Poland
Models of Delivery of Sustainable Public Transportation Services in Metropolitan Areas–Comparison of Conventional, Battery Powered and Hydrogen Fuel-Cell Drives
Nov 2021
Publication
The development of public transport systems is related to the implementation of modern and low-carbon vehicles. Over the last several years there has been a clear progress in this field. The number of electric buses has increased and the first solutions in the area of hydrogen fuel cells have been implemented. Unfortunately the implementation of these technologies is connected with significant financial expenditure. The goal of the article is the analysis of effectiveness of financial investment consisting in the purchase of 30 new public transport buses (together with the necessary infrastructure–charging stations). The analysis has been performed using the NPV method for the period of 10 years. Discount rate was determined on 4% as recommended by the European Commission for this type of project. It is based on the case study of the investment project carried out by Metropolis GZM in Poland. The article determines and compares the efficiency ratios for three investment options-purchase of diesel-powered battery-powered and hydrogen fuel-cell electric vehicles. The results of the analysis indicate that the currently high costs of vehicle purchase and charging infrastructure are a significant barrier for the implementation of battery-powered and hydrogen fuel-cell buses. In order to meet the transport policy goals related to the exchange of traditional bus stock to more eco-friendly vehicles it is necessary to involve public funds for the purpose of financing the investment activities.
A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges
Oct 2021
Publication
This paper provides a comprehensive review and critical analysis of the latest research results in addition to an overview of the future challenges and opportunities regarding the use of hydrogen to power internal combustion engines (ICEs). The experiences and opinions of various international research centers on the technical possibilities of using hydrogen as a fuel in ICE are summarized. The advantages and disadvantages of the use of hydrogen as a solution are described. Attention is drawn to the specific physical chemical and operational properties of hydrogen for ICEs. A critical review of hydrogen combustion concepts is provided drawing on previous research results and experiences described in a number of research papers. Much space is devoted to discussing the challenges and opportunities associated with port and direct hydrogen injection technology. A comparison of different fuel injection and ignition strategies and the benefits of using the synergies of selected solutions are presented. Pointing to the previous experiences of various research centers the hazards related to incorrect hydrogen combustion such as early pre‐ignition late pre‐ignition knocking combustion and backfire are described. Attention is focused on the fundamental importance of air ratio optimization from the point of view of combustion quality NOx emissions engine efficiency and performance. Exhaust gas scrubbing to meet future emission regulations for hydrogen powered internal combustion engines is another issue that is considered. The article also discusses the modifications required to adapt existing engines to run on hydrogen. Referring to still‐unsolved problems the reliability challenges faced by fuel injection systems in particular are presented. An analysis of more than 150 articles shows that hydrogen is a suitable alternative fuel for spark‐ignition engines. It will significantly improve their performance and greatly reduce emissions to a fraction of their current level. However its use also has some drawbacks the most significant of which are its high NOx emissions and low power output and problems in terms of the durability and reliability of hydrogen‐fueled engines.
Fuel Cell Electric Vehicle (FCEV) Energy Flow Analysis in Real Driving Conditions (RDC)
Aug 2021
Publication
The search for fossil fuels substitutes forces the use of new propulsion technologies applied to means of transportation. Already widespread hybrid vehicles are beginning to share the market with hydrogen-powered propulsion systems. These systems are fuel cells or internal combustion engines powered by hydrogen fuel. In this context road tests of a hydrogen fuel cell drive were conducted under typical traffic conditions according to the requirements of the RDE test. As a result of the carried-out work energy flow conditions were presented for three driving phases (urban rural and motorway). The different contributions to the vehicle propulsion of the hydrogen system and the electric system in each phase of the driving route are indicated. The characteristic interaction of power train components during varying driving conditions was presented. A wide variation in the contribution of the fuel cell and the battery to the vehicle’s propulsion was identified. In urban conditions the share of the fuel cell in the vehicle’s propulsion is more than three times that contributed by the battery suburban—7 times highway—28 times. In the entire test the ratio of FC/BATT use was more than seven while the energy consumption was more than 22 kWh/100 km. The amounts of battery energy used and recovered were found to be very close to each other under RDE test conditions.
Assessment of Operational Degradation of Pipeline Steels
Jun 2021
Publication
This paper summarizes a series of the authors’ research in the field of assessing the operational degradation of oil and gas transit pipeline steels. Both mechanical and electrochemical properties of steels are deteriorated after operation as is their resistance to environmentally-assisted cracking. The characteristics of resistance to brittle fracture and stress corrosion cracking decrease most intensively which is associated with a development of in-bulk dissipated microdamages of the material. The most sensitive indicators of changes in the material’s state caused by degradation are impact toughness and fracture toughness by the J-integral method. The degradation degree of pipeline steels can also be evaluated nondestructively based on in-service changes in their polarization resistance and potential of the fracture surface. Attention is drawn to hydrogenation of a pipe wall from inside as a result of the electrochemical interaction of pipe metal with condensed moisture which facilitates operational degradation of steel due to the combined action of operating stresses and hydrogen. The development of microdamages along steel texture was evidenced metallographically as a trend to the selective etching of boundaries between adjacent bands of ferrite and pearlite and fractographically by revealing brittle fracture elements on the fracture surfaces namely delamination and cleavage indicating the sites of cohesion weakening between ferrite and pearlite bands. The state of the X52 steel in its initial state and after use for 30 years was assessed based on the numerical simulation method.
Prediction of Gaseous Products from Refuse Derived Fuel Pyrolysis Using Chemical Modelling Software - Ansys Chemkin-Pro
Nov 2019
Publication
There can be observed global interest in waste pyrolysis technology due to low costs and availability of raw materials. At the same time there is a literature gap in forecasting environmental effects of thermal waste treatment installations. In the article was modelled the chemical composition of pyrolysis gas with main focus on the problem in terms of environmental hazards. Not only RDF fuel was analysed but also selected waste fractions included in its composition. This approach provided comprehensive knowledge about the chemical composition of gaseous pyrolysis products which is important from the point of view of the heterogeneity of RDF fuel. The main goal of this article was to focus on the utilitarian aspect of the obtained calculation results. Final results can be the basis for estimating ecological effects both for existing and newly designed installations.
Pyrolysis process was modelled using Ansys Chemkin-Pro software. The investigation of the process were carried out for five different temperatures (700 750 800 850 and 900 °C). As an output the mole fraction of H2 H2O CH4 C2H2C2H4 C3H6 C3H8 CO CO2 HCl and H2S were presented. Additionally the reaction pathways for selected material were presented.
Based on obtained results it was established that the residence time did not influenced on the concentration of products contrary to temperature. The chemical composition of pyrolytic gas is closely related to wastes origin. The application of Chemkin-Pro allowed the calculation of formation for each products at different temperatures and formulation of hypotheses on the reaction pathways involved during pyrolysis process. Further based on the obtained results confirmed the possibilities of using pyrolysis gas from RDF as a substitute for natural gas in energy consumption sectors. Optimization of the process can be conducted with low financial outlays and reliable results by using calculation tools. Moreover it can be predicted negative impact of obtained products on the future installation.
Pyrolysis process was modelled using Ansys Chemkin-Pro software. The investigation of the process were carried out for five different temperatures (700 750 800 850 and 900 °C). As an output the mole fraction of H2 H2O CH4 C2H2C2H4 C3H6 C3H8 CO CO2 HCl and H2S were presented. Additionally the reaction pathways for selected material were presented.
Based on obtained results it was established that the residence time did not influenced on the concentration of products contrary to temperature. The chemical composition of pyrolytic gas is closely related to wastes origin. The application of Chemkin-Pro allowed the calculation of formation for each products at different temperatures and formulation of hypotheses on the reaction pathways involved during pyrolysis process. Further based on the obtained results confirmed the possibilities of using pyrolysis gas from RDF as a substitute for natural gas in energy consumption sectors. Optimization of the process can be conducted with low financial outlays and reliable results by using calculation tools. Moreover it can be predicted negative impact of obtained products on the future installation.
Recent Progress on Hydrogen Storage and Production Using Chemical Hydrogen Carriers
Jul 2022
Publication
Depleting fossil fuel resources and anthropogenic climate changes are the reasons for the intensive development of new sustainable technologies based on renewable energy sources. One of the most promising strategies is the utilization of hydrogen as an energy vector. However the limiting issue for large-scale commercialization of hydrogen technologies is a safe efficient and economical method of gas storage. In industrial practice hydrogen compression and liquefaction are currently applied; however due to the required high pressure (30–70 MPa) and low temperature (−253 ◦C) both these methods are intensively energy consuming. Chemical hydrogen storage is a promising alternative as it offers safe storage of hydrogen-rich compounds under ambient conditions. Although many compounds serving as hydrogen carriers are considered some of them do not have realistic perspectives for large-scale commercialization. In this review the three most technologically advanced hydrogen carriers—dimethyl ether methanol and dibenzyltoluene—are discussed and compared. Their potential for industrial application in relation to the energy storage transport and mobility sectors is analyzed taking into account technological and environmental aspects.
Mobile Nuclear-Hydrogen Synergy in NATO Operations
Nov 2021
Publication
An uninterrupted chain of energy supplies is the core of every activity without exception for the operations of the North Atlantic Treaty Organization. A robust and efficient energy supply is fundamental for the success of missions and a guarantee of soldier safety. However organizing a battlefield energy supply chain is particularly challenging because the risks and threats are particularly high. Moreover the energy supply chain is expected to be flexible according to mission needs and able to be moved quickly if necessary. In line with ongoing technological changes the growing popularity of hydrogen is undeniable and has been noticed by NATO as well. Hydrogen is characterised by a much higher energy density per unit mass than other fuels which means that hydrogen fuel can increase the range of military vehicles. Consequently hydrogen could eliminate the need for risky refuelling stops during missions as well as the number of fatalities associated with fuel delivery in combat areas. Our research shows that a promising prospect lies in the mobile technologies based on hydrogen in combination with use of the nuclear microreactors. Nuclear microreactors are small enough to be easily transported to their destinations on heavy trucks. Depending on the design nuclear microreactors can produce 1–20 MW of thermal energy that could be used directly as heat or converted to electric power or for non-electric applications such as hydrogen fuel production. The aim of the article is to identify a model of nuclear-hydrogen synergy for use in NATO operations. We identify opportunities and threats related to mobile energy generation with nuclear-hydrogen synergy in NATO operations. The research presented in this paper identifies the best method of producing hydrogen using a nuclear microreactor. A popular and environmentally “clean” solution is electrolysis due to the simplicity of the process. However this is less efficient than chemical processes based on for example the sulphur-iodine cycle. The results of the research presented in this paper show which of the methods and which cycle is the most attractive for the production of hydrogen with the use of mini-reactors. The verification criteria include: the efficiency of the process its complexity and the residues generated as a result of the process (waste)—all taking into account usage for military purposes.
Selection of Underground Hydrogen Storage Risk Assessment Techniques
Dec 2021
Publication
The article proposes the use of the analytic hierarchy process (AHP) method to select a risk assessment technique associated with underground hydrogen storage. The initial choosing and ranking of risk assessment techniques can be considered as a multi-criteria decision problem. The usage of a decision model based on six criteria is proposed. A ranking of methods for estimating the risks associated with underground hydrogen storage is presented. The obtained results show that the application of the AHP-based approach may be a useful tool for selecting the UHS risk assessment technique. The proposed method makes it possible to make an objective decision of the most satisfactory approach from the point of view of all the adopted decision criteria regarding the selection of the best risk assessment technique.
Hydrogen Intensified Synthesis Processes to Valorise Process Off-gases in Integrated Steelworks
Jul 2023
Publication
Ismael Matino,
Stefano Dettori,
Amaia Sasiain Conde,
Valentina Colla,
Alice Petrucciani,
Antonella Zaccara,
Vincenzo Iannino,
Claudio Mocci,
Alexander Hauser,
Sebastian Kolb,
Jürgen Karl,
Philipp Wolf-Zoellner,
Stephane Haag,
Michael Bampaou,
Kyriakos Panopoulos,
Eleni Heracleousa,
Nina Kieberger,
Katharina Rechberger,
Leokadia Rog and
Przemyslaw Rompalski
Integrated steelworks off-gases are generally exploited to produce heat and electricity. However further valorization can be achieved by using them as feedstock for the synthesis of valuable products such as methane and methanol with the addition of renewable hydrogen. This was the aim of the recently concluded project entitled “Intelligent and integrated upgrade of carbon sources in steel industries through hydrogen intensified synthesis processes (i3 upgrade)”. Within this project several activities were carried out: from laboratory analyses to simulation investigations from design development and tests of innovative reactor concepts and of advanced process control to detailed economic analyses business models and investigation of implementation cases. The final developed methane production reactors arerespectively an additively manufactured structured fixedbed reactor and a reactor setup using wash-coated honeycomb monoliths as catalyst; both reactors reached almost full COx conversion under slightly over-stoichiometric conditions. A new multi-stage concept of methanol reactor was designed commissioned and extensively tested at pilot-scale; it shows very effective conversion rates near to 100% for CO and slightly lower for CO2 at one-through operation for the methanol synthesis. Online tests proved that developed dispatch controller implements a smooth control strategy in real time with a temporal resolution of 1 min and a forecasting horizon of 2 h. Furthermore both offline simulations and cost analyses highlighted the fundamental role of hydrogen availability and costs for the feasibility of i 3 upgrade solutions and showed that the industrial implementation of the i 3 upgrade solutions can lead to significant environmental and economic benefits for steelworks especially in case green electricity is available at an affordable price.
Hydrogen Storage in Geological Formations—The Potential of Salt Caverns
Jul 2022
Publication
Hydrogen-based technologies are among the most promising solutions to fulfill the zero-emission scenario and ensure the energy independence of many countries. Hydrogen is considered a green energy carrier which can be utilized in the energy transport and chemical sectors. However efficient and safe large-scale hydrogen storage is still challenging. The most frequently used hydrogen storage solutions in industry i.e. compression and liquefaction are highly energy-consuming. Underground hydrogen storage is considered the most economical and safe option for large-scale utilization at various time scales. Among underground geological formations salt caverns are the most promising for hydrogen storage due to their suitable physicochemical and mechanical properties that ensure safe and efficient storage even at high pressures. In this paper recent advances in underground storage with a particular emphasis on salt cavern utilization in Europe are presented. The initial experience in hydrogen storage in underground reservoirs was discussed and the potential for worldwide commercialization of this technology was analyzed. In Poland salt deposits from the north-west and central regions (e.g. Rogóźno Damasławek Łeba) are considered possible formations for hydrogen storage. The Gubin area is also promising where 25 salt caverns with a total capacity of 1600 million Nm3 can be constructed.
Hydrogen Explosion Hazards Limitation in Battery Rooms with Different Ventilation Systems
Sep 2019
Publication
When charging most types of industrial lead-acid batteries hydrogen gas is emitted. A large number of batteries especially in relatively small areas/enclosures and in the absence of an adequate ventilation system may create an explosion hazard. This paper describes full scale tests in confined space which demonstrate conditions that can occur in a battery room in the event of a ventilation system breakdown. Over the course of the tests full scale hydrogen emission experiments were performed to study emission time and flammable cloud formation according to the assumed emission velocity. On this basis the characteristics of dispersion of hydrogen in the battery room were obtained. The CFD model Fire Dynamic Simulator (NIST) was used for confirmation that the lack of ventilation in a battery room can be the cause of an explosive atmosphere developing and leading to a potential huge explosive hazard. It was demonstrated that different ventilation systems provide battery rooms with varying efficiencies of hydrogen removal. The most effective type appeared to be natural ventilation which proved more effective than mechanical means.
Investigation of Praseodymium and Samarium Co-doped Ceria as an Anode Catalyst for DIR-SOFC Fueled by Biogas
Aug 2020
Publication
The Pr and Sm co-doped ceria (with up to 20 mol.% of dopants) compounds were examined as catalytic layers on the surface of SOFC anode directly fed by biogas to increase a lifetime and the efficiency of commercially available DIR-SOFC without the usage of an external reformer.
The XRD SEM and EDX methods were used to investigate the structural properties and the composition of fabricated materials. Furthermore the electrical properties of SOFCs with catalytic layers deposited on the Ni-YSZ anode were examined by a current density-time and current density-voltage dependence measurements in hydrogen (24 h) and biogas (90 h). Composition of the outlet gasses was in situ analysed by the FTIR-based unit.
It has been found out that Ce0.9Sm0.1O2-δ and Ce0.8Pr0.05Sm0.15O2-δ catalytic layers show the highest stability over time and thus are the most attractive candidates as catalytic materials in comparison with other investigated lanthanide-doped ceria enhancing direct internal reforming of biogas in SOFCs.
The XRD SEM and EDX methods were used to investigate the structural properties and the composition of fabricated materials. Furthermore the electrical properties of SOFCs with catalytic layers deposited on the Ni-YSZ anode were examined by a current density-time and current density-voltage dependence measurements in hydrogen (24 h) and biogas (90 h). Composition of the outlet gasses was in situ analysed by the FTIR-based unit.
It has been found out that Ce0.9Sm0.1O2-δ and Ce0.8Pr0.05Sm0.15O2-δ catalytic layers show the highest stability over time and thus are the most attractive candidates as catalytic materials in comparison with other investigated lanthanide-doped ceria enhancing direct internal reforming of biogas in SOFCs.
Remarkable Visible-light Induced Hydrogen Generation with ZnIn2S4 Microspheres/CuInS2 Quantum Dots Photocatalytic System
Oct 2020
Publication
A new and active material in the form of ZnIn2S4 microspheres decorated by CuInS2 quantum dots have been obtained by hydrothermal method for the first time. The optimum amount of CuInS2 quantum dots (1.13 wt.%) introduced into rection medium during ZnIn2S4 microspheres synthesis increased the photocatalytic H2 generation rate by 2.5 times than that of bare ZnIn2S4 photocatalysis under visible light irradiation. This sample exhibited strong photoactivity in the extended visible range up to 540 nm with 30.6% apparent quantum efficiency (λ = 420 nm).
Opportunities and Limitations of Hydrogen Energy in Poland against the Background of the European Union Energy Policy
Jul 2022
Publication
One of the strategic goals of developed countries is to significantly increase the share of renewable energy sources in electricity generation. However the process may be hindered by e.g. the storage and transport of energy from renewable sources. The European Union countries see the development of the hydrogen economy as an opportunity to overcome this barrier. Therefore since 2020 the European Union has been implementing a hydrogen strategy that will increase the share of hydrogen in the European energy mix from the current 2 percent to up to 13–14 percent by 2050. In 2021 following the example of other European countries the Polish government adopted the Polish Hydrogen Strategy until 2030 with an outlook until 2040 (PHS). However the implementation of the strategy requires significant capital expenditure and infrastructure modernisation which gives rise to question as to whether Poland is likely to achieve the goals set out in the Polish Hydrogen Strategy and European Green Deal. The subject of the research is an analysis of the sources of financing for the PHS against the background of solutions implemented by the EU countries and a SWOT/TOWS analysis on the hydrogen economy in Poland. The overall result of the SWOT/TOWS analysis shows the advantage of strengths and related opportunities. This allows for a positive assessment of the prospects for the hydrogen economy in Poland. Poland should continue its efforts to take advantage of the external factors (O/S) such as EU support an increased price competitiveness of hydrogen and the emergence of a competitive cross-border hydrogen market in Europe. At the same time the Polish authorities should not forget about the weaknesses and threats that may inhibit the development of the domestic hydrogen market. It is necessary to modernise the infrastructure; increase the share of renewable energy sources in hydrogen production; increase R&D expenditure and in particular to complete the negotiations related to the adoption of the Fit for 55 package.
Energy-Economic Assessment of Islanded Microgrid with Wind Turbine, Photovoltaic Field, Wood Gasifier, Battery, and Hydrogen Energy Storage
Sep 2022
Publication
Island energy systems are becoming an important part of energy transformation due to the growing needs for the penetration of renewable energy. Among the possible systems a combination of different energy generation technologies is a viable option for local users as long as energy storage is implemented. The presented paper describes an energy-economic assessment of an island system with a photovoltaic field small wind turbine wood chip gasifier battery and hydrogen circuit with electrolyzer and fuel cell. The system is designed to satisfy the electrical energy demand of a tourist facility in two European localizations. The operation of the system is developed and dynamically simulated in the Transient System Simulation (TRNSYS) environment taking into account realistic user demand. The results show that in Gdansk Poland it is possible to satisfy 99% of user demand with renewable energy sources with excess energy equal to 31% while in Agkistro Greece a similar result is possible with 43% of excess energy. Despite the high initial costs it is possible to obtain Simple Pay Back periods of 12.5 and 22.5 years for Gdansk and Agkistro respectively. This result points out that under a high share of renewables in the energy demand of the user the profitability of the system is highly affected by the local cost of energy vectors. The achieved results show that the system is robust in providing energy to the users and that future development may lead to an operation based fully on renewables.
Small-Scale Hybrid and Polygeneration Renewable Energy Systems: Energy Generation and Storage Technologies, Applications, and Analysis Methodology
Dec 2022
Publication
The energy sector is nowadays facing new challenges mainly in the form of a massive shifting towards renewable energy sources as an alternative to fossil fuels and a diffusion of the distributed generation paradigm which involves the application of small-scale energy generation systems. In this scenario systems adopting one or more renewable energy sources and capable of producing several forms of energy along with some useful substances such as fresh water and hydrogen are a particularly interesting solution. A hybrid polygeneration system based on renewable energy sources can overcome operation problems regarding energy systems where only one energy source is used (solar wind biomass) and allows one to use an all-in-one integrated systems in order to match the different loads of a utility. From the point of view of scientific literature medium and large-scale systems are the most investigated; nevertheless more and more attention has also started to be given to small-scale layouts and applications. The growing diffusion of distributed generation applications along with the interest in multipurpose energy systems based on renewables and capable of matching different energy demands create the necessity of developing an overview on the topic of small-scale hybrid and polygeneration systems. Therefore this paper provides a comprehensive review of the technology operation performance and economical aspects of hybrid and polygeneration renewable energy systems in small-scale applications. In particular the review presents the technologies used for energy generation from renewables and the ones that may be adopted for energy storage. A significant focus is also given to the adoption of renewable energy sources in hybrid and polygeneration systems designs/modeling approaches and tools and main methodologies of assessment. The review shows that investigations on the proposed topic have significant potential for expansion from the point of view of system configuration hybridization and applications.
Clean Hydrogen Is a Challenge for Enterprises in the Era of Low-Emission and Zero-Emission Economy
Jan 2023
Publication
Hydrogen can be considered an innovative fuel that will revolutionize the energy sector and enable even more complete use of the potential of renewable sources. The aim of the paper is to present the challenges faced by companies and economies that will produce and use hydrogen. Thanks to the use of hydrogen in the energy transport and construction sectors it will be possible to achieve climate neutrality by 2050. By 2050 global demand for hydrogen will increase to 614 million metric tons a year and thanks to the use of hydrogen in energy transport and construction it will be possible to achieve climate neutrality. Depending on the method of hydrogen production the processes used and the final effects several groups can be distinguished marked with different colors. It is in this area of obtaining friendly hydrogen that innovative possibilities for its production open up. The costs of hydrogen production are also affected by network fees national tax systems availability and prices of carbon capture utilization and storage installations energy consumption rates by electrolyzers and transport methods. It is planned that 1 kg of hydrogen will cost USD 1. The study used the desk research method which made it possible to analyze a huge amount of descriptive data and numerical data.
Co-gasification of Refuse-derived Fuels and Bituminous Coal with Oxygen/steam Blend to Hydrogen Rich Gas
May 2022
Publication
The gasification technology of refuse-derived fuels (RDF) can represent a future alternative to the global hydrogen production and a pathway for the development of the circular economy. The paper presents an innovative way of utilizing RDF through their oxygen/steam co-gasification with bituminous coal to hydrogen rich gas. Five different RDF samples (RDF1÷RDF5) were investigated. The in-depth analyses of the co-gasification of bituminous coal blends with different amounts of RDF (10 15 and 20%w/w) under various temperature conditions were conducted with the application of Hierarchical Clustering Analysis (HCA). The results of the research study revealed a decrease in the total gas yield as well as in the hydrogen yield observed with the increase in the RDF fraction in the fuel blend. The lowest hydrogen yield and the highest carbon conversion were noted for the co-gasification tests of coal blends with 20%w/w for all the studied RDFs. The SEM-EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) and WDXRF (Wavelength Dispersive X-ray Fluorescence) results showed a significantly higher H2 yield in RDF2 co-gasification with coal in comparison with all the remaining RDFs due to the higher concentration of calcium in the sample. The molecular structure analysis of polymers using Fourier transform infrared spectroscopy (FTIR) demonstrated that the most prevalent synthetic polymers in RDF2 are polyethylene terephthalate and polyvinyl chloride characterized by the lowest thermal stability compared to polyethylene and polypropylene.
Design, Development, and Performance of a 10 kW Polymer Exchange Membrane Fuel Cell Stack as Part of a Hybrid Power Source Designed to Supply a Motor Glider
Aug 2020
Publication
A 10 kW PEMFC (polymer exchange membrane fuel cell) stack consisting of two 5 kW modules (A) and (B) connected in series with a multi-function controller unit was constructed and tested. The electrical performance of the V-shaped PEMFC stack was investigated under constant and variable electrical load. It was found that the PEMFC stack was capable of supplying the required 10 kW of electrical power. An optimised purification process via ‘purge’ or humidification implemented by means of a short-circuit unit (SCU) control strategy enabled slightly improved performance. Online monitoring of the utilisation of the hydrogen system was developed and tested during the operation of the stack especially under variable electrical load. The air-cooling subsystem consisting of a common channel connecting two 5 kW PEMFC modules and two cascade axial fans was designed manufactured using 3D printing technology and tested with respect to the electrical performance of the device. The dependence of total partial-pressure drop vs. ratio of air volumetric flow for the integrated PEMFC stack with cooling devices was also determined. An algorithm of stack operation involving thermal humidity and energy management was elaborated. The safety operation and fault diagnosis of the PEMFC stack was also tested.
Seawater Treatment Technologies for Hydrogen Production by Electrolysis—A Review
Dec 2024
Publication
Green hydrogen produced by water electrolysis using renewable energy sources (RES) is an emerging technology that aligns with sustainable development goals and efforts to address climate change. In addition to energy electrolyzers require ultrapure water to operate. Although seawater is abundant on the Earth it must be desalinated and further purified to meet the electrolyzer’s feeding water quality requirements. This paper reviews seawater purification processes for electrolysis. Three mature and commercially available desalination technologies (reverse osmosis multiple-effect distillation and multi-stage flash) were examined in terms of working principles performance parameters produced water quality footprint and capital and operating expenditures. Additionally pretreatment and post-treatment techniques were explored and the brine management methods were investigated. The findings of this study can help guide the selection and design of water treatment systems for electrolysis.
No more items...