United States
Black TiO2 for Solar Hydrogen Conversion
Feb 2017
Publication
Titanium dioxide (TiO2 ) has been widely investigated for photocatalytic H2 evolution and photoelectrochemical (PEC) water splitting since 1972. However its wide bandgap (3.0–3.2 eV) limits the optical absorption of TiO2 for sufficient utilization of solar energy. Blackening TiO2 has been proposed as an effective strategy to enhance its solar absorption and thus the photocatalytic and PEC activities and aroused widespread research interest. In this article we reviewed the recent progress of black TiO2 for photocatalytic H2 evolution and PEC water splitting along with detailed introduction to its unique structural features optical property charge carrier transfer property and related theoretical calculations. As summarized in this review article black TiO2 could be a promising candidate for photoelectrocatalytic hydrogen generation via water splitting and continuous efforts are deserved for improving its solar hydrogen efficiency.
Mapping of Hydrogen Fuel Quality in Europe
Nov 2020
Publication
As part of FCH-JU funded HyCoRA project running from 2014 to 2017 28 gaseous and 13 particulate samples were collected from hydrogen refuelling stations in Europe. Samples were collected with commercial sampling instruments and analysis performed in compliance with prevailing fuel quality standards. Sampling was conducted with focus on diversity in feedstock as well as commissioning date of the HRS. Results indicate that the strategy for sampling was good. No evidence of impurity cross-over was observed. Parallel samples collected indicate some variation in analytical results. It was however found that fuel quality was generally good. Fourteen analytical results were in violation with the fuel tolerance limits. Therefore eight or 29% of the samples were in violation with the fuel quality requirements. Nitrogen oxygen and organics were the predominant impurities quantified. Particulate impurities were found to be within fuel quality specifications. No correlation between fuel quality and hydrogen feedstock or HRS commissioning date was found. Nitrogen to oxygen ratios gave no indication of samples being contaminated by air. A comparison of analytical results between two different laboratories were conducted. Some difference in analytical results were observed.
Decarbonization Synergies From Joint Planning of Electricity and Hydrogen Production: A Texas Case Study
Oct 2020
Publication
Hydrogen (H2) shows promise as an energy carrier in contributing to emissions reductions from sectors which have been difficult to decarbonize like industry and transportation. At the same time flexible H2 production via electrolysis can also support cost-effective integration of high shares of variable renewable energy (VRE) in the power system. In this work we develop a least-cost investment planning model to co-optimize investments in electricity and H2 infrastructure to serve electricity and H2 demands under various low-carbon scenarios. Applying the model to a case study of Texas in 2050 we find that H2 is produced in approximately equal amounts from electricity and natural gas under the least-cost expansion plan with a CO2 price of $30–60/tonne. An increasing CO2 price favors electrolysis while increasing H2 demand favors H2 production from Steam Methane Reforming (SMR) of natural gas. H2 production is found to be a cost effective solution to reduce emissions in the electric power system as it provides flexibility otherwise provided by natural gas power plants and enables high shares of VRE with less battery storage. Additionally the availability of flexible electricity demand via electrolysis makes carbon capture and storage (CCS) deployment for SMR cost-effective at lower CO2 prices ($90/tonne CO2) than for power generation ($180/tonne CO2 ). The total emissions attributable to H2 production is found to be dependent on the H2 demand. The marginal emissions from H2 production increase with the H2 demand for CO2 prices less than $90/tonne CO2 due to shift in supply from electrolysis to SMR. For a CO2 price of $60/tonne we estimate the production weighted-average H2 price to be between $1.30–1.66/kg across three H2 demand scenarios. These findings indicate the importance of joint planning of electricity and H2 infrastructure for cost-effective energy system decarbonization.
Numerical Simulations of Cryogenic Hydrogen Cooling in Vortex Tubes with Smooth Transitions
Mar 2021
Publication
Improving efficiency of hydrogen cooling in cryogenic conditions is important for the wider applications of hydrogen energy systems. The approach investigated in this study is based on a Ranque-Hilsch vortex tube (RHVT) that generates temperature separation in a working fluid. The simplicity of RHVT is also a valuable characteristic for cryogenic systems. In the present work novel shapes of RHVT are computationally investigated with the goal to raise efficiency of the cooling process. Specifically a smooth transition is arranged between a vortex chamber where compressed gas is injected and the main tube with two exit ports at the tube ends. Flow simulations have been carried out using STAR-CCM+ software with the real-gas Redlich-Kwong model for hydrogen at temperatures near 70 K. It is determined that a vortex tube with a smooth transition of moderate size manifests about 7% improvement of the cooling efficiency when compared vortex tubes that use traditional vortex chambers with stepped transitions and a no-chamber setup with direct gas injection.
A Solar Thermal Sorption-enhanced Steam Methane Reforming (SE-SMR) Approach and its Performance Assessment
Feb 2022
Publication
This paper proposes an integration of concentrating solar power (CSP) with a sorption-enhanced steam methane reforming (SE-SMR) process and assesses its overall solar-to-fuel conversion performance. A thermodynamic treatment of the SE-SMR process for H2 production is presented and evaluated in an innovative two reactors system configuration using CSP as a heat input. Four metal carbonate/metal oxide pairs are considered and the equilibrium thermodynamics reveals that CaCO3/CaO pair is the most suitable candidate for this process. Additionally a reactor-scale thermodynamic model is developed to determine the optimum operating conditions for the process. For the carbonation step temperatures between 700 and 900 K and steam-to-methane ratio ≥4 are found to be the most favorable. Furthermore an advanced process model which utilizes operating conditions determined from the reactor-scale model is developed to evaluate the process efficiency. The model predicts that the proposed process can achieve a solar-to-fuel efficiency ~41% for calcination temperature of 1500 K and carbonation temperature of 800 K without considering any solid heat recovery. An additional 2.5% increase in the process efficiency is feasible with the consideration of the solid heat recovery. This study shows the thermodynamic feasibility of integrating the SE-SMR process with CSP technologies.
Towards Ecological Alternatives in Bearing Lubrication
Jun 2021
Publication
Hydrogen is the cleanest fuel available because its combustion product is water. The internal combustion engine can in principle and without significant modifications run on hydrogen to produce mechanical energy. Regarding the technological solution leading to compact engines a question to ask is the following: Can combustion engine systems be lubricated with hydrogen? In general since many applications such as in turbomachines is it possible to use the surrounding gas as a lubricant? In this paper journal bearings global parameters are calculated and compared for steady state and dynamic conditions for different gas constituents such as air pentafluoropropane helium and hydrogen. Such a bearing may be promising as an ecological alternative to liquid lubrication.
Microwave Absorption of Aluminum/Hydrogen Treated Titanium Dioxide Nanoparticles
Dec 2018
Publication
Interactions between incident electromagnetic energy and matter are of critical importance for numerous civil and military applications such as photocatalysis solar cells optics radar detection communications information processing and transport et al. Traditional mechanisms for such interactions in the microwave frequency mainly rely on dipole rotations and magnetic domain resonance. In this study we present the first report of the microwave absorption of Al/H2 treated TiO2 nanoparticles where the Al/H2 treatment not only induces structural and optical property changes but also largely improves the microwave absorption performance of TiO2 nanoparticles. Moreover the frequency of the microwave absorption can be finely controlled with the treatment temperature and the absorption efficiency can reach optimal values with a careful temperature tuning. A large reflection loss of −58.02 dB has been demonstrated with 3.1 mm TiO2 coating when the treating temperature is 700 °C. The high efficiency of microwave absorption is most likely linked to the disordering-induced property changes in the materials. Along with the increased microwave absorption properties are largely increased visible-light and IR absorptions and enhanced electrical conductivity and reduced skin-depth which is likely related to the interfacial defects within the TiO2 nanoparticles caused by the Al/H2 treatment.
Storable Energy Production from Wind over Water
Apr 2020
Publication
The current status of a project is described which aims to demonstrate the technical and economic feasibility of converting the vast wind energy available over the globe’s oceans and lakes into storable energy. To this end autonomous high-performance sailing ships are equipped with hydrokinetic turbines whose output is stored either in electric batteries or is fed into electrolysers to produce hydrogen which then is compressed and stored in tanks. In the present paper the previous analytical studies which showed the potential of this “energy ship concept” are summarized and progress on its hardware demonstration is reported involving the conversion of a model sailboat to autonomous operation. The paper concludes with a discussion of the potential of this concept to achieve the IPCC-mandated requirement of reducing the global CO2 emissions by about 45% by 2030 reaching net zero by 2050.
Raw Biomass Electroreforming Coupled to Green Hydrogen Generation
Mar 2021
Publication
Despite the tremendous progress of coupling organic electrooxidation with hydrogen generation in a hybrid electrolysis electroreforming of raw biomass coupled to green hydrogen generation has not been reported yet due to the rigid polymeric structures of raw biomass. Herein we electrooxidize the most abundant natural amino biopolymer chitin to acetate with over 90% yield in hybrid electrolysis. The overall energy consumption of electrolysis can be reduced by 15% due to the thermodynamically and kinetically more favorable chitin oxidation over water oxidation. In obvious contrast to small organics as the anodic reactant the abundance of chitin endows the new oxidation reaction excellent scalability. A solar-driven electroreforming of chitin and chitin-containing shrimp shell waste is coupled to safe green hydrogen production thanks to the liquid anodic product and suppression of oxygen evolution. Our work thus demonstrates a scalable and safe process for resource upcycling and green hydrogen production for a sustainable energy future.
Converting Sewage Water into H2 Fuel Gas Using Cu/CuO Nanoporous Photocatalytic Electrodes
Feb 2022
Publication
This work reports on H2 fuel generation from sewage water using Cu/CuO nanoporous (NP) electrodes. This is a novel concept for converting contaminated water into H2 fuel. The preparation of Cu/CuO NP was achieved using a simple thermal combustion process of Cu metallic foil at 550 ◦C for 1 h. The Cu/CuO surface consists of island-like structures with an inter-distance of 100 nm. Each island has a highly porous surface with a pore diameter of about 250 nm. X-ray diffraction (XRD) confirmed the formation of monoclinic Cu/CuO NP material with a crystallite size of 89 nm. The prepared Cu/CuO photoelectrode was applied for H2 generation from sewage water achieving an incident to photon conversion efficiency (IPCE) of 14.6%. Further the effects of light intensity and wavelength on the photoelectrode performance were assessed. The current density (Jph) value increased from 2.17 to 4.7 mA·cm−2 upon raising the light power density from 50 to 100 mW·cm−2 . Moreover the enthalpy (∆H*) and entropy (∆S*) values of Cu/CuO electrode were determined as 9.519 KJ mol−1 and 180.4 JK−1 ·mol−1 respectively. The results obtained in the present study are very promising for solving the problem of energy in far regions by converting sewage water to H2 fuel.
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective
Jun 2021
Publication
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO formic acid and hydrogen. By contrast a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts which significantly governs the reactivity and selectivity of CO2R. However in biotic CO2R operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project
Dec 2011
Publication
This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development North America (MBRDNA) Chrysler Daimler Mercedes Benz USA (MBUSA) BP DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure transportation as well as assess technology and commercial readiness for the market. The Mercedes Team together with its partners tested the technology by operating and fuelling hydrogen fuel cell vehicles under real world conditions in varying climate terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2000-hour fuel cell durability. Finally to prepare the public for a hydrogen economy outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation storage and dispensing. DTE established a hydrogen station in Southfield Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank California and provided a full-time hydrogen trailer at San Francisco California and a hydrogen station located at Los Angeles International Airportmore.
Evaluation of Decarbonization Technologies for ASEAN Countries via an Integrated Assessment Tool
May 2022
Publication
A new assessment tool for evaluating decarbonization technologies that considers each technology’s sustainability security affordability readiness and impact for a specific country is proposed. This tool is applied to a set of decarbonization technologies for the power transport and industry sectors for the ten Southeast Asian countries that constitute ASEAN. This results in a list of the most promising decarbonization technologies as well as the remaining issues that need more research and development. This study reveals several common themes for ASEAN’s decarbonization. First carbon capture and storage (CCS) is a key technology for large-scale CO2 emission. Second for countries that rely heavily on coal for power generation switching to gas can halve their CO2 emission in the power sector and should be given high priority. Third hydropower and bioenergy both have high potential for the majority of ASEAN countries if their sustainability issues can be resolved satisfactorily. Fourth replacing conventional vehicles by electric vehicles is the overarching theme in the road transport sector but will result in increased demand for electricity. In the medium to long term the use of hydrogen for marine fuel and biofuels for aviation fuel are preferred solutions for the marine and aviation transport sectors. Fifth for the industry sector installing CCS in industrial plants should be given priority but replacing fossil fuels by blue hydrogen for high-temperature heating is the preferred long-term solution.
Metastable Metal Hydrides for Hydrogen Storage
Oct 2012
Publication
The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. On the other hand the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.
Physicochemical Properties of Proton-conducting SmNiO3 Epitaxial Films
Mar 2019
Publication
Proton conducting SmNiO3 (SNO) thin films were grown on (001) LaAlO3 substrates for systematically investigating the proton transport properties. X-ray Diffraction and Atomic Force Microscopy studies reveal that the as-grown SNO thin films have good single crystallinity and smooth surface morphology. The electrical conductivity measurements in air indicate a peak at 473 K in the temperature dependence of the resistance of the SNO films probably due to oxygen loss on heating. A Metal-Insulator-Transition occurs at 373 K for the films after annealing at 873 K in air. In a hydrogen atmosphere (3% H2/97% N2) an anomalous peak in the resistance is found at 685 K on the first heating cycle. Electrochemical Impedance Spectroscopy studies as a function of temperature indicate that the SNO films have a high ionic conductivity (0.030 S/cm at 773 K) in a hydrogen atmosphere. The activation energy for proton conductivity was determined to be 0.23 eV at 473–773 K and 0.37 eV at 773–973 K respectively. These findings demonstrate that SNO thin films have good proton conductivity and are good candidate electrolytes for low temperature proton-conducting Solid Oxide Fuel Cells.
Comparison of Conventional vs. Modular Hydrogen Refuelling Stations and On-Site Production vs. Delivery
Mar 2017
Publication
To meet the needs of public and private stakeholders involved in the development construction and operation of hydrogen fuelling stations needed to support the widespread roll-out of hydrogen fuel cell electric vehicles this work presents publicly available station templates and analyses. These ‘Reference Stations’ help reduce the cost and speed the deployment of hydrogen stations by providing a common baseline with which to start a design enable quick assessment of potential sites for a hydrogen station identify contributors to poor economics and suggest areas of research. This work presents layouts bills of materials piping and instrumentation diagrams and detailed analyses of five new station designs. In the near term delivered hydrogen results in a lower cost of hydrogen compared to on-site production via steam methane reforming or electrolysis although the on-site production methods have other advantages. Modular station concepts including on-site production can reduce lot sizes from conventional assemble-on-site stations.
Water Photo-Oxidation Reaction on Clean and Doped Two-Dimensional Graphitic C2N
Apr 2020
Publication
In the search for new efficient photo-catalysts for hydrogen production through water splitting the main attention has been paid to tuning the band gap width and its position with respect to vacuum level. However actual electro-catalytic activity for the water oxidation reaction on a catalyst surface is no less important than those quantities. In this work we evaluate from first principles the thermodynamics of the reaction on relatively new candidates for water splitting: two-dimensional C2N and that doped with phosphorus. We find that the 4-step reaction usually expected for water splitting will not proceed on these systems resulting in oxygen atoms left strongly adsorbed to the surface. Another option a 3-step reaction is also found to be unfavorable. We also test an effect of higher oxygen coverage on the reaction thermodynamics as suggested elsewhere. We find that indeed the doubled O-coverage makes the 4-step reaction feasible for the doped C2N. However an unacceptably high anode potential is required to make this reaction proceed. We thus conclude that the materials under consideration may not be efficient electro-catalysts for water splitting.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
Quaternary Hydrides Pd1-y-zAgyCuzHx Embedded Atom Method Potentials for Hydrogen Energy Applications
Jan 2021
Publication
The Pd-H system has attracted extensive attention. Pd can absorb considerable amount of H at room temperature this ability is reversible so it is suitable for multiple energy applications. Pd-Ag alloys possess higher H permeability solubility and narrower miscibility gap with better mechanical properties than pure Pd but sulfur poisoning remains an issue. Pd-Cu alloys have excellent resistance to sulfur and carbon monoxide poisoning and hydrogen embrittlement good mechanical properties and broader temperature working environments over pure Pd but relatively lower hydrogen permeability and solubility than pure Pd and Pd-Ag alloys. This suggests that alloying Pd with Ag and Cu to create Pd-Ag-Cu ternary alloys can optimize the overall performance and substantially lowers the cost. Thus in this paper we provide the first embedded atom method potentials for the quaternary hydrides Pd1-y-zAgyCuzHx. The fully analytical potentials are fitted utilizing the central atom method without performing time-consuming molecular dynamics simulations.
A New Design Concept for Prevention of Hydrogen-induced Mechanical Degradation: Viewpoints of Metastability and High Entropy
Dec 2018
Publication
‟How crack growth is prevented” is key to improve both fatigue and monotonic fracture resistances under an influence of hydrogen. Specifically the key points for the crack growth resistance are hydrogen diffusivity and local ductility. For instance type 304 austenitic steels show high hydrogen embrittlement susceptibility because of the high hydrogen diffusivity of bcc (α´) martensite. In contrast metastability in specific austenitic steels enables fcc (γ) to hcp (ε) martensitic transformation which decreases hydrogen diffusivity and increases strength simultaneously. As a result even if hydrogen-assisted cracking occurs during monotonic tensile deformation the ε-martensite acts to arrest micro-damage evolution when the amount of ε-martensite is limited. Thus the formation of ε-martensite can decrease hydrogen embrittlement susceptibility in austenitic steels. However a considerable amount of ε-martensite is required when we attempt to have drastic improvements of work hardening capability and strength level with respect to transformation-induced plasticity effect. Since the hcp structure contains a less number of slip systems than fcc and bcc the less stress accommodation capacity often causes brittle-like failure when the ε-martensite fraction is large. Therefore ductility of ε-martensite is another key when we maximize the positive effect of ε-martensitic transformation. In fact ε-martensite in a high entropy alloy was recently found to be extraordinary ductile. Consequently the metastable high entropy alloys showed low fatigue crack growth rates in a hydrogen atmosphere compared with conventional metastable austenitic steels with α´-martensitic transformation. We here present effects of metastability to ε-phase and configurational entropy on hydrogen-induced mechanical degradation including monotonic tension properties and fatigue crack growth resistance.
Self-sustainable Protonic Ceramic Electrochemical cells Using a Triple Conducting Electrode for Hydrogen and Power Production
Apr 2020
Publication
The protonic ceramic electrochemical cell (PCEC) is an emerging and attractive technology that converts energy between power and hydrogen using solid oxide proton conductors at intermediate temperatures. To achieve efficient electrochemical hydrogen and power production with stable operation highly robust and durable electrodes are urgently desired to facilitate water oxidation and oxygen reduction reactions which are the critical steps for both electrolysis and fuel cell operation especially at reduced temperatures. In this study a triple conducting oxide of PrNi0.5Co0.5O3-δ perovskite is developed as an oxygen electrode presenting superior electrochemical performance at 400~600 °C. More importantly the self-sustainable and reversible operation is successfully demonstrated by converting the generated hydrogen in electrolysis mode to electricity without any hydrogen addition. The excellent electrocatalytic activity is attributed to the considerable proton conduction as confirmed by hydrogen permeation experiment remarkable hydration behavior and computations.
Hydrogen Station Location Planning via Geodesign in Connecticut: Comparing Optimization Models and Structured Stakeholder Collaboration
Nov 2021
Publication
Geodesign is a participatory planning approach in which stakeholders use geographic information systems to develop and vet alternative design scenarios in a collaborative and iterative process. This study is based on a 2019 geodesign workshop in which 17 participants from industry government university and non-profit sectors worked together to design an initial network of hydrogen refueling stations in the Hartford Connecticut metropolitan area. The workshop involved identifying relevant location factors rapid prototyping of station network designs and developing consensus on a final design. The geodesign platform which was designed specifically for facility location problems enables breakout groups to add or delete stations with a simple point-and-click operation view and overlay different map layers compute performance metrics and compare their designs to those of other groups. By using these sources of information and their own expert local knowledge participants recommended six locations for hydrogen refueling stations over two distinct phases of station installation. We quantitatively and qualitatively compared workshop recommendations to solutions of three optimal station location models that have been used to recommend station locations which minimize travel times from stations to population and traffic or maximize trips that can be refueled on origin–destination routes. In a post-workshop survey participants rated the workshop highly for facilitating mutual understanding and information sharing among stakeholders. To our knowledge this workshop represents the first application of geodesign for hydrogen refueling station infrastructure planning.
Safety and Other Considerations in the Development of a Hydrogen Fueling Protocol for Heavy-duty Vehicles
Sep 2021
Publication
Several manufacturers are developing heavy duty (HD) hydrogen stations and vehicles as zeroemissions alternatives to diesel and gasoline. In order to meet customer demands the new technology must be comparable to conventional approaches including safety reliability fueling times and final fill levels. For a large HD vehicle with a storage rated to 70 MPa nominal working pressure the goal to meet liquid fuel parity means providing 100 kg of hydrogen in 10 minutes. This paper summarizes the results to date of the PRHYDE project efforts to define the concepts of HD fueling which thereby lays the groundwork for the development of the safe and effective approach to filling these large vehicles. The project starts by evaluating the impact of several different assumptions such as the availability of static vehicle data (e.g. vehicle tank type and volume) and station data (e.g. expected station precooling capability) but also considers using real time dynamic data (e.g. vehicle tank gas temperature and pressure station gas temperature etc.) for optimisation to achieve safety and efficiency improvements. With this information the vehicle or station can develop multiple maps of fill time versus the hydrogen delivery temperature which are used to determine the speed of fueling. This will also allow the station or vehicle to adjust the rate of fueling as the station pre-cooling levels and other conditions change. The project also examines different steps for future protocol development such as communication of data between the vehicle and station and if the vehicle or station is controlling the fueling.
Ammonia Production from Clean Hydrogen and the Implications for Global Natural Gas Demand
Jan 2023
Publication
Non-energy use of natural gas is gaining importance. Gas used for 183 million tons annual ammonia production represents 4% of total global gas supply. 1.5-degree pathways estimate an ammonia demand growth of 3–4-fold until 2050 as new markets in hydrogen transport shipping and power generation emerge. Ammonia production from hydrogen produced via water electrolysis with renewable power (green ammonia) and from natural gas with CO2 storage (blue ammonia) is gaining attention due to the potential role of ammonia in decarbonizing energy value chains and aiding nations in achieving their net-zero targets. This study assesses the technical and economic viability of different routes of ammonia production with an emphasis on a systems level perspective and related process integration. Additional cost reductions may be driven by optimum sizing of renewable power capacity reducing losses in the value chain technology learning and scale-up reducing risk and a lower cost of capital. Developing certification and standards will be necessary to ascertain the extent of greenhouse gas emissions throughout the supply chain as well as improving the enabling conditions including innovative finance and de-risking for facilitating international trade market creation and large-scale project development.
Ignition of Hydrogen-air Mixtures Under Volumetric Expansion Conditions
Sep 2017
Publication
A better understanding of chemical kinetics under volumetric expansion is important for a number of situations relevant to industrial safety including detonation diffraction and direct initiation reflected shock-ignition at obstacles ignition behind a decaying shock among others. The ignition of stoichiometric hydrogen-air mixtures was studied using 0D numerical simulations with time-dependent specific volume variations. The competition between chemical energy release and expansion-induced cooling was characterized for different cooling rates and mathematical forms describing the shock decay rate. The critical conditions for reaction quenching were systematically determined and the thermo-chemistry dynamics were analyzed near the critical conditions.
Electrolyzers Enhancing Flexibility in Electric Grids
Nov 2017
Publication
This paper presents a real-time simulation with a hardware-in-the-loop (HIL)-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC) is proposed which enables an optimal operation of the load on the basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility greater economic revenue and grid support for hydrogen producers under dynamic conditions. The FEC proposed in this paper is tested with electrolyzers however it is proposed as a generic control topology that is applicable to any load.
Fracture Properties of Welded 304L in Hydrogen Environments
Sep 2021
Publication
Austenitic stainless steels are used for hydrogen containment of high-pressure hydrogen gas due to their ability to retain high fracture properties despite the degradation due to hydrogen. Forging and other strain-hardening processes are desirable for austenitic stainless steels to increase the material strength and thus accommodate higher stresses and reduce material costs. Welding is often necessary for assembling components but it represents an area of concern in pressure containment structures due to the potential for defects more environmentally susceptible microstructure and reduced strength. Electron beam (EB) welding represent an advanced joining process which has advantages over traditional arc welding techniques through reduced input heat and reduced heat-affected zone (HAZ) microstructure and thus present a means to maintain high strength and improve weld performance in hydrogen gas containment. In this study fracture coupons were extracted from EB welds in forged 304L and subjected to thermal gaseous hydrogen precharging at select pressures to introduce different levels of internal hydrogen content. Fracture tests were then performed on hydrogen precharged coupons at temperatures of both 293 K and 223 K. It was observed that fracture resistance (JH) was dependent on internal hydrogen concentration; higher hydrogen concentrations resulted in lower fracture resistance in both the forged 304L base material and the 304L EB welds. This trend was also apparent at both temperatures: 293 K and 223 K. EB weld samples however maintain high fracture resistance comparable to the forged 304L base material. The role of weld microstructure solidification on fracture is discussed.
Everything About Hydrogen Podcast: What's Brewing in the UK Clean Hydrogen Sector?
Dec 2021
Publication
Chris Jackson is the Founder and CEO of Protium Green Solutions based in London. Protium is a hydrogen energy services company that designs develops finances owns and operates clean hydrogen solutions for clients to achieve net zero energy emissions at their industrial/manufacturing sites. Chris will talk to us about the Protium story and also give us some insight into a major project that Protium recently announced in conjunction Budweiser Brewing Group UK&Ireland to explore the deployment of zero emission green hydrogen at Magor brewery in South Wales one of the largest breweries in the UK. To that end in order to get the full story about this project we are delighted to say that we have yet another great guest on this episode. Tom Brewer who leads Global Environmental Sustainability efforts at AB InBev the parent company of Budweiser Brewing Group will join us for the final segment of the show to talk about how hydrogen fits into AB InBev’s vision of a sustainable future for the company.
The podcast can be found on their website
The podcast can be found on their website
Study of the Microstructural and First Hydrogenation Properties of TiFe Alloy with Zr, Mn and V as Additives
Jul 2021
Publication
In this paper we report the effect of adding Zr + V or Zr + V + Mn to TiFe alloy on microstructure and hydrogen storage properties. The addition of only V was not enough to produce a minimum amount of secondary phase and therefore the first hydrogenation at room temperature under a hydrogen pressure of 20 bars was impossible. When 2 wt.% Zr + 2 wt.% V or 2 wt.% Zr + 2 wt.% V + 2 wt.% Mn is added to TiFe the alloy shows a finely distributed Ti2Fe-like secondary phase. These alloys presented a fast first hydrogenation and a high capacity. The rate-limiting step was found to be 3D growth diffusion controlled with decreasing interface velocity. This is consistent with the hypothesis that the fast reaction is likely to be the presence of Ti2Fe-like secondary phases that act as a gateway for hydrogen.
On the Climate Impacts of Blue Hydrogen Production
Nov 2021
Publication
Natural gas based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored such hydrogen could be a low-carbon energy carrier. However recent research raises questions about the effective climate impacts of blue hydrogen from a life cycle perspective. Our analysis sheds light on the relevant issues and provides a balanced perspective on the impacts on climate change associated with blue hydrogen. We show that such impacts may indeed vary over large ranges and depend on only a few key parameters: the methane emission rate of the natural gas supply chain the CO2 removal rate at the hydrogen production plant and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates combined with natural gas supply featuring low methane emissions does indeed allow for substantial reduction of greenhouse gas emissions compared to both conventional natural gas reforming and direct combustion of natural gas. Under such conditions blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal.
Developing New Understanding of Photoelectrochemical Water Splitting Via In-situ Techniques: A Review on Recent Progress
Mar 2014
Publication
Photoelectrochemical (PEC) water splitting is a promising technology for solar hydrogen production to build a sustainable renewable and clean energy economy. Given the complexity of the PEC water splitting processes it is important to note that developing in-situ techniques for studying PEC water splitting presents a formidable challenge. This review is aimed at highlighting advantages and disadvantages of each technique while offering a pathway of potentially combining several techniques to address different aspects of interfacial processes in PEC water splitting. We reviewed recent progress in various techniques and approaches utilized to study PEC water splitting focusing on spectroscopic and scanning-probe methods.
Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in a Compression Ignition Engine
Nov 2021
Publication
A thermochemical recuperation (TCR) reactor was developed and experimentally evaluated with the objective to improve dual-fuel diesel–ammonia compression ignition engines. The novel system simultaneously decomposed ammonia into a hydrogen-containing mixture to allow high diesel fuel replacement ratios and oxidized unburned ammonia emissions in the exhaust overcoming two key shortcomings of ammonia combustion in engines from the previous literature. In the experimental work a multi-cylinder compression ignition engine was operated in dual-fuel mode using intake-fumigated ammonia and hydrogen mixtures as the secondary fuel. A full-scale catalytic TCR reactor was constructed and generated the fuel used in the engine experiments. The results show that up to 55% of the total fuel energy was provided by ammonia on a lower heating value basis. Overall engine brake thermal efficiency increased for modes with a high exhaust temperature where ammonia decomposition conversion in the TCR reactor was high but decreased for all other modes due to poor combustion efficiency. Hydrocarbon and soot emissions were shown to increase with the replacement ratio for all modes due to lower combustion temperatures and in-cylinder oxidation processes in the late part of heat release. Engine-out oxides of nitrogen (NOx) emissions decreased with increasing diesel replacement levels for all engine modes. A higher concentration of unburned ammonia was measured in the exhaust with increasing replacement ratios. This unburned ammonia predominantly oxidized to NOx species over the oxidation catalyst used within the TCR reactor. Ammonia substitution thus increased post-TCR reactor ammonia and NOx emissions in this work. The results show however that engine-out NH3 -to-NOx ratios were suitable for passive selective catalytic reduction thus demonstrating that both ammonia and NOx from the engine could be readily converted to N2 if the appropriate catalyst were used in the TCR reactor.
Fire Safety of Hydrogen-Fuelled Vehicles- System-Level Bonfire Test
Sep 2005
Publication
The European Community requires a vehicle-level bonfire test for vehicles using plastic fuel tanks for conventional fuels (ECE R-34 Annex 5). A similar test could be applied to hydrogen-fuelled vehicles. It would test a realistic vehicle with its complete fuel and safety systems. An advantage of such a test is that the same test could be applied independent of the hydrogen storage technology (compressed gas liquid or hydride). There are currently standards for bonfire testing of a bare Compressed Natural Gas (CNG) tank and its Pressure Relief Device (PRD). This standard is FMVSS 304 in the U.S. and ISO 15869-1 in Europe. Japan has a similar standard. It requires that a bare tank and its associated PRD be subjected to a propane flame for 20 minutes. The tank must either survive or safely vent its contents. No modern composite wound tank is expected to survive for 20 minutes – so this is not a tank test but really a PRD test. The test procedure requires the PRD to be shielded from direct impingement of the flames – but the shield is not well specified. If it shields the PRD too well the PRD will not activate and the tank will burst. This paper describes the results of a CNG and a hydrogen tank burst from such tests. The mechanical energy released is enormous. It is simply unacceptable to allow the tank to burst – the PRD and venting system must work. Organizations in the U.S Europe and Japan are in the process of modifying the CNG tank bonfire test for compressed hydrogen storage. A bare tank with a single PRD is not a good simulation of a hydrogen fuel system installed in an actual vehicle. There will usually be multiple tanks plumbed together at either the tank pressure or at the intermediate pressure (after the pressure regulator). There may be more than one PRD. The tank may be shielded (from debris) or insulated to protect it from an underbody pool fire. Also the heat transfer from the simulated pool fire (propane flame) will be very different when mounted in a vehicle versus the bare tank test. A vehicle-level pool fire test will alleviate these problems. It is therefore recommended that the bare tank test be replaced by or augmented with a vehicle-level bonfire test similar to ECE R-34 Annex 5.
Everything About Hydrogen Podcast: Why the Fuel Cell World is Different This Time
Aug 2019
Publication
The fuel cell game is not new and for many it is has been a long time coming. Few know this better than Ballard Power Systems the third ever founded Fuel Cell company that has operated since the 1970s. On the show we ask Nicolas Pocard about Ballards history and why this time the market is different for fuel cell companies.
The podcast can be found on their website
The podcast can be found on their website
Theoretical Limits of Hydrogen Storage in Metal-Organic Frameworks: Opportunities and Trade-offs
Jul 2013
Publication
Because of their high surface areas crystallinity and tunable propertiesmetal−organic frameworks (MOFs) have attracted intense interest as next-generationmaterials for gas capture and storage. While much effort has been devoted to thediscovery of new MOFs a vast catalog of existing MOFs resides within the CambridgeStructural Database (CSD) many of whose gas uptake properties have not beenassessed. Here we employ data mining and automated structure analysis to identify“cleanup” and rapidly predict the hydrogen storage properties of these compounds.Approximately 20 000 candidate compounds were generated from the CSD using analgorithm that removes solvent/guest molecules. These compounds were thencharacterized with respect to their surface area and porosity. Employing the empiricalrelationship between excess H2 uptake and surface area we predict the theoretical total hydrogen storage capacity for the subsetof ∼4000 compounds exhibiting nontrivial internal porosity. Our screening identifies several overlooked compounds having hightheoretical capacities; these compounds are suggested as targets of opportunity for additional experimental characterization.More importantly screening reveals that the relationship between gravimetric and volumetric H2 density is concave downwardwith maximal volumetric performance occurring for surface areas of 3100−4800 m2 /g. We conclude that H2 storage in MOFswill not benefit from further improvements in surface area alone. Rather discovery efforts should aim to achieve moderate massdensities and surface areas simultaneously while ensuring framework stability upon solvent removal.
CFD Modeling and Consequence Analysis of an Accidental Hydrogen Release in a Large Scale Facility
Sep 2013
Publication
In this study the consequences of an accidental release of hydrogen within large scale (>15000 m3) facilities were modelled. To model the hydrogen release an LES Navier–Stokes CFD solver called fireFoam was used to calculate the dispersion and mixing of hydrogen within a large scale facility. The performance of the CFD modelling technique was evaluated through a validation study using experimental results from a 1/6 scale hydrogen release from the literature and a grid sensitivity study. Using the model a parametric study was performed varying release rates and enclosure sizes and examining the concentrations that develop. The hydrogen dispersion results were then used to calculate the corresponding pressure loads from hydrogen-air deflagrations in the facility.
Integrated Power and Propulsion System Optimization for a Planetary-Hopping Robot
Aug 2022
Publication
Missions targeting the extreme and rugged environments on the moon and Mars have rich potential for a high science return although several risks exist in performing these exploration missions. The current generation of robots is unable to access these high-priority targets. We propose using teams of small hopping and rolling robots called SphereX that are several kilograms in mass and can be carried by a large rover or lander and tactically deployed for exploring these extreme environments. Considering that the importance of minimizing the mass and volume of these robot platforms translates into significant mission-cost savings we focus on the optimization of an integrated power and propulsion system for SphereX. Hydrogen is used as fuel for its high energy and it is stored in the form of lithium hydride and oxygen in the form of lithium perchlorate. The system design undergoes optimization using Genetic Algorithms integrated with gradient-based search techniques to find optimal solutions for a mission. Our power and propulsion system as we show in this paper is enabling because the robots can travel long distances to perform science exploration by accessing targets not possible with conventional systems. Our work includes finding the optimal mass and volume of SphereX such that it can meet end-to-end mission requirements.
Everything About Hydrogen Podcast: So, What's the Big Deal with Hydrogen?
Aug 2019
Publication
This episode is a whistle-stop tour of the hydrogen world. The team explore why hydrogen is making a resurgence as an energy carrier how decarbonising the existing hydrogen market is a huge opportunity and how fuel cells fit into the story.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Hydrogen 101
Aug 2019
Publication
A 10-minute tour of hydrogen industry technology and terminology for those who are new to the sector or who would simply like a quick review of the basics behind this burgeoning energy source.
Podcast can be found on their website
Podcast can be found on their website
Transition to Renewable Energy for Communities: Energy Storage Requirements and Dissipation
Aug 2022
Publication
The transition of residential communities to renewable energy sources is one of the first steps for the decarbonization of the energy sector the reduction of CO2 emissions and the mitigation of global climate change. This study provides information for the development of a microgrid supplied by wind and solar energy which meets the hourly energy demand of a community of 10000 houses in the North Texas region; hydrogen is used as the energy storage medium. The results are presented for two cases: (a) when the renewable energy sources supply only the electricity demand of the community and (b) when these sources provide the electricity as well as the heating needs (for space heating and hot water) of the community. The results show that such a community can be decarbonized with combinations of wind and solar installations. The energy storage requirements are between 2.7 m3 per household and 2.2 m3 per household. There is significant dissipation in the storage–regeneration processes—close to 30% of the current annual electricity demand. The entire decarbonization (electricity and heat) of this community will result in approximately 87500 tons of CO2 emissions avoidance.
Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles
May 2018
Publication
The year 2014 marked hydrogen fuel cell electric vehicles (FCEVs) first becoming commercially available in California where significant investments are being made to promote the adoption of alternative transportation fuels. A refueling infrastructure network that guarantees adequate coverage and expands in line with vehicle sales is required for FCEVs to be successfully adopted by private customers. In this paper we provide an overview of modelling methodologies used to project hydrogen refueling infrastructure requirements to support FCEV adoption and we describe in detail the National Renewable Energy Laboratory’s scenario evaluation and regionalization analysis (SERA) model. As an example we use SERA to explore two alternative scenarios of FCEV adoption: one in which FCEV deployment is limited to California and several major cities in the United States; and one in which FCEVs reach widespread adoption becoming a major option as passenger vehicles across the entire country. Such scenarios can provide guidance and insights for efforts required to deploy the infrastructure supporting transition toward different levels of hydrogen use as a transportation fuel for passenger vehicles in the United States.
Review of Release Behavior of Hydrogen & Natural Gas Blends from Pipelines
Aug 2021
Publication
Hydrogen can be used to reduce carbon emissions by blending into other gaseous energy carriers such as natural gas. However hydrogen blending into natural gas has important implications for safety which need to be evaluated. Hydrogen has different physical properties than natural gas and these properties affect safety evaluations concerning a leak of the blended gas. The intent of this report is to begin to investigate the safety implications of blending hydrogen into the natural gas infrastructure with respect to a leak event from a pipeline. A literature review was conducted to identify existing data that will better inform future hazard and risk assessments for hydrogen/natural gas blends. Metrics with safety implications such as heat flux and dispersion behavior may be affected by the overall blend ratio of the mixture. Of the literature reviewed there was no directly observed separation of the hydrogen from the natural gas or methane blend. No literature was identified that experimentally examined unconfined releases such as concentration fields or concentration at specific distances. Computational efforts have predicted concentration fields by modified versions of existing engineering models but the validation of these models is limited by the unavailability of literature data. There are multiple literature sources that measured flame lengths and heat flux values which are both relevant metrics to risk and hazard assessments. These data can be more directly compared to the outputs of existing engineering models for validation.
The paper can be downloaded on their website
The paper can be downloaded on their website
Advanced Optimal Planning for Microgrid Technologies Including Hydrogen and Mobility at a Real Microgrid Testbed
Apr 2021
Publication
This paper investigates the optimal planning of microgrids including the hydrogen energy system through mixed-integer linear programming model. A real case study is analyzed by extending the only microgrid lab facility in Austria. The case study considers the hydrogen production via electrolysis seasonal storage and fuelling station for meeting the hydrogen fuel demand of fuel cell vehicles busses and trucks. The optimization is performed relative to two different reference cases which satisfy the mobility demand by diesel fuel and utility electricity based hydrogen fuel production respectively. The key results indicate that the low emission hydrogen mobility framework is achieved by high share of renewable energy sources and seasonal hydrogen storage in the microgrid. The investment optimization scenarios provide at least 66% and at most 99% carbon emission savings at increased costs of 30% and 100% respectively relative to the costs of the diesel reference case (current situation)
Sector Coupling via Hydrogen to Lower the Cost of Energy System Decarbonization
Aug 2021
Publication
There is growing interest in using hydrogen (H2) as a long-duration energy storage resource in a future electric grid dominated by variable renewable energy (VRE) generation. Modeling H2 use exclusively for grid-scale energy storage often referred to as ‘‘power-to-gas-to-power (P2G2P)’’ overlooks the cost-sharing and CO2 emission benefits from using the deployed H2 assets to decarbonize other end-use sectors where direct electrification is challenging. Here we develop a generalized framework for co-optimizing infrastructure investments across the electricity and H2 supply chains accounting for the spatio-temporal variations in energy demand and supply. We apply this sector-coupling framework to the U.S. Northeast under a range of technology cost and carbon price scenarios and find greater value of power-to-H2 (P2G) vs. P2G2P routes. Specifically P2G provides grid flexibility to support VRE integration without the round-trip efficiency penalty and additional cost incurred by P2G2P routes. This form of sector coupling leads to: (a) VRE generation increase by 13–56% and (b) total system cost (and levelized costs of energy) reduction by 7–16% under deep decarbonization scenarios. Both effects increase as H2 demand for other end-uses increases more than doubling for a 97% decarbonization scenario as H2 demand quadruples. We also find that the grid flexibility enabled by sector coupling makes deployment of carbon capture and storage (CCS) for power generation less cost-effective than its use for low-carbon H2 production. These findings highlight the importance of using an integrated energy system framework with multiple energy vectors in planning cost-effective energy system decarbonization
Techno-economic Analysis of Freight Railway Electrification by Overhead Line, Hydrogen and Batteries: Case Studies in Norway and USA
Aug 2019
Publication
Two non-electrified railway lines one in Norway and the other in the USA are analysed for their potential to be electrified with overhead line equipment batteries hydrogen or hydrogen-battery hybrid powertrains. The energy requirements are established with single-train simulations including the altitude profiles of the lines air and rolling resistances and locomotive tractive-effort curves. The composition of the freight trains in terms of the number of locomotives battery wagons hydrogen wagons etc. is also calculated by the same model. The different technologies are compared by the criteria of equivalent annual costs benefit–cost ratio payback period and up-front investment based on the estimated techno-economic parameters for years 2020 2030 and 2050. The results indicate the potential of batteries and fuel cells to replace diesel on rail lines with low traffic volumes.
The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals
Sep 2020
Publication
This research qualitatively reviews literature regarding energy system modeling in Japan specific to the future hydrogen economy leveraging quantitative model outcomes to establish the potential future deployment of hydrogen in Japan. The analysis focuses on the four key sectors of storage supplementing the gas grid power generation and transportation detailing the potential range of hydrogen technologies which are expected to penetrate Japanese energy markets up to 2050 and beyond. Alongside key model outcomes the appropriate policy settings governance and market mechanisms are described which underpin the potential hydrogen economy future for Japan. We find that transportation gas grid supplementation and storage end-uses may emerge in significant quantities due to policies which encourage ambitious implementation targets investment in technologies and research and development and the emergence of a future carbon pricing regime. On the other hand for Japan which will initially be dependent on imported hydrogen the cost of imports appears critical to the emergence of broad hydrogen usage particularly in the power generation sector. Further the consideration of demographics in Japan recognizing the aging shrinking population and peoples’ energy use preferences will likely be instrumental in realizing a smooth transition toward a hydrogen economy.
Research Requirements to Move the Bar Forward Using Aqueous Formate Salts as H2 Carriers for Energy Storage Applications
Nov 2020
Publication
In this perspective on hydrogen carriers we focus on the needs for the development of robust active catalysts for the release of H2 from aqueous formate solutions which are non-flammable non-toxic thermally stable and readily available at large scales at reasonable cost. Formate salts can be stockpiled in the solid state or dissolved in water for long term storage and transport using existing infrastructure. Furthermore formate salts are readily regenerated at moderate pressures using the same catalyst as for the H2 release. There have been several studies focused on increasing the activity of catalysts to release H2 at moderate temperatures i.e. < 80 °C below the operating temperature of a proton exchange membrane (PEM) fuel cell. One significant challenge to enable the use of aqueous formate salts as hydrogen carriers is the deactivation of the catalyst under operating conditions. In this work we provide a review of the most efficient heterogeneous catalysts that have been described in the literature their proposed modes of deactivation and the strategies reported to reactivate them. We discuss potential pathways that may lead to deactivation and strategies to mitigate it in a variety of H2 carrier applications. We also provide an example of a potential use case employing formate salts solutions using a fixed bed reactor for seasonal storage of energy for a microgrid application.
Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect
Jun 2019
Publication
The hazardous effects of pollutants from conventional fuel vehicles have caused the scientific world to move towards environmentally friendly energy sources. Though we have various renewable energy sources the perfect one to use as an energy source for vehicles is hydrogen. Like electricity hydrogen is an energy carrier that has the ability to deliver incredible amounts of energy. Onboard hydrogen storage in vehicles is an important factor that should be considered when designing fuel cell vehicles. In this study a recent development in hydrogen fuel cell engines is reviewed to scrutinize the feasibility of using hydrogen as a major fuel in transportation systems. A fuel cell is an electrochemical device that can produce electricity by allowing chemical gases and oxidants as reactants. With anodes and electrolytes the fuel cell splits the cation and the anion in the reactant to produce electricity. Fuel cells use reactants which are not harmful to the environment and produce water as a product of the chemical reaction. As hydrogen is one of the most efficient energy carriers the fuel cell can produce direct current (DC) power to run the electric car. By integrating a hydrogen fuel cell with batteries and the control system with strategies one can produce a sustainable hybrid car
Green Synthesis of Olefin-linked Covalent Organic Frameworks for Hydrogen Fuel Cell Applications
Mar 2021
Publication
Green synthesis of crystalline porous materials for energy-related applications is of great significance but very challenging. Here we create a green strategy to fabricate a highly crystalline olefin-linked pyrazine-based covalent organic framework (COF) with high robustness and porosity under solvent-free conditions. The abundant nitrogen sites high hydrophilicity and well-defined one-dimensional nanochannels make the resulting COF an ideal platform to confine and stabilize the H3PO4 network in the pores through hydrogen-bonding interactions. The resulting material exhibits low activation energy (Ea) of 0.06 eV and ultrahigh proton conductivity across a wide relative humidity (10–90 %) and temperature range (25–80 °C). A realistic proton exchange membrane fuel cell using the olefin-linked COF as the solid electrolyte achieve a maximum power of 135 mW cm−2 and a current density of 676 mA cm−2 which exceeds all reported COF materials.
The Potential of Gas Switching Partial Oxidation Using Advanced Oxygen Carriers for Efficient H2 Production with Inherent CO2 Capture
May 2021
Publication
The hydrogen economy has received resurging interest in recent years as more countries commit to net-zero CO2 emissions around the mid-century. “Blue” hydrogen from natural gas with CO2 capture and storage (CCS) is one promising sustainable hydrogen supply option. Although conventional CO2 capture imposes a large energy penalty advanced process concepts using the chemical looping principle can produce blue hydrogen at efficiencies even exceeding the conventional steam methane reforming (SMR) process without CCS. One such configuration is gas switching reforming (GSR) which uses a Ni-based oxygen carrier material to catalyze the SMR reaction and efficiently supply the required process heat by combusting an off-gas fuel with integrated CO2 capture. The present study investigates the potential of advanced La-Fe-based oxygen carrier materials to further increase this advantage using a gas switching partial oxidation (GSPOX) process. These materials can overcome the equilibrium limitations facing conventional catalytic SMR and achieve direct hydrogen production using a water-splitting reaction. Results showed that the GSPOX process can achieve mild efficiency improvements relative to GSR in the range of 0.6–4.1%-points with the upper bound only achievable by large power and H2 co-production plants employing a highly efficient power cycle. These performance gains and the avoidance of toxicity challenges posed by Ni-based oxygen carriers create a solid case for the further development of these advanced materials. If successful results from this work indicate that GSPOX blue hydrogen plants can outperform an SMR benchmark with conventional CO2 capture by more than 10%-points both in terms of efficiency and CO2 avoidance.
No more items...