 2 degrees Celsius preferably to 1.5 degrees Celsius compared to pre-industrial levels (IEA 2021). his requires a total transformation of the energy systems that underpin our economies. In the case of renewable energy technology deployment hydrogen may provide a complementary solution due to its flexibility as an energy carrier and storage medium. The European Union (EU) a signatory to the Paris Agreement demonstrated interest in hydrogen as an invaluable raw material in considerably reducing CO2 emissions. Hydrogen inthe EU energy mix is estimated to increase from the current level (less than 2%) to 13–14% in 2050 (EC 2018).
Efficient Use of Low-Emission Power Supply for Means of Transport
Apr 2023
Publication
The paper presents the possibilities of low-emission-powered vehicles based mainly on compressed hydrogen. It shows currently used forms of powering vehicles based on their genesis process of obtention and popularity. They are also compared to each other presenting the advantages and disadvantages of a given solution. The share of electricity in transport its forecasts for the future and the possibilities of combination with conventional energy sources are also described. Based on current technological capabilities hydrogen plays a crucial role as presented in the above work constituting a fundamental basis for future transport solutions.
Hydrogen Role in the Valorization of Integrated Steelworks Process Off-gases through Methane and Methanol Syntheses
Jun 2021
Publication
The valorization of integrated steelworks process off-gases as feedstock for synthesizing methane and methanol is in line with European Green Deal challenges. However this target can be generally achieved only through process off-gases enrichment with hydrogen and use of cutting-edge syntheses reactors coupled to advanced control systems. These aspects are addressed in the RFCS project i3 upgrade and the central role of hydrogen was evident from the first stages of the project. First stationary scenario analyses showed that the required hydrogen amount is significant and existing renewable hydrogen production technologies are not ready to satisfy the demand in an economic perspective. The poor availability of low-cost green hydrogen as one of the main barriers for producing methane and methanol from process off-gases is further highlighted in the application of an ad-hoc developed dispatch controller for managing hydrogen intensified syntheses in integrated steelworks. The dispatch controller considers both economic and environmental impacts in the cost function and although significant environmental benefits are obtainable by exploiting process off-gases in the syntheses the current hydrogen costs highly affect the dispatch controller decisions. This underlines the need for big scale green hydrogen production processes and dedicated green markets for hydrogen-intensive industries which would ensure easy access to this fundamental gas paving the way for a C-lean and more sustainable steel production.
Techno-Economic Assessment of a Grid-Independent Hybrid Power Plant for Co-Supplying a Remote Micro-Community with Electricity and Hydrogen
Aug 2021
Publication
This study investigates the techno-economic feasibility of an off-grid integrated solar/wind/hydrokinetic plant to co-generate electricity and hydrogen for a remote micro-community. In addition to the techno-economic viability assessment of the proposed system via HOMER (hybrid optimization of multiple energy resources) a sensitivity analysis is conducted to ascertain the impact of ±10% fluctuations in wind speed solar radiation temperature and water velocity on annual electric production unmet electricity load LCOE (levelized cost of electricity) and NPC (net present cost). For this a far-off village with 15 households is selected as the case study. The results reveal that the NPC LCOE and LCOH (levelized cost of hydrogen) of the system are equal to $333074 0.1155 $/kWh and 4.59 $/kg respectively. Technical analysis indicates that the PV system with the rated capacity of 40 kW accounts for 43.7% of total electricity generation. This portion for the wind turbine and the hydrokinetic turbine with nominal capacities of 10 kW and 20 kW equates to 23.6% and 32.6% respectively. Finally the results of sensitivity assessment show that among the four variables only a +10% fluctuation in water velocity causes a 20% decline in NPC and LCOE.
Well Integrity in Salt Cavern Hydrogen Storage
Jul 2024
Publication
Underground hydrogen storage (UHS) in salt caverns is a sustainable energy solution to reduce global warming. Salt rocks provide an exceptional insulator to store natural hydrogen as they have low porosity and permeability. Nevertheless the salt creeping nature and hydrogeninduced impact on the operational infrastructure threaten the integrity of the injection/production wells. Furthermore the scarcity of global UHS initiatives indicates that investigations on well integrity remain insufficient. This study strives to profoundly detect the research gap and imperative considerations for well integrity preservation in UHS projects. The research integrates the salt critical characteristics the geomechanical and geochemical risks and the necessary measurements to maintain well integrity. The casing mechanical failure was found as the most challenging threat. Furthermore the corrosive and erosive effects of hydrogen atoms on cement and casing may critically put the well integrity at risk. The research also indicated that the simultaneous impact of temperature on the salt creep behavior and hydrogen-induced corrosion is an unexplored area that has scope for further research. This inclusive research is an up-to-date source for analysis of the previous advancements current shortcomings and future requirements to preserve well integrity in UHS initiatives implemented within salt caverns.
Technology for Green Hydrogen Production: Desk Analysis
Sep 2024
Publication
The use of green hydrogen as a high-energy fuel of the future may be an opportunity to balance the unstable energy system which still relies on renewable energy sources. This work is a comprehensive review of recent advancements in green hydrogen production. This review outlines the current energy consumption trends. It presents the tasks and challenges of the hydrogen economy towards green hydrogen including production purification transportation storage and conversion into electricity. This work presents the main types of water electrolyzers: alkaline electrolyzers proton exchange membrane electrolyzers solid oxide electrolyzers and anion exchange membrane electrolyzers. Despite the higher production costs of green hydrogen compared to grey hydrogen this review suggests that as renewable energy technologies become cheaper and more efficient the cost of green hydrogen is expected to decrease. The review highlights the need for cost-effective and efficient electrode materials for large-scale applications. It concludes by comparing the operating parameters and cost considerations of the different electrolyzer technologies. It sets targets for 2050 to improve the efficiency durability and scalability of electrolyzers. The review underscores the importance of ongoing research and development to address the limitations of current electrolyzer technology and to make green hydrogen production more competitive with fossil fuels.
Public Acceptance of the Underground Storage of Hydrogen: Lessons Learned from the Geological Storage of CO2
Mar 2025
Publication
The successful commercialisation of underground hydrogen storage (UHS) is contingent upon technological readiness and social acceptance. A lack of social acceptance inadequate policies/regulations an unreliable business case and environmental uncertainty have the potential to delay or prevent UHS commercialisation even in cases where it is ready. The technologies utilised for underground hydrogen and carbon dioxide storage are analogous. The differences lie in the types of gases stored and the purpose of their storage. It is anticipated that the challenges related to public acceptance will be analogous in both cases. An assessment was made of the possibility of transferring experiences related to the social acceptance of CO2 sequestration to UHS based on an analysis of relevant articles from indexed journals. The analysis enabled the identification of elements that can be used and incorporated into the social acceptance of UHS. A framework was identified that supports the assessment and implementation of factors determining social acceptance ranging from conception to demonstration to implementation. These factors include education communication stakeholder involvement risk assessment policy and regulation public trust benefits research and demonstration programmes and social embedding. Implementing these measures has the potential to increase acceptance and facilitate faster implementation of this technology.
Holistic View to Decarbonising Cruise Ships with a Combination of Energy Saving Technologies and Hydrogen as Fuel
Mar 2025
Publication
Cruise ship decarbonisation was studied on a Mediterranean cruise profile. The analysis focused on ship energy flows fuel consumption carbon emissions ship CII and EEDI. A combination of technologies for reducing ship fuel consumption was simulated before introducing hydrogen fueled machinery for the ship. The studied technologies included ultrasound antifouling shore power battery hybrid machinery waste heat recovery and air lubrication. Their application on the selected operational profile led to combined fuel savings of 187%. When the same technologies were combined to a hydrogen machinery the ship total energy consumption compared to baseline was reduced by 25%. The cause of this was the synergies in the ship energy system such as ship auxiliary powers heat consumption and machinery efficiency. The proposed methodology of ship energy analysis is important step in starting to evaluate new fuels for ships and in preliminary technology screening prior to integrating them in the ship design.
Pre-Test of a Stand for Testing Fire Resistance of Compressed Hydrogen Storage Systems
Mar 2025
Publication
The publication presents methods and pre-test results of a stand for testing CHSS in terms of resistance to open fire. The basis for the conducted research is the applicable provisions contained in the UN/ECE Regulation R134. The study includes an overview of contemporary solutions for hydrogen storage systems in high-pressure tanks in means of transport. Development in this area is a response to the challenge of reducing global carbon dioxide emissions and limiting the emissions of toxic compounds. The variety of storage systems used is driven by constraints including energy demand and available space. New tank designs and conducted tests allow for an improvement in systems in terms of their functionality and safety. Today the advancement of modern technologies for producing high-pressure tanks allows for the use of working pressures up to 70 MPa. The main goal of the presented research is to present the requirements and research methodology verifying the tank structure and the security systems used in open-fire conditions. These tests are the final stage of the approval process for individual pressure vessels or complete hydrogen storage systems. Their essence is to eliminate the occurrence of an explosion in the event of a fire.
No more items...