Saudi Arabia
Performance and Emissions Characteristics of Hydrogen-diesel Dual-fuel Combustion for Heavy-duty Engines
Jan 2025
Publication
This study investigates hydrogen-diesel dual-fuelling specifically for a modern 4.4L 4-cylinder heavy-duty diesel engine using extensive one-dimensional combustion modelling in Ricardo WAVE. Parametric analyses from 900 to 2200 rpm speeds and 0 to 17.5% hydrogen fractions introduced via port injection are undertaken to assess the effect of exhaust gas recirculation (EGR) for controlling NOx. Moreover impacts on key indicators like brake power torque thermal efficiency and emissions are also evaluated. Results revealed that the benefits of hydrogen enrichment are highly dependent on operating conditions. At speeds above 1700 rpm and hydrogen mass fraction of 17.5% remarkable gains were attained increasing brake power and torque by up to 17% and 16.5% respectively. Brake-specific diesel consumption (BSDC) improves by 29% at higher speeds due to hy drogen’s larger energy content. NOx emissions display a trade-off decreasing substantially by 96% at lower speeds but increasing by 43% at 2200 rpm with 17.5% hydrogen.
Formic Acid as a Hydrogen Energy Carrier
Dec 2016
Publication
The high volumetric capacity (53 g H2/L) and its low toxicity and flammability under ambient conditions make formic acid a promising hydrogen energy carrier. Particularly in the past decade significant advancements have been achieved in catalyst development for selective hydrogen generation from formic acid. This Perspective highlights the advantages of this approach with discussions focused on potential applications in the transportation sector together with analysis of technical requirements limitations and costs.
Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future
Sep 2023
Publication
There is a growing interest in green hydrogen with researchers institutions and countries focusing on its development efficiency improvement and cost reduction. This paper explores the concept of green hydrogen and its production process using renewable energy sources in several leading countries including Australia the European Union India Canada China Russia the United States South Korea South Africa Japan and other nations in North Africa. These regions possess significant potential for “green” hydrogen production supporting the transition from fossil fuels to clean energy and promoting environmental sustainability through the electrolysis process a common method of production. The paper also examines the benefits of green hydrogen as a future alternative to fossil fuels highlighting its superior environmental properties with zero net greenhouse gas emissions. Moreover it explores the potential advantages of green hydrogen utilization across various industrial commercial and transportation sectors. The research suggests that green hydrogen can be the fuel of the future when applied correctly in suitable applications with improvements in production and storage techniques as well as enhanced efficiency across multiple domains. Optimization strategies can be employed to maximize efficiency minimize costs and reduce environmental impact in the design and operation of green hydrogen production systems. International cooperation and collaborative efforts are crucial for the development of this technology and the realization of its full benefits.
An Analysis of Hybrid Renewable Energy-Based Hydrogen Production and Power Supply for Off-Grid Systems
Jun 2024
Publication
Utilizing renewable energy sources to produce hydrogen is essential for promoting cleaner production and improving power utilization especially considering the growing use of fossil fuels and their impact on the environment. Selecting the most efficient method for distributing power and capacity is a critical issue when developing hybrid systems from scratch. The main objective of this study is to determine how a backup system affects the performance of a microgrid system. The study focuses on power and hydrogen production using renewable energy resources particularly solar and wind. Based on photovoltaics (PVs) wind turbines (WTs) and their combinations including battery storage systems (BSSs) and hydrogen technologies two renewable energy systems were examined. The proposed location for this study is the northwestern coast of Saudi Arabia (KSA). To simulate the optimal size of system components and determine their cost-effective configuration the study utilized the Hybrid Optimization Model for Multiple Energy Resources (HOMER) software (Version 3.16.2). The results showed that when considering the minimum cost of energy (COE) the integration of WTs PVs a battery bank an electrolyzer and a hydrogen tank brought the cost of energy to almost 0.60 USD/kWh in the system A. However without a battery bank the COE increased to 0.72 USD/kWh in the same location because of the capital cost of system components. In addition the results showed that the operational life of the fuel cell decreased significantly in system B due to the high hours of operation which will add additional costs. These results imply that long-term energy storage in off-grid energy systems can be economically benefited by using hydrogen with a backup system.
Techno-Economic Analysis of Combined Production of Wind Energy and Green Hydrogen on the Northern Coast of Mauritania
Sep 2024
Publication
Green hydrogen is becoming increasingly popular with academics institutions and governments concentrating on its development efficiency improvement and cost reduction. The objective of the Ministry of Petroleum Mines and Energy is to achieve a 35% proportion of renewable energy in the overall energy composition by the year 2030 followed by a 50% commitment by 2050. This goal will be achieved through the implementation of feed-in tariffs and the integration of independent power generators. The present study focused on the economic feasibility of green hydrogen and its production process utilizing renewable energy resources on the northern coast of Mauritania. The current investigation also explored the wind potential along the northern coast of Mauritania spanning over 600 km between Nouakchott and Nouadhibou. Wind data from masts Lidar stations and satellites at 10 and 80 m heights from 2022 to 2023 were used to assess wind characteristics and evaluate five turbine types for local conditions. A comprehensive techno-economic analysis was carried out at five specific sites encompassing the measures of levelized cost of electricity (LCOE) and levelized cost of green hydrogen (LCOGH) as well as sensitivity analysis and economic performance indicators. The results showed an annual average wind speed of 7.6 m/s in Nouakchott to 9.8 m/s in Nouadhibou at 80 m. The GOLDWIND 3.0 MW model showed the highest capacity factor of 50.81% due to its low cut-in speed of 2.5 m/s and its rated wind speed of 10.5 to 11 m/s. The NORDEX 4 MW model forecasted an annual production of 21.97 GWh in Nouadhibou and 19.23 GWh in Boulanoir with the LCOE ranging from USD 5.69 to 6.51 cents/kWh below the local electricity tariff and an LCOGH of USD 1.85 to 2.11 US/kg H2 . Multiple economic indicators confirmed the feasibility of wind energy and green hydrogen projects in assessed sites. These results boosted the confidence of the techno-economic model highlighting the resilience of future investments in these sustainable energy infrastructures. Mauritania’s north coast has potential for wind energy aiding green hydrogen production for energy goals.
Sustainable Green Energy Transition in Saudia Arabia: Characterizing Policy Framework, Interrelations and Future Research Directions
Jun 2024
Publication
By 2060 the Kingdom of Saudi Arabia (KSA) aims to achieve net zero greenhouse gas (GHG) emissions targeting 50% renewable energy and reducing 278 million tonnes of CO2 equivalent annually by 2030 under Vision 2030. This ambitious roadmap focuses on economic diversification global engagement and enhanced quality of life. The electricity sector with a 90 GW installed capacity as of 2020 is central to decarbonization aiming for a 55% reduction in emissions by 2030. Saudi Energy Efficiency Centre’s Energy Efficiency Action Plan aims to reduce power intensity by 30% by 2030 while the NEOM project showcases a 4 GW green hydrogen facility reflecting the country’s commitments to sustainability and technological innovation. Despite being the largest oil producer and user Saudi Arabia must align with international CO2 emission reduction targets. Currently there is no state-of-the-art energy policy framework to guide a sustainable energy transition. In the academic literature there is also lack of effort in developing comprehensive energy policy framework. This study provides a thorough and comprehensive analysis of the entire energy industry spanning from the stage of production to consumption incorporating sustainability factors into the wider discussion on energy policy. It establishes a conceptual framework for the energy policy of Saudi Arabia that corresponds with Vision 2030. A total of hundred documents (e.g. 25 original articles and 75 industry reports) were retrieved from Google Scholar Web of Science Core Collection Database and Google Search and then analyzed. Results showed that for advancing the green energy transition areas such as strategies for regional and cross-sectoral collaboration adoption of international models human capital development and public engagement technological innovation and research; and resource conservation environmental protection and climate change should move forward exclusively from an energy policy perspective. This article's main contribution is developing a comprehensive and conceptual policy framework for Saudi Arabia's sustainable green energy transition aligned with Vision 2030. The framework integrates social economic and environmental criteria and provides critical policy implications and research directions for advancing energy policy and sustainable practices in the country.
The Potential Role of Africa in Green Hydrogen Production: A Short-Term Roadmap to Protect the World’s Future from Climate Crisis
Feb 2025
Publication
The global need for energy has risen sharply recently. A global shift to clean energy is urgently needed to avoid catastrophic climate impacts. Hydrogen (H2) has emerged as a potential alternative energy source with near-net-zero emissions. In the African continent for sustainable access to clean energy and the transition away from fossil fuels this paper presents a new approach through which waste energy can produce green hydrogen from biomass. Bio-based hydrogen employing organic waste and biomass is recommended using biological (anaerobic digestion and fermentation) processes for scalable cheaper and low-carbon hydrogen. By reviewing all methods for producing green hydrogen dark fermentation can be applied in developed and developing countries without putting pressure on natural resources such as freshwater and rare metals the primary feedstocks used in producing green hydrogen by electrolysis. It can be expanded to produce medium- and long-term green hydrogen without relying heavily on energy sources or building expensive infrastructure. Implementing the dark fermentation process can support poor communities in producing green hydrogen as an energy source regardless of political and tribal conflicts unlike other methods that require political stability. In addition this approach does not require the approval of new legislation. Such processes can ensure the minimization of waste and greenhouse gases. To achieve cost reduction in hydrogen production by 2030 governments should develop a strategy to expand the use of dark fermentation reactors and utilize hot water from various industrial processes (waste energy recovery from hot wastewater).
Hydrogen Production During Ethylene Glycol Photoreactions Over Ag-Pd/TiO2 at Different Partial Pressures of Oxygen
Nov 2019
Publication
The reaction of ethylene glycol has been studied over Ag–Pd/TiO2 (anatase) under photo-irradiation while monitoring the reaction products (in the gas and liquid phases) as a function of time and at different partial pressures of molecular oxygen. The catalyst contained metal particles with a mean size of about 1 nm most likely in the form of alloy (TEM STEM and XPS). The complex reaction network involves hydrogen abstraction C-C bond dissociation de-carbonylation and water gas shift ultimately yielding hydrogen and CO2. The two main competing reactions were found to be photo reforming and photo-oxidation. Based on our previous study Ag presence improves the reaction rate for hydrogen production most likely via decreasing the adsorption energy of CO when compared to pure Pd. At high ethylene glycol concentrations the rate of hydrogen produced decreased by a factor of two while changing O2 partial pressure from 0.001 to 0.2 atm. The rate was however very sensitive to oxygen partial pressures at low ethylene glycol concentrations decreasing by about 50 times with increasing oxygen pressures to 1 atm. The order of reaction with respect to O2 changed from near zero at high oxygen partial pressure to ½ at low partial pressure (in 0.008–0.2 atm. range). Liquid phase analysis indicated that the main reaction product was formaldehyde where its concentration was found to be higher than that of H2 and CO2. The mass balance approached near unity only upon the incorporation of formaldehyde and after a prolonged reaction time. This suggests that the photo-reforming reaction was not complete even at prolonged time most likely due to kinetic limitations.
Functionalization of Nanomaterials for Energy Storage and Hydrogen Production Applications
Feb 2025
Publication
This review article provides a comprehensive overview of the pivotal role that nanomaterials particularly graphene and its derivatives play in advancing hydrogen energy technologies with a focus on storage production and transport. As the quest for sustainable energy solutions intensifies the use of nanoscale materials to store hydrogen in solid form emerges as a promising strategy toward mitigate challenges related to traditional storage methods. We begin by summarizing standard methods for producing modified graphene derivatives at the nanoscale and their impact on structural characteristics and properties. The article highlights recent advancements in hydrogen storage capacities achieved through innovative nanocomposite architectures for example multi-level porous graphene structures containing embedded nickel particles at nanoscale dimensions. The discussion covers the distinctive characteristics of these nanomaterials particularly their expansive surface area and the hydrogen spillover effect which enhance their effectiveness in energy storage applications including supercapacitors and batteries. In addition to storage capabilities this review explores the role of nanomaterials as efficient catalysts in the hydrogen evolution reaction (HER) emphasizing the potential of metal oxides and other composites to boost hydrogen production. The integration of nanomaterials in hydrogen transport systems is also examined showcasing innovations that enhance safety and efficiency. As we move toward a hydrogen economy the review underscores the urgent need for continued research aimed at optimizing existing materials and developing novel nanostructured systems. Addressing the primary challenges and potential future directions this article aims to serve as a roadmap to enable scientists and industry experts to maximize the capabilities of nanomaterials for transforming hydrogen-based energy systems thus contributing significantly to global sustainability efforts.
Biohydrogen Production from Biomass Sources: Metabolic Pathways and Economic Analysis
Sep 2021
Publication
The commercialization of hydrogen as a fuel faces severe technological economic and environmental challenges. As a method to overcome these challenges microalgal biohydrogen production has become the subject of growing research interest. Microalgal biohydrogen can be produced through different metabolic routes the economic considerations of which are largely missing from recent reviews. Thus this review briefly explains the techniques and economics associated with enhancing microalgae-based biohydrogen production. The cost of producing biohydrogen has been estimated to be between $10 GJ-1 and $20 GJ−1 which is not competitive with gasoline ($0.33 GJ−1 ). Even though direct biophotolysis has a sunlight conversion efficiency of over 80% its productivity is sensitive to oxygen and sunlight availability. While the electrochemical processes produce the highest biohydrogen (>90%) fermentation and photobiological processes are more environmentally sustainable. Studies have revealed that the cost of producing biohydrogen is quite high ranging between $2.13 kg−1 and 7.24 kg−1 via direct biophotolysis $1.42kg−1 through indirect biophotolysis and between $7.54 kg−1 and 7.61 kg−1 via fermentation. Therefore low-cost hydrogen production technologies need to be developed to ensure long-term sustainability which requires the optimization of critical experimental parameters microalgal metabolic engineering and genetic modification.
The Evolution of Green Hydrogen in Renewable Energy Research: Insights from a Bibliometric Perspective
Dec 2024
Publication
Green hydrogen generated from water through renewable energies like solar and wind is a key player in sus tainable energy. It only produces water when used making it a clean energy source. However the inconsistent nature of solar and wind energy highlights the need for storage solutions where green hydrogen is promising. This study uniquely combines green hydrogen (GH) and renewable energy (RE) domains using a comprehensive bibliometric approach covering 2018–2022. It identifies emerging trends collaboration networks and key contributors that shape the global landscape of GH research. Our findings show a significant yearly growth in this research field averaging 93.56 %. The study also identifies China Germany India and Italy as leaders among 76 countries involved in this area. Research trends have shifted from technical details to social and economic factors. Given the increasing global commitment to achieving carbon neutrality understanding the evolution and integration of GH within RE systems is essential for guiding future research policy-making and technology development. The analysis categorizes the research into seven main themes focusing on green hydrogen’s role in energy transition and storage. Other vital topics include improving hydrogen production methods assessing its climate impact examining its environmental benefits and exploring various production techniques like water electrolysis and photocatalysis. Our analysis reveals a 93.56 % annual growth rate in GH research highlighting key challenges in storage integration and policy development and offering a roadmap for future studies. The study highlights areas needing more exploration such as better storage methods integration with existing energy infrastructures risk management and policy development. The advancement of green hydrogen as a sustainable energy solution depends on innovative research international collaboration and supportive policy frameworks.
Sixteen Percent Solar-to-Hydrogen Efficiency Using a Power-Matched Alkaline Electrolyzer and a High Concentrated Solar Cell: Effect of Operating Parameters
Apr 2020
Publication
The effect of electrode area electrolyte concentration temperature andlight intensity (up to 218 sun) on PV electrolysis of water is studied using a highconcentrated triple-junction (3-J) photovoltaic cell (PV) connected directly to analkaline membrane electrolyzer (EC). For a given current the voltage requirement torun an electrolyzer increases with a decrease in electrode sizes (4.5 2.0 0.5 and 0.25cm2) due to high current densities. The high current density operation leads to highOhmic losses most probably due to the concentration gradient and bubble formation.The EC operating parameters including the electrolyte concentration and temperaturereduce the voltage requirement by improving the thermodynamics kinetics andtransport properties of the overall electrolysis process. For a direct PV−EC coupling themaximum power point of PV (Pmax) is matched using EC I−V (current−voltage) curvesmeasured for different electrode sizes. A shift in the EC I−V curves toward open-circuitvoltage (Voc) reduces the Pop (operating power) to hydrogen efficiencies due to theincreased voltage losses above the equilibrium water-splitting potential. The solar-to-hydrogen (STH) efficiencies remainedcomparable (∼16%) for all electrode sizes when the operating current (Iop) was similar to the short-circuit current (Isc ) irrespectiveof the operating voltage (Vop) electrolyzer temperature and electrolyte concentration.
An Overview on the Technologies Used to Storage Hydrogen
Aug 2023
Publication
Hydrogen energy has a significant potential in mitigating the intermittency of renewable energy generation by converting the excess of renewable energy into hydrogen through many technologies. Also hydrogen is expected to be used as an energy carrier that contribute to the global decarbonization in transportation industrial and building sectors. Many technologies have been developed to store hydrogen energy. Hydrogen can be stored to be used when needed and thus synchronize generation and consumption. The current paper presents a review on the different technologies used to store hydrogen. The storage capacity advantages drawbacks and development stages of various hydrogen storage technologies were presented and compared.
Optimizing Maritime Energy Efficiency: A Machine Learning Approach Using Deep Reinforcement Learning for EEXI and CII Compliance
Nov 2024
Publication
The International Maritime Organization (IMO) has set stringent regulations to reduce the carbon footprint of maritime transport using metrics such as the Energy Efficiency Existing Ship Index (EEXI) and Carbon Intensity Indicator (CII) to track progress. This study introduces a novel approach using deep reinforcement learning (DRL) to optimize energy efficiency across five types of vessels: cruise ships car carriers oil tankers bulk carriers and container ships under six different operational scenarios such as varying cargo loads and weather conditions. Traditional fuels like marine gas oil (MGO) and intermediate fuel oil (IFO) challenge compliance with these standards unless engine power restrictions are applied. This approach combines DRL with alternative fuels—bio-LNG and hydrogen—to address these challenges. The DRL algorithm which dynamically adjusts engine parameters demonstrated substantial improvements in optimizing fuel consumption and performance. Results revealed that while using DRL fuel efficiency increased by up to 10% while EEXI values decreased by 8% to 15% and CII ratings improved by 10% to 30% across different scenarios. Specifically under heavy cargo loads the DRL-optimized system achieved a fuel efficiency of 7.2 nmi/ton compared to 6.5 nmi/ton with traditional methods and reduced the EEXI value from 4.2 to 3.86. Additionally the DRL approach consistently outperformed traditional optimization methods demonstrating superior efficiency and lower emissions across all tested scenarios. This study highlights the potential of DRL in advancing maritime energy efficiency and suggests that further research could explore DRL applications to other vessel types and alternative fuels integrating additional machine learning techniques to enhance optimization.
Towards a Sustainable Future: Bio-hydrogen Production from Food Waste for Clean Energy Generation
Jan 2024
Publication
To address climate change energy security and waste management new sustainable energy sources must be developed. This study uses Aspen Plus software to extract bio-H2 from food waste with the goal of efficiency and environmental sustainability. Anaerobic digestion optimised to operate at 20-25°C and keep ammonia at 3% greatly boosted biogas production. The solvent [Emim][FAP] which is based on imidazolium had excellent performance in purifying biogas. It achieved a high level of methane purity while consuming a minimal amount of energy with a solvent flow rate of 13.415 m³/h. Moreover the utilization of higher temperatures (600-700°C) during the bio-H2 generation phase significantly enhanced both the amount and quality of hydrogen produced. Parametric and sensitivity assessments were methodically performed at every stage. This integrated method was practicable and environmentally friendly according to the economic assessment. H2 generation using steam reforming results in a TCC of 1.92×106 USD. The CO2 separation step has higher costs (TCC of 2.15×107 USD) due to ionic liquid washing and CO2 liquefaction. Compressor electricity consumption significantly impacts total operating cost (TOC) totaling 4.73×108 USD. showing its ability to reduce greenhouse gas emissions optimize resource utilization and promote energy sustainability. This study presents a sustainable energy solution that addresses climate and waste challenges.
Simulation and Modelling of Hydrogen Production from Waste Plastics: Technoeconomic Analysis
May 2022
Publication
The global energy demand is expected to increase by 30% within the next two decades. Plastic thermochemical recycling is a potential alternative to meet this tremendous demand because of its availability and high heating value. Polypropylene (PP) and polyethylene (PE) are considered in this study because of their substantial worldwide availability in the category of plastic wastes. Two cases were modeled to produce hydrogen from the waste plastics using Aspen Plus®. Case 1 is the base design containing three main processes (plastic gasification syngas conversion and acid gas removal) where the results were validated with the literature. On the other hand case 2 integrates the plastic gasification with steam methane reforming (SMR) to enhance the overall hydrogen production. The two cases were then analyzed in terms of syngas heating values hydrogen production rates energy efficiency greenhouse gas emissions and process economics. The results reveal that case 2 produces 5.6% more hydrogen than case 1. The overall process efficiency was enhanced by 4.13%. Case 2 reduces the CO2 specific emissions by 4.0% and lowers the hydrogen production cost by 29%. This substantial reduction in the H2 production cost confirms the dominance of the integrated model over the standalone plastic gasification model.
Assessment of Wettability and Rock-fluid Interfacial Tension of Caprock: Implications for Hydrogen and Carbon Dioxide Geo-storage
Mar 2022
Publication
Underground hydrogen (H2) storage (UHS) and carbon dioxide (CO2) geo-storage (CGS) are prominent methods of meeting global energy needs and enabling a low-carbon global economy. The pore-scale distribution reservoir-scale storage capacity and containment security of H2 and CO2 are significantly influenced by interfacial properties including the equilibrium contact angle (θE) and solid-liquid and solid-gas interfacial tensions (γSL and γSG). However due to the technical constraints of experimentally determining these parameters they are often calculated based on advancing and receding contact angle values. There is a scarcity of θE γSL and γSG data particularly related to the hydrogen structural sealing potential of caprock which is unavailable in the literature. Young's equation and Neumann's equation of state were combined in this study to theoretically compute these three parameters (θE γSL and γSG) at reservoir conditions for the H2 and CO2 geo-storage potential. Pure mica organic-aged mica and alumina nano-aged mica substrates were investigated to explore the conditions for rock wetting phenomena and the sealing potential of caprock. The results reveal that θE increases while γSG decreases with increasing pressure organic acid concentration and alkyl chain length. However γSG decreases with increasing temperatures for H2 gas and vice versa for CO2. In addition θE and γSL decrease whereas γSG increases with increasing alumina nanofluid concentration from 0.05 to 0.25 wt%. Conversely θE and γSL increase whereas γSG decreases with increasing alumina nanofluid concentration from 0.25 to 0.75 wt%. The hydrogen wettability of mica (a proxy of caprock) was generally less than the CO2 wettability of mica at similar physio-thermal conditions. The interfacial data reported in this study are crucial for predicting caprock wettability alterations and the resulting structural sealing capacity for UHS and CGS.
A Review on Application of Hydrogen in Gas Turbines with Intercooler Adjustments
Mar 2024
Publication
In recent years traditional fossil fuels such as coal oil and natural gas have historically dominated various applications but there has been a growing shift towards cleaner alternatives. Among these alternatives hydrogen (H2) stands out as a highly promising substitute for all other conventional fuels. Today hydrogen (H2) is actively taking on a significant role in displacing traditional fuel sources. The utilization of hydrogen in gas turbine (GT) power generation offers a significant advantage in terms of lower greenhouse gas emissions. The performance of hydrogen-based gas turbines is influenced by a range of variables including ambient conditions (temperature and pressure) component efficiency operational parameters and other factors. Additionally incorporating an intercooler into the gas turbine system yields several advantages such as reducing compression work and maintaining power and efficiency. Many scholars and researchers have conducted comprehensive investigations into the components mentioned above within context of gas turbines (GTs). This study provides an extensive examination of the research conducted on hydrogen-powered gas turbine and intercooler with employed different methods and techniques with a specific emphasis on the different case studies of a hydrogen gas turbine and intercooler. Moreover this study not only examined the current state of research on hydrogen-powered gas turbine and intercooler but also covered its influence by offering the effective recommendations and insightful for guiding for future research in this field.
Hydrogen Refueling Stations Powered by Hybrid PV/Wind Renewable Energy Systems: Techno-socio-economic Assessment
Mar 2024
Publication
Hydrogen is considered as an attractive alternative to fossil fuels in the transportation sector. However the penetration of Fuel Cell Electric Vehicles (FCEV) is hindered by the lack of hydrogen refueling station infrastructures. In this study the feasibility of a hybrid PV/wind system for hydrogen refueling station is investigated. Refueling events data is collected in different locations including industrial residential highway and tourist areas. Station Occupancy Fractions (SOF) and Social-to-Solar Fraction (STSF) indicators are developed to assess the level of synchronization between the hydrogen demand and solar potential. Then a validated computer code is used to optimize the renewable system components for off/on-grid cases based on minimizing the Net Present Cost (NPC) and the Loss of Hydrogen Supply Probability (LHSP). For off grid cases the results show that STSF attains maximum value in the industrial area where 0.62 fraction of refueling events occur during the sunshine hours and minimum NPC is achieved. It is observed that when STSF attains lower values of 0.52 0.41 and 0.38 for residential highway and tourist areas NPC increases by 8 16 and 31% respectively. This is associated with lower level of coordination between the hydrogen demand and solar potential. The same conclusion can be stated for the on-grid cases. Therefore for green hydrogen production via solar energy utilization it is recommended that a tariff should be applied to encourage refueling hydrogen vehicles during the availability of solar radiation while reducing the environmental impact storage requirements and eventually the cost of hydrogen production.
An Estimation of Green Hydrogen Generation from Wind Energy: A Case Study from KSA
Sep 2023
Publication
Actually green hydrogen is viewed as a fundamental component in accelerating energy transition and empowering a sustainable future. The current study focuses on the estimation of green hydrogen generation by using wind energy via electrolysis in four sites located in Saudi Arabia. Results showed that the yearly amount of hydrogen that could be generated by using wind turbine ranges between 2542877 kg in Rafha and 3676925 kg in Dhahran. The hydrogen generated could be used to fuel vehicles and decrease the amount of GHG emission from vehicles in KSA. Also hydrogen may be used to store the excess of wind energy and to support the achievement of vision 2030 of the Kingdom. An economic assessment is carried out also in this paper. Results showed that the LCOH by using wind energy in KSA ranges from 2.82 $/kg to 3.81 $/kg.
No more items...