Institution of Gas Engineers & Managers
Flexible Electricity Use for Heating in Markets with Renewable Energy
Mar 2020
Publication
Using electricity for heating can contribute to decarbonization and provide flexibility to integrate variable renewable energy. We analyze the case of electric storage heaters in German 2030 scenarios with an open-source electricity sector model. We find that flexible electric heaters generally increase the use of generation technologies with low variable costs which are not necessarily renewables. Yet making customary night-time storage heaters temporally more flexible offers only moderate benefits because renewable availability during daytime is limited in the heating season. Respective investment costs accordingly have to be very low in order to realize total system cost benefits. As storage heaters feature only short-term heat storage they also cannot reconcile the seasonal mismatch of heat demand in winter and high renewable availability in summer. Future research should evaluate the benefits of longer-term heat storage.
Enabling Low-carbon Hydrogen Supply Chains Through Use of Biomass and Carbon Capture and Storage: A Swiss Case Study
Jul 2020
Publication
This study investigates the optimal design of low-carbon hydrogen supply chains on a national scale. We consider hydrogen production based on several feedstocks and energy sources namely water with electricity natural gas and biomass. When using natural gas we couple hydrogen production with carbon capture and storage. The design of the hydrogen biomass and carbon dioxide (CO2 ) infrastructure is performed by solving an optimization problem that determines the optimal selection size and location of the hydrogen production technologies and the optimal structure of the hydrogen biomass and CO2 O2 networks. First we investigate the rationale behind the optimal design of low-carbon hydrogen supply chains by referring to an idealized system configuration and by performing a parametric analysis of the most relevant design parameters of the supply chains such as biomass availability. This allows drawing general conclusions independent of any specific geographic features about the minimum-cost and minimum-emissions system designs and network structures. Moreover we analyze the Swiss case study to derive specific guidelines concerning the design of hydrogen supply chains deploying carbon capture and storage. We assess the impact of relevant design parameters such as location of CO2 storage facilities techno-economic features of CO2 capture technologies and network losses on the optimal supply chain design and on the competition between the hydrogen and CO2 networks. Findings highlight the fundamental role of biomass (when available) and of carbon capture and storage for decarbonizing hydrogen supply chains while transitioning to a wider deployment of renewable energy sources.
SimSES: A Holistic Simulation Framework for Modeling and Analyzing Stationary Energy Storage Systems
Feb 2022
Publication
The increasing feed-in of intermittent renewable energy sources into the electricity grids worldwide is currently leading to technical challenges. Stationary energy storage systems provide a cost-effective and efficient solution in order to facilitate the growing penetration of renewable energy sources. Major technical and economical challenges for energy storage systems are related to lifetime efficiency and monetary returns. Holistic simulation tools are needed in order to address these challenges before investing in energy storage systems. One of these tools is SimSES a holistic simulation framework specialized in evaluating energy storage technologies technically and economically. With a modular approach SimSES covers various topologies system components and storage technologies embedded in an energy storage application. This contribution shows the capabilities and benefits of SimSES by providing in-depth knowledge of the implementations and models. Selected functionalities are demonstrated with two use cases showing the easy-to-use simulation framework while providing detailed technical analysis for expert users. Hybrid energy storage systems consisting of lithium-ion and redox-flow batteries are investigated in a peak shaving application while various system topologies are analyzed in a frequency containment reserve application. The results for the peak shaving case study show a benefit in favor of the hybrid system in terms of overall cost and degradation behavior in applications that have a comparatively low energy throughput during lifetime. In terms of system topology a cascaded converter approach shows significant improvements in efficiency for the frequency containment reserve application.
Power-to-Steel: Reducing CO2 through the Integration of Renewable Energy and Hydrogen into the German Steel Industry
Apr 2017
Publication
This paper analyses some possible means by which renewable power could be integrated into the steel manufacturing process with techniques such as blast furnace gas recirculation (BF-GR) furnaces that utilize carbon capture a higher share of electrical arc furnaces (EAFs) and the use of direct reduced iron with hydrogen as reduction agent (H-DR). It is demonstrated that these processes could lead to less dependence on—and ultimately complete independence from—coal. This opens the possibility of providing the steel industry with power and heat by coupling to renewable power generation (sector coupling). In this context it is shown using the example of Germany that with these technologies reductions of 47–95% of CO2 emissions against 1990 levels and 27–95% of primary energy demand against 2008 can be achieved through the integration of 12–274 TWh of renewable electrical power into the steel industry. Thereby a substantial contribution to reducing CO2 emissions and fuel demand could be made (although it would fall short of realizing the German government’s target of a 50% reduction in power consumption by 2050).
Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility
May 2021
Publication
The percentage of the population in urban areas has increased by ten points from 2000 (46%) to 2020 (56%); it is expected to reach up to 70% by 2050. This undoubtedly will encourage society to use alternative transports. On the other hand the widespread fear of pandemics seems to be here to stay and it is causing most people to leave public transport to use private cars and a few have chosen unipersonal electric vehicles. As a consequence the decision of using private cars negatively affects the air quality and consequently urban population health. This paper aims to demonstrate a sustainable solution for urban mobility based on a hydrogen powered unipersonal electric vehicle which as shown provides great advantages over the conventional battery powered unipersonal electric vehicle. To show this the authors have developed both vehicles in comparable versions using the same platform and ensuring that the total weight of the unipersonal electric vehicle was the same in both cases. They have been subjected to experimental tests that support the features of the hydrogen-based configuration versus the battery-based one including higher specific energy more autonomy and shorter recharge time.
Hydrogen-Based Energy Storage Systems for Large-Scale Data Center Applications
Nov 2021
Publication
Global demand for data and data access has spurred the rapid growth of the data center industry. To meet demands data centers must provide uninterrupted service even during the loss of primary power. Service providers seeking ways to eliminate their carbon footprint are increasingly looking to clean and sustainable energy solutions such as hydrogen technologies as alternatives to traditional backup generators. In this viewpoint a survey of the current state of data centers and hydrogen-based technologies is provided along with a discussion of the hydrogen storage and infrastructure requirements needed for large-scale backup power applications at data centers.
Van der Waals Heterostructures - Recent Progress in Electrode Materials for Clean Energy Applications
Jul 2021
Publication
The unique layered morphology of van der Waals (vdW) heterostructures give rise to a blended set of electrochemical properties from the 2D sheet components. Herein an overview of their potential in energy storage systems in place of precious metals is conducted. The most recent progress on vdW electrocatalysis covering the last three years of research is evaluated with an emphasis on their catalytic activity towards the oxygen reduction reaction (ORR) oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). This analysis is conducted in pair with the most active Pt-based commercial catalyst currently utilized in energy systems that rely on the above-listed electrochemistry (metal–air battery fuel cells and water electrolyzers). Based on current progress in HER catalysis that employs vdW materials several recommendations can be stated. First stacking of the two types vdW materials with one being graphene or its doped derivatives results in significantly improved HER activity. The second important recommendation is to take advantage of an electronic coupling when stacking 2D materials with the metallic surface. This significantly reduces the face-to-face contact resistance and thus improves the electron transfer from the metallic surface to the vdW catalytic plane. A dual advantage can be achieved from combining the vdW heterostructure with metals containing an excess of d electrons (e.g. gold). Despite these recent and promising discoveries more studies are needed to solve the complexity of the mechanism of HER reaction in particular with respect to the electron coupling effects (metal/vdW combinations). In addition more affordable synthetic pathways allowing for a well-controlled confined HER catalysis are emerging areas.
Optimal Facility Combination Set of Integrated Energy System Based on Consensus Point between Independent System Operator and Independent Power Producer
Dec 2022
Publication
In recent years the frequency of power demand imbalance and negative price phenomenon has risen due to the rapid expansion of renewable energy sources (RES). Because of this a means to reduce the curtailment of RES by utilizing surplus energy is essential. This paper focuses on reducing the curtailment of wind turbines (WT) with high output intermittency and minimizing the investment cost of IES via an integrated energy system (IES). The IES operation seeks to improve the acceptability and efficiency of the RES as it supports the integration of various energies mix such as electricity heat hydrogen. This paper proposes an optimal facility combination set (FCS) of IES that satisfies the requirements of ISO and IPP using Multi-Objective Optimization Programming (MOP). The case study is based on a wind farm in South Korea set in Aewol-eup Jeju-Island. The case study results provide the best configuration of the IES energy mix with the best economic value and efficiency while satisfying ISO and IPP perspectives.
Greenhouse Gas Emissions of Conventional and Alternative Vehicles: Predictions Based on Energy Policy Analysis in South Korea
Mar 2020
Publication
This paper compares the well-to-wheel (WTW) greenhouse gas (GHG) emissions of representative vehicle types–internal combustion engine vehicle (ICEV) hybrid electric vehicle (HEV) plug-in hybrid electric vehicle (PHEV) battery electric vehicle (BEV) and fuel cell electric vehicle (FCEV)–in the future (2030) based on a WTW analysis for the present (2017) and an analysis of various energy policies that could affect future emissions. South Korea was selected as the target region because it has detailed energy policies related to alternative vehicles. The WTW analysis for the present was performed based on three sets of subordinate analyses: (1) life cycle analyses of eight base fuels; (2) life cycle analyses of electricity and hydrogen; and (3) analyses of the fuel economies of seven vehicle types. From the WTW analysis for the present the national average WTW GHG emissions of ICEV-gasoline ICEV-diesel ICEV-liquefied petroleum gas HEV PHEV BEV and FCEV were calculated as 225 233 201 159 133 109 and 55 g-CO2-eq./km respectively. For calculating the WTW GHG emissions in the future two policies regarding electricity production and three policies regarding hydrogen production were analysed. Three cases with varying the degrees of improvements in fuel economies were considered. Six future scenarios were constructed and each scenario represented the case in which each energy policy is enacted. In the reference scenario for compact car the WTW GHG emissions of ICEVs-gasoline HEV PHEV BEV-200 mile FCEV were analysed as 161 110 97 86 and 91 g-CO2-eq./km respectively. The differences between ICEV/HEV and BEV were predicted to decrease in the future mainly due to larger improvements of ICEV/HEV in fuel economies compared to that of BEV. The future life cycle GHG emissions of electricity and hydrogen were calculated according to energy policy. Both two policies regarding power generation were confirmed to increase the benefits of utilizing BEVs but current energy policy regarding hydrogen production were confirmed to decrease the benefits of utilizing FCEVs. Based on the comprehensive results of this study a framework was proposed to evaluate the impacts of an energy policy regarding electricity and hydrogen production on the benefits of using BEVs and FCEVs compared to using HEVs and ICEVs. This framework can also be utilized in other countries when they assess and establish their energy policies.
Heat Pumps for Space Heating and Domestic Hot Water Production in Residential Buildings, an Environmental Comparison in a Present and Future Scenario
Nov 2022
Publication
The hydrogen vector stands as a potentially important tool to achieve the decarbonization of the energy sector. It represents an option to store the periodic excesses of energy generation from renewable electrical sources to be used as it is as a substitute for fossil fuels in some applications or reconverted into electricity when needed. In this context hydrogen can significantly decarbonize the building sector as an alternative fuel for gas-driven devices. Along with hydrogen the European strategic vision indicates the electrification of heat among the main energy transition pathways. The potential environmental benefits achievable from renewable hydrogen in thermally-driven appliances and the electrification of residential heat through electric heat pumps were evaluated and compared in this work. The novelty of the research consists of a consequential comparative life cycle assessment (16 impact categories) evaluation for three buildings (old old retrofitted and new) supplied by three different appliances (condensing boiler gas absorption heat pump and electric heat pump) never investigated before. The energy transition was evaluated for 2020 and 2030 scenarios considering the impact of gaseous fuels (natural gas and European green hydrogen) and electricity based on the pathway of the European electricity grid (27 European member states plus the United Kingdom). The results allowed to compare the environmental profile in deterministic and stochastic approaches and confirm if the increase of renewables reduces the impact in the operational phase of the appliances. The results demonstrate that despite the increased renewable share the use phase remains the most significant for both temporal scenarios contributing to 91% of the environmental profile. Despite the higher footprint in 2020 compared to the electric heat pump (198–200 vs. 170–196 gCO2eq/kWhth) the gas absorption heat pump offered a lower environmental profile than the others in all the scenarios analyzed.
Life Cycle Assessment of Improved High Pressure Alkaline Electrolysis
Aug 2015
Publication
This paper investigates environmental impacts of high pressure alkaline water electrolysis systems. An advanced system with membranes on polymer basis is compared to a state-of-the-art system with asbestos membranes using a Life Cycle Assessment (LCA) approach. For the advanced system a new improved membrane technology has been investigated within the EU research project “ELYGRID”. Results indicate that most environmental impacts are caused by the electricity supply necessary for operation. During the construction phase cell stacks are the main contributor to environmental impacts. New improved membranes have relatively small contributions to impacts caused by cell construction within the advanced systems. As main outcome the systems comparison illustrates a better ecological performance of the new developed system
Ex Situ Thermo-catalytic Upgrading of Biomass Pyrolysis Vapors Using a Traveling Wave Microwave Reactor
Sep 2016
Publication
Microwave heating offers a number of advantages over conventional heating methods such as rapid and volumetric heating precise temperature control energy efficiency and lower temperature gradient. In this article we demonstrate the use of 2450 MHz microwave traveling wave reactor to heat the catalyst bed for thermo-catalytic upgrading of pyrolysis vapors. HZSM-5 catalyst was tested at three different temperatures (290 330 and 370°C) at a catalyst to biomass ratio of 2. Results were compared with conventional heating and induction heating method of catalyst bed. The yields of aromatic compounds and coke deposition were dependent on temperature and method of heating. Microwave heating yielded higher aromatic compounds and lower coke deposition. Microwave heating was also energy efficient compared to conventional reactors. The rate of catalyst deterioration was lower for catalyst heated in microwave system.
Assessment of an Innovative Way to Store Hydrogen in Vehicles
May 2019
Publication
The use of hydrogen as an alternative to fossil fuels for vehicle propulsion is already a reality. However due to its physical characteristics storage is still a challenge. There is an innovative way presented in this study to store hydrogen in conventional vehicles propelled by spark-ignition reciprocating engines and fuel cells using hydrogen as fuel; the storage of hydrogen will be at high pressure within small spheres randomly packed in a tank like the conventional tank of fuel used nowadays in current vehicles. Therefore the main purpose of the present study is to assess the performance of this storage system and compare it to others already applied by car manufacturers in their cars. In order to evaluate the performance of this storage system some parameters were taken into account: The energy stored by volume and stored by weight hydrogen leakage and compliance with current standards. This system is safer than conventional storage systems since hydrogen is stored inside small spheres containing small amounts of hydrogen. Besides its gravimetric energy density (GED) is threefold and the volumetric energy density (VED) is about half when compared with homologous values for conventional systems and both exceed the targets set by the U.S. Department of Energy. Regarding the leakage of hydrogen it complies with the European Standards provided a suitable choice of materials and dimensions is made.
Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review
Oct 2021
Publication
The European Commission have just stated that hydrogen would play a major role in the economic recovery of post-COVID-19 EU countries. Hydrogen is recognised as one of the key players in a fossil fuel-free world in decades to come. However commercially practiced pathways to hydrogen production todays are associated with a considerable amount of carbon emissions. The Paris Climate Change Agreement has set out plans for an international commitment to reduce carbon emissions within the forthcoming decades. A sustainable hydrogen future would only be achievable if hydrogen production is “designed” to capture such emissions. Today nearly 98% of global hydrogen production relies on the utilisation of fossil fuels. Among these steam methane reforming (SMR) boasts the biggest share of nearly 3 50% of the global generation. SMR processes correspond to a significant amount of carbon emissions at various points throughout the process. Despite the dark side of the SMR processes they are projected to play a major role in hydrogen production by the first half of this century. This that a sustainable yet clean short/medium-term hydrogen production is only possible by devising a plan to efficiently capture this co-produced carbon as stated in the latest International Energy Agency (IEA) reports. Here we have carried out an in-depth technical review of the processes employed in sorption-enhanced steam methane reforming (SE-SMR) an emerging technology in low-carbon SMR for combined carbon capture and hydrogen production. This paper aims to provide an in-depth review on two key challenging elements of SE-SMR i.e. the advancements in catalysts/adsorbents preparation and current approaches in process synthesis and optimisation including the employment of artificial intelligence in SE-SMR processes. To the best of the authors‟ knowledge there is a clear gap in the literature where the above areas have been scrutinised in a systematic and coherent fashion. The gap is even more pronounced in the application of AI in SE-SMR technologies. As a result this work aims to fill this gap within the scientific literature.
Integrating a Hydrogen Fuel Cell Electric Vehicle with Vehicle-to-grid Technology, Photovoltaic Power and a Residential Building
Feb 2018
Publication
This paper presents the results of a demonstration project including building-integrated photovoltaic (BIPV) solar panels a residential building and a hydrogen fuel cell electric vehicle (FCEV) for combined mobility and power generation aiming to achieve a net zero-energy residential building target. The experiment was conducted as part of the Car as Power Plant project at The Green Village in the Netherlands. The main objective was to assess the end-user’s potential of implementing FCEVs in vehicle-to-grid operation (FCEV2G) to act as a local energy source. FCEV2G field test performance with a Hyundai ix35 FCEV are presented. The car was adapted using a power output socket capable of delivering up to 10 kW direct current (DC) to the alternating current (AC) national grid when parked via an off-board (grid-tie) inverter. A Tank-To-AC-Grid efficiency (analogous to Tank- To-Wheel efficiency when driving) of 44% (measured on a Higher Heating Value basis) was obtained when the car was operating in vehicle-to-grid (V2G) mode at the maximum power output. By collecting and analysing real data on the FCEV power production in V2G mode and on BIPV production and household consumption two different operating modes for the FCEV offering balanced services to a residential microgrid were identified namely fixed power output and load following. Based on the data collected one-year simulations of a microgrid consisting of 10 all-electric dwellings and 5 cars with the different FCEV2G modes of operation were performed. Simulation results were evaluated on the factors of autonomy self-consumption of locally produced energy and net-energy consumption by implementing different energy indicators. The results show that utilizing an FCEV working in V2G mode can reduce the annual imported electricity from the grid by approximately 71% over one year and aiding the buildings in the microgrid to achieve a net zero-energy building target. Furthermore the simulation results show that utilizing the FCEV2G setup in both modes analysed could be economically beneficial for the end-user if hydrogen prices at the pump fall below 8.24 €/kg.
Fuel Cell Electric Vehicle as a Power Plant and SOFC as a Natural Gas Reformer: An Exergy Analysis of Different System Designs
Apr 2016
Publication
Delft University of Technology under its ‘‘Green Village” programme has an initiative to build a power plant (car parking lot) based on the fuel cells used in vehicles for motive power. It is a trigeneration system capable of producing electricity heat and hydrogen. It comprises three main zones: a hydrogen production zone a parking zone and a pump station zone. This study focuses mainly on the hydrogen production zone which assesses four different system designs in two different operation modes of the facility: Car as Power Plant (CaPP) mode corresponding to the open period of the facility which uses fuel cell electric vehicles (FCEVs) as energy and water producers while parked; and Pump mode corresponding to the closed period which compresses the hydrogen and pumps to the vehicle’s fuel tank. These system designs differ by the reforming technology: the existing catalytic reformer (CR) and a solid oxide fuel cell operating as reformer (SOFCR); and the option of integrating a carbon capture and storage (CCS). Results reveal that the SOFCR unit significantly reduces the exergy destruction resulting in an improvement of efficiency over 20% in SOFCR-based system designs compared to CR-based system designs in both operation modes. It also mitigates the reduction in system efficiency by integration of a CCS unit achieving a value of 2% whereas in CR-based systems is 7–8%. The SOFCR-based system running in Pump mode achieves a trigeneration efficiency of 60%.
Safety Standard for Hydrogen and Hydrogen Systems Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation
Jan 1997
Publication
The NASA Safety Standard which establishes a uniform process for hydrogen system design materials selection operation storage and transportation is presented. The guidelines include suggestions for safely storing handling and using hydrogen in gaseous (GH2) liquid (LH2) or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards facility design design of components materials compatibility detection and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws explosions blast effects and fragmentation; codes standards and NASA directives; and relief devices along with a list of tables and figures abbreviations a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone but at the same time reference data sources that can provide much more detail if required.
Modeling Photovoltaic-electrochemical Water Splitting Devices for the Production of Hydrogen Under Real Working Conditions
Jan 2022
Publication
Photoelectrochemical splitting of water is potentially a sustainable and affordable solution to produce hydrogen from sun light. Given the infancy stage of technology development it is important to compare the different experimental concepts and identify the most promising routes. The performance of photoelectrochemical devices is typically measured and reported under ideal irradiation conditions i.e. 1 sun. However real-life operating conditions are very different and are varying in time according to daily and seasonal cycles. In this work we present an equivalent circuit model for computing the steady state performance of photoelectrochemical cells. The model allows for a computationally efficient yet precise prediction of the system performance and a comparison of different devices working in real operating conditions. To this end five different photo-electrochemical devices are modeled using experimental results from literature. The calculated performance shows good agreement with experimental data of the different devices. Furthermore the model is extended to include the effect of illumination and tilt angle on the hydrogen production efficiency. The resulting model is used to compare the devices for different locations with high and low average illumination and different tilt angles. The results show that including real illumination data has a considerable impact on the efficiency of the PV-EC device. The yearly average solar-to-hydrogen efficiency is significantly lower than the ideal one. Moreover it is dependent on the tilt angle whose optimal value for European-like latitude is around 40. Notably we also show that the most performing device through the whole year might not necessarily be the one with highest sun-to-hydrogen efficiency for one-sun illumination.
Life Cycle Environmental and Cost Comparison of Current and Future Passenger Cars under Different Energy Scenarios
Apr 2020
Publication
In this analysis life cycle environmental burdens and total costs of ownership (TCO) of current (2017) and future (2040) passenger cars with different powertrain configurations are compared. For all vehicle configurations probability distributions are defined for all performance parameters. Using these a Monte Carlo based global sensitivity analysis is performed to determine the input parameters that contribute most to overall variability of results. To capture the systematic effects of the energy transition future electricity scenarios are deeply integrated into the ecoinvent life cycle assessment background database. With this integration not only the way how future electric vehicles are charged is captured but also how future vehicles and batteries are produced. If electricity has a life cycle carbon content similar to or better than a modern natural gas combined cycle powerplant full powertrain electrification makes sense from a climate point of view and in many cases also provides reductions in TCO. In general vehicles with smaller batteries and longer lifetime distances have the best cost and climate performance. If a very large driving range is required or clean electricity is not available hybrid powertrain and compressed natural gas vehicles are good options in terms of both costs and climate change impacts. Alternative powertrains containing large batteries or fuel cells are the most sensitive to changes in the future electricity system as their life cycles are more electricity intensive. The benefits of these alternative drivetrains are strongly linked to the success of the energy transition: the more the electricity sector is decarbonized the greater the benefit of electrifying passenger vehicles.
CFD Simulations of Large Scale LH2 Dispersion in Open Environment
Sep 2021
Publication
An inter-comparison among partners’ CFD simulations has been carried out within the EU-funded project PRESLHY to investigate the dispersion of the mixture cloud formed from large scale liquid hydrogen release. Rainout experiments performed by Health and Safety Executive (HSE) have been chosen for the work. From the HSE experimental series trial-11 was selected forsimulation due to its conditions where only liquid flow at the nozzle was achieved. During trial-11 liquid hydrogen is spilled horizontally 0.5 m above a concrete pad from a 5 barg tank pressure through a 12 mm (1/2 inch) nozzle. The dispersion takes place outdoors and thus it is imposed to variant wind conditions. Comparison of the CFD results with the measurements at several sensors is presented and useful conclusions are drawn.
No more items...