Institution of Gas Engineers & Managers
Decarbonizing Copper Production by Power-to-Hydrogen A Techno-Economic Analysis
Apr 2021
Publication
Electrifying energy-intensive processes is currently intensively explored to cut greenhouse gas (GHG) emissions through renewable electricity. Electrification is particularly challenging if fossil resources are not only used for energy supply but also as feedstock. Copper production is such an energy-intensive process consuming large quantities of fossil fuels both as reducing agent and as energy supply.
Here we explore the techno-economic potential of Power-to-Hydrogen to decarbonize copper production. To determine the minimal cost of an on-site retrofit with Power-to-Hydrogen technology we formulate and solve a mixed-integer linear program for the integrated system. Under current techno-economic parameters for Germany the resulting direct CO2 abatement cost is 201 EUR/t CO2-eq for Power-to-Hydrogen in copper production. On-site utilization of the electrolysis by-product oxygen has a substantial economic benefit. While the abatement cost vastly exceeds current European emission certificate prices a sensitivity analysis shows that projected future developments in Power-to-Hydrogen technologies can greatly reduce the direct CO2 abatement cost to 54 EUR/t CO2-eq. An analysis of the total GHG emissions shows that decarbonization through Power-to-Hydrogen reduces the global GHG emissions only if the emission factor of the electricity supply lies below 160 g CO2-eq/kWhel.
The results suggest that decarbonization of copper production by Power-to-Hydrogen could become economically and environmentally beneficial over the next decades due to cheaper and more efficient Power-to-Hydrogen technology rising GHG emission certificate prices and further decarbonization of the electricity supply.
Here we explore the techno-economic potential of Power-to-Hydrogen to decarbonize copper production. To determine the minimal cost of an on-site retrofit with Power-to-Hydrogen technology we formulate and solve a mixed-integer linear program for the integrated system. Under current techno-economic parameters for Germany the resulting direct CO2 abatement cost is 201 EUR/t CO2-eq for Power-to-Hydrogen in copper production. On-site utilization of the electrolysis by-product oxygen has a substantial economic benefit. While the abatement cost vastly exceeds current European emission certificate prices a sensitivity analysis shows that projected future developments in Power-to-Hydrogen technologies can greatly reduce the direct CO2 abatement cost to 54 EUR/t CO2-eq. An analysis of the total GHG emissions shows that decarbonization through Power-to-Hydrogen reduces the global GHG emissions only if the emission factor of the electricity supply lies below 160 g CO2-eq/kWhel.
The results suggest that decarbonization of copper production by Power-to-Hydrogen could become economically and environmentally beneficial over the next decades due to cheaper and more efficient Power-to-Hydrogen technology rising GHG emission certificate prices and further decarbonization of the electricity supply.
Explaining Hydrogen Energy Technology Acceptance: A Critical Review
Jan 2022
Publication
The use of hydrogen energy and the associated technologies is expected to increase in the coming years. The success of hydrogen energy technology (HET) is however dependent on public acceptance of the technology. Developing this new industry in a socially responsible way will require an understanding of the psychology factors that may facilitate or impede its public acceptance. This paper reviews 27 quantitative studies that have explored the relationship between psychological factors and HET acceptance. The findings from the review suggest that the perceived effects of the technology (i.e. the perceived benefits costs and risks) and the associated emotions are strong drivers of HET acceptance. This paper does though highlight some limitations with past research that make it difficult to make strong conclusions about the factors that influence HET acceptance. The review also reveals that few studies have investigated acceptance of different types of HET beyond a couple of applications. The paper ends with a discussion about directions for future research and highlights some practical implications for messaging and policy.
Optimal Hydrogen Production in a Wind-dominated Zero-emission Energy System
May 2021
Publication
The role of hydrogen in future energy systems is widely acknowledged: from fuel for difficult-to-decarbonize applications to feedstock for chemicals synthesis to energy storage for high penetration of undispatchable renewable electricity. While several literature studies investigate such energy systems the details of how electrolysers and renewable technologies optimally behave and interact remain an open question. With this work we study the interplay between (i) renewable electricity generation through wind and solar (ii) electricity storage in batteries (iii) electricity storage via Power-to-H2 and (iv) hydrogen commodity demand. We do so by designing a cost-optimal zero-emission energy system and use the Netherlands as a case study in a mixed integer linear model with hourly resolution for a time horizon of one year. To account for the significant role of wind we also provide an elaborate approach to model broad portfolios of wind turbines. The results show that if electrolyzers can operate flexibly batteries and power-to-H2-to-power are complementary with the latter using renewable power peaks and the former using lower renewable power outputs. If the operating modes of the power-to-H2-to-power system are limited - artificially or technically - the competitive advantage over batteries decreases. The preference of electrolyzers for power peaks also leads to an increase in renewable energy utilization for increased levels of operation flexibility highlighting the importance of capturing this feature both from a technical and a modeling perspective. When adding a commodity hydrogen demand the amount of hydrogen converted to electricity decreases hence decreasing its role as electricity storage medium.
Nickel-Based Electrocatalysts for Water Electrolysis
Feb 2022
Publication
Currently hydrogen production is based on the reforming process leading to the emission of pollutants; therefore a substitute production method is imminently required. Water electrolysis is an ideal alternative for large-scale hydrogen production as it does not produce any carbon-based pollutant byproducts. The production of green hydrogen from water electrolysis using intermittent sources (e.g. solar and eolic sources) would facilitate clean energy storage. However the electrocatalysts currently required for water electrolysis are noble metals making this potential option expensive and inaccessible for industrial applications. Therefore there is a need to develop electrocatalysts based on earth-abundant and low-cost metals. Nickel-based electrocatalysts are a fitting alternative because they are economically accessible. Extensive research has focused on developing nickel-based electrocatalysts for hydrogen and oxygen evolution. Theoretical and experimental work have addressed the elucidation of these electrochemical processes and the role of heteroatoms structure and morphology. Even though some works tend to be contradictory they have lit up the path for the development of efficient nickel-based electrocatalysts. For these reasons a review of recent progress is presented herein.
Artificial Neural Network Based Optimization of a Six-step Two-bed Pressure Swing Adsorption System for Hydrogen Purification
Apr 2021
Publication
The pressure swing adsorption (PSA) system is widely applied to separate and purify hydrogen from gaseous mixtures. The extended Langmuir equation fitted from the extended Langmuir-Freundlich isotherm has been used to predict the adsorption isothermal of hydrogen and methane on the zeolite 5A adsorbent bed. A six-step two-bed PSA model for hydrogen purification is developed and validated by comparing its simulation results with other works. The effects of the adsorption pressure the P/F ratio the adsorption step time and the pressure equalization time on the performance of the hydrogen purification system are studied. A four-step two-bed PSA model is taken into consideration and the six-step PSA system shows higher about 13% hydrogen recovery than the four-step PSA system. The performance of the vacuum pressure swing adsorption (VPSA) system is compared with that of the PSA system the VPSA system shows higher hydrogen purity than the PSA system. Based on the validated PSA model a dataset has been produced to train the artificial neural network (ANN) model. The effects of the number of neurons in the hidden layer and the number of samples used for training ANN model on the predicted performance of ANN model are investigated. Then the well-trained ANN model with 6 neurons in the hidden layer is applied to predict the performance of the PSA system for hydrogen purification. Multi-objective optimization of hydrogen purification system is performed based on the trained ANN model. The artificial neural network can be considered as a very effective method for predicting and optimizing the performance of the PSA system for hydrogen purification.
Absence of Spillover of Hydrogen Adsorbed on Small Palladium Clusters Anchored to Graphene Vacancies
May 2021
Publication
Experimental evidence exists for the enhancement of the hydrogen storage capacity of porous carbons when these materials are doped with metal nanoparticles. One of the most studied dopants is palladium. Dissociation of the hydrogen molecules and spillover of the H atoms towards the carbon substrate has been advocated as the reason for the enhancement of the storage capacity. We have investigated this mechanism by performing ab initio density functional molecular dynamics (AIMD) simulations of the deposition of molecular hydrogen on Pd6 clusters anchored on graphene vacancies. The clusters are initially near-saturated with atomic and molecular hydrogen. This condition would facilitate the occurrence of spillover since our energy calculations based on density functional theory indicate that migration of preadsorbed H atoms towards the graphene substrate becomes exothermic on Pd clusters with high hydrogen coverages. However AIMD simulations show that the H atoms prefer to intercalate and absorb within the Pd cluster rather than migrate to the carbon substrate. These results reveal that high activation barriers exist preventing the spillover of hydrogen from the anchored Pd clusters to the carbon substrate.
A Combined Chemical-Electrochemical Process to Capture CO2 and Produce Hydrogen and Electricity
Sep 2021
Publication
Several carbon sequestration technologies have been proposed to utilize carbon dioxide (CO2 ) to produce energy and chemical compounds. However feasible technologies have not been adopted due to the low efficiency conversion rate and high-energy requirements. Process intensification increases the process productivity and efficiency by combining chemical reactions and separation operations. In this work we present a model of a chemical-electrochemical cyclical process that can capture carbon dioxide as a bicarbonate salt. The proposed process also produces hydrogen and electrical energy. Carbon capture is enhanced by the reaction at the cathode that displaces the equilibrium into bicarbonate production. Literature data show that the cyclic process can produce stable operation for long times by preserving ionic balance using a suitable ionic membrane that regulates ionic flows between the two half-cells. Numerical simulations have validated the proof of concept. The proposed process could serve as a novel CO2 sequestration technology while producing electrical energy and hydrogen.
Hydrogen: Enabling A Zero-Emission Society
Nov 2021
Publication
Discover the colours of hydrogen debunk the myths around hydrogen and learn the facts and key moments in history for hydrogen as well as innovative technologies ground-breaking projects state-of-the-art research development and cooperation by members of Hydrogen Europe
Energy Management System for Hybrid PV/Wind/Battery/Fuel Cell in Microgrid-Based Hydrogen and Economical Hybrid Battery/Super Capacitor Energy Storage
Sep 2021
Publication
The present work addresses the modelling control and simulation of a microgrid integrated wind power system with Doubly Fed Induction Generator (DFIG) using a hybrid energy storage system. In order to improve the quality of the waveforms (voltages and currents) supplied to the grid instead of a two level-inverter the rotor of the DFIG is supplied using a three-level inverter. A new adaptive algorithm based on combined Direct Reactive Power Control (DRPC) and fuzzy logic controls techniques is applied to the proposed topology. In this work two topologies are proposed. In the first one the active power injected into the grid is smoothened by using an economical hybrid battery and supercapacitor energy storage system. However in the second one the excess wind energy is used to produce and store the hydrogen and then a solid oxide fuel cell system (SOFC) is utilized to regenerate electricity by using the stored hydrogen when there is not enough wind energy. To avoid overcharging deep discharging of batteries to mitigate fluctuations due to wind speed variations and to fulfil the requirement of the load profile a power management algorithm is implemented. This algorithm ensures smooth output power in the first topology and service continuity in the second. The modelling and simulation results are presented and analysed using Matlab/Simulin.
Public Acceptance for the Implementation of Hydrogen Self-refueling Stations
Sep 2021
Publication
The utilization of hydrogen energy is important for achieving a low-carbon society. Japan has set ambitious goals for hydrogen stations and fuel cell vehicles focusing on the introduction and dissemination of self-refuelling systems. This paper evaluates public trust in the fuel equipment and self-handling technology related to self-refuelling hydrogen stations and compares it with that for widespread gasoline stations. To this end the results of an online survey of 300 people with Japanese driver licenses are reported and analyzed. The results show that trust in the equipment and self-handling is more important for the user than trust in the fuel. In addition to introduce and disseminate new technology such as hydrogen stations users must be made aware of the risk of using the technology until it becomes as familiar as existing gasoline station technology.
An Investigation into the Volumetric Flow Rate Requirement of Hydrogen Transportation in Existing Natural Gas Pipelines and Its Safety Implications
Oct 2021
Publication
As an alternative to the construction of new infrastructure repurposing existing natural gas pipelines for hydrogen transportation has been identified as a low-cost strategy for substituting natural gas with hydrogen in the wake of the energy transition. In line with that a 342 km 3600 natural gas pipeline was used in this study to simulate some technical implications of delivering the same amount of energy with different blends of natural gas and hydrogen and with 100% hydrogen. Preliminary findings from the study confirmed that a three-fold increase in volumetric flow rate would be required of hydrogen to deliver an equivalent amount of energy as natural gas. The effects of flowing hydrogen at this rate in an existing natural gas pipeline on two flow parameters (the compressibility factor and the velocity gradient) which are crucial to the safety of the pipeline were investigated. The compressibility factor behaviour revealed the presence of a wide range of values as the proportions of hydrogen and natural gas in the blends changed signifying disparate flow behaviours and consequent varying flow challenges. The velocity profiles showed that hydrogen can be transported in natural gas pipelines via blending with natural gas by up to 40% of hydrogen in the blend without exceeding the erosional velocity limits of the pipeline. However when the proportion of hydrogen reached 60% the erosional velocity limit was reached at 290 km so that beyond this distance the pipeline would be subject to internal erosion. The use of compressor stations was shown to be effective in remedying this challenge. This study provides more insights into the volumetric and safety considerations of adopting existing natural gas pipelines for the transportation of hydrogen and blends of hydrogen and natural gas.
Fuel Cells and Hydrogen Observatory Standards Report
Sep 2021
Publication
Purpose: The Standards module of the FCHO presents a large number of standards relevant for the deployment of hydrogen and fuel cells. The standards are categorized in order to enhance ease of access and usability. The development of sector-relevant standards facilitates and enhances economies of scale interoperability comparability safety and many other issues. Scope: The database presents European and International standards. Standards from the following standards developing organizations are included: CEN CENELEC ISO IEC OIML. The report spans January 2019 – December 2019. Key Findings: The development of sector relevant standards on an international level continued to grow in 2019 on European level many standards are still in the process of being drafted. The recently established CEN-CLC JTC 6 (Hydrogen in energy systems) has not published standards yet but is working on drafting standards on for example Guarantees of Origin.
Planning, Optimisation and Evaluation of Small Power-to-Gas-to-Power Systems: Case Study of a German Dairy
May 2022
Publication
In the course of the energy transition distributed hybrid energy systems such as the combination of photovoltaic (PV) and battery storages is increasingly being used for economic and ecological reasons. However renewable electricity generation is highly volatile and storage capacity is usually limited. Nowadays a new storage component is emerging: the power-to-gas-to-power (PtGtP) technology which is able to store electricity in the form of hydrogen even over longer periods of time. Although this technology is technically well understood and developed there are hardly any evaluations and feasibility studies of its widespread integration into current distributed energy systems under realistic legal and economic market conditions. In order to be able to give such an assessment we develop a methodology and model that optimises the sizing and operation of a PtGtP system as part of a hybrid energy system under current German market conditions. The evaluation is based on a multi-criteria approach optimising for both costs and CO2 emissions. For this purpose a brute-force-based optimal design approach is used to determine optimal system sizes combined with the energy system simulation tool oemof.solph. In order to gain further insights into this technology and its future prospects a sensitivity analysis is carried out. The methodology is used to examine the case study of a German dairy and shows that PtGtP is not yet profitable but promising.
Environmental and Energy Life Cycle Analyses of Passenger Vehicle Systems Using Fossil Fuel-derived Hydrogen
Sep 2021
Publication
Hydrogen energy utilization is expected due to its environmental and energy efficiencies. However many issues remain to be solved in the social implementation of hydrogen energy through water electrolysis. This analyzes and compares the energy consumption and GHG emissions of fossil fuel-derived hydrogen and gasoline energy systems over their entire life cycle. The results demonstrate that for similar vehicle weights the hydrogen energy system consumes 1.8 MJ/km less energy and emits 0.15 kg-CO 2 eq./km fewer GHG emissions than those of the gasoline energy system. Hydrogen derived from fossil fuels may contribute to future energy systems due to its stable energy supply and economic efficiency. Lowering the power source carbon content also improved the environmental and energy efficiencies of hydrogen energy derived from fossil fuels.
Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution
Apr 2014
Publication
Replacement of precious catalyst with cost-effective alternatives would be significantly beneficial for hydrogen production via electrocatalytic hydrogen evolution reaction (HER). All candidates thus far are exclusively metallic catalysts which suffer inherent corrosion and oxidation susceptibility during acidic proton-exchange membrane electrolysis. Herein based on theoretical predictions we designed and synthesized nitrogen (N) and phosphorus (P) dual-doped graphene as a non-metallic electrocatalyst for sustainable and efficient hydrogen production. The N and Phetero-atoms could coactivate the adjacent C atom in the graphene matrix by affecting its valence orbital energy levels to induce a synergistically enhanced reactivity toward HER. As a result the dual-doped graphene showed higher electrocatalytic HER activity than single-doped ones and comparable performance to some of the traditional metallic catalysts.
A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges
Oct 2021
Publication
This paper provides a comprehensive review and critical analysis of the latest research results in addition to an overview of the future challenges and opportunities regarding the use of hydrogen to power internal combustion engines (ICEs). The experiences and opinions of various international research centers on the technical possibilities of using hydrogen as a fuel in ICE are summarized. The advantages and disadvantages of the use of hydrogen as a solution are described. Attention is drawn to the specific physical chemical and operational properties of hydrogen for ICEs. A critical review of hydrogen combustion concepts is provided drawing on previous research results and experiences described in a number of research papers. Much space is devoted to discussing the challenges and opportunities associated with port and direct hydrogen injection technology. A comparison of different fuel injection and ignition strategies and the benefits of using the synergies of selected solutions are presented. Pointing to the previous experiences of various research centers the hazards related to incorrect hydrogen combustion such as early pre‐ignition late pre‐ignition knocking combustion and backfire are described. Attention is focused on the fundamental importance of air ratio optimization from the point of view of combustion quality NOx emissions engine efficiency and performance. Exhaust gas scrubbing to meet future emission regulations for hydrogen powered internal combustion engines is another issue that is considered. The article also discusses the modifications required to adapt existing engines to run on hydrogen. Referring to still‐unsolved problems the reliability challenges faced by fuel injection systems in particular are presented. An analysis of more than 150 articles shows that hydrogen is a suitable alternative fuel for spark‐ignition engines. It will significantly improve their performance and greatly reduce emissions to a fraction of their current level. However its use also has some drawbacks the most significant of which are its high NOx emissions and low power output and problems in terms of the durability and reliability of hydrogen‐fueled engines.
HyDeploy Report: Material Effects of Introducing Hydrogen into the UK Gas Supply
Jun 2018
Publication
Introduction of hydrogen into the UK gas main has been reviewed in terms of how materials within the Keele G3 gas distribution network (G3 GDN) on the Keele University network may be affected by contact with natural gas (NG):hydrogen blends up to a limit of 20 % mol/mol hydrogen.<br/>This work has formed part of the supporting evidence for a 1 year hydrogen blending trial on the Keele G3 GDN coordinated by the HyDeploy consortium (formed of representatives of Cadent Northern Gas Networks ITM Power Progressive Energy HSL and Keele University).<br/>A wide range of materials were identified and assessed via a combination of literature review and practical test programmes. No significant changes to material properties in terms of accelerated material degradation or predicted efficiency of gas confinement were identified which would cause concern for the year-long trial at Keele.<br/>It can be concluded that materials on the Keele G3 GDN should be acceptable to provide a safe operating network the HyDeploy demonstrator project up to a level of 20 % mol/mol hydrogen.<br/>Check the supplements tab for the other documents in this report
Spin Pinning Effect to Reconstructed Oxyhydroxide Layer on Ferromagnetic Oxides for Enhanced Water Oxidation
Jun 2021
Publication
Producing hydrogen by water electrolysis suffers from the kinetic barriers in the oxygen evolution reaction (OER) that limits the overall efficiency. With spin-dependent kinetics in OER to manipulate the spin ordering of ferromagnetic OER catalysts (e.g. by magnetization) can reduce the kinetic barrier. However most active OER catalysts are not ferromagnetic which makes the spin manipulation challenging. In this work we report a strategy with spin pinning effect to make the spins in paramagnetic oxyhydroxides more aligned for higher intrinsic OER activity. The spin pinning effect is established in oxideFM/oxyhydroxide interface which is realized by a controlled surface reconstruction of ferromagnetic oxides. Under spin pinning simple magnetization further increases the spin alignment and thus the OER activity which validates the spin effect in rate-limiting OER step. The spin polarization in OER highly relies on oxyl radicals (O∙) created by 1st dehydrogenation to reduce the barrier for subsequent O-O coupling.
Comprehensive Study on Hydrogen Production via Propane Steam Reforming Inside a Reactor
Feb 2021
Publication
In the proton exchange membrane fuel cells the required hydrogen must be produced in some way. The power generators in the path of these fuel cells generally include a steam reactor that through other fuels provides the needed energy to produce hydrogen. This study investigates a steam reactor powered by propane fuel consisting of a shell and tube heat exchanger. The shell contains a catalyst that receives the mixture of propane and steam and the tubes embedded inside the reformer contain hot gases that provide a suitable substrate for the reaction. Velocity and temperature fields inside the reformer species concentration control and reaction rate are studied. The conversion of reactants and yield of products are investigated according to the reaction rate. The results show that the hydrogen production yield can vary from 77.5 % to 92.2 %. The reaction rate can be controlled by the velocity and temperatures of the hot gases. However for the T=900 K full propane consumption is achieved at the reformer outlet.
A Review of Heavy-Duty Vehicle Powertrain Technologies Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles
Jun 2021
Publication
Greenhouse gas emissions from the freight transportation sector are a significant contributor to climate change pollution and negative health impacts because of the common use of heavy-duty diesel vehicles (HDVs). Governments around the world are working to transition away from diesel HDVs and to electric HDVs to reduce emissions. Battery electric HDVs and hydrogen fuel cell HDVs are two available alternatives to diesel engines. Each diesel engine HDV battery-electric HDV and hydrogen fuel cell HDV powertrain has its own advantages and disadvantages. This work provides a comprehensive review to examine the working mechanism performance metrics and recent developments of the aforementioned HDV powertrain technologies. A detailed comparison between the three powertrain technologies highlighting the advantages and disadvantages of each is also presented along with future perspectives of the HDV sector. Overall diesel engine in HDVs will remain an important technology in the short-term future due to the existing infrastructure and lower costs despite their high emissions while battery-electric HDV technology and hydrogen fuel cell HDV technology will be slowly developed to eliminate their barriers including costs infrastructure and performance limitations to penetrate the HDV market.
No more items...