Publications
Structural Assessment of Independent Type-C Liquid Hydrogen Fuel Tank
Apr 2025
Publication
As environmental pollution has become a global concern regulations on carbon emissions from maritime activities are being implemented and interest in using renewable energy as fuel for ships is growing. Hydrogen which does not release carbon dioxide and has a high energy density can potentially replace fossil fuels as a renewable energy source. Notably storage of hydrogen in a liquid state is considered the most efficient. In this study a 0.7 m3 liquid hydrogen fuel tank suitable for small vessels was designed and a structural analysis was conducted to assess its structural integrity. The extremely low liquefaction temperature of hydrogen at −253 ◦C and the need for spatial efficiency in liquid hydrogen fuel tanks make vacuum insulation essential to minimize the heat transfer due to convection. A composite insulation system of sprayed-on foam insulation (SOFI) and multilayer insulation (MLI) was applied in the vacuum annular space between the inner and outer shells and a tube-shaped supporter made of a G-11 cryogenic (CR) material with low thermal conductivity and high strength was employed. The material selected for the inner and outer layers of the tank was STS 316L which exhibits sufficient ductility and strength at cryogenic temperatures and has low sensitivity to hydrogen embrittlement. The insulation performance was quantitatively assessed by calculating the boil-off rate (BOR) of the designed fuel tank. Structural integrity evaluations were conducted for nine load cases using heat transfer and structural analyses in accordance with the IGF code.
A Holistic Study on Solar Photovoltaic-based Cleaner Hydrogen Production Facilities: Economic and Performance Assessments
Oct 2025
Publication
This study presents a holistic technoeconomic analysis of solar photovoltaic-based green hydrogen production facilities assessing hydrogen output potential and cost structures under various facility configurations. Four system cases are defined based on the inclusion of new photovoltaic (PV) panels and hydrogen storage (HS) subsystems considering Southern Ontario solar data and a 30-year operational lifespan. Through a system level modeling we incorporate the initial costs of sub-systems (PV panels power conditioning devices electrolyser battery pack and hydrogen storage) operating and maintenance expenses and replacement costs to determine the levelized cost of hydrogen (LCOH). The results of this study indicate that including hydrogen storage significantly impacts optimal electrolyser sizing creating a production bottleneck around 400 kW for a 1 MWp PV system (yielding approximately 590 tons H2 over a period of 30 years) whereas systems without storage achieve higher yields (about 1080 tons of H2) with larger electrolysers (approximately 620 kW). The lifetime cost analysis reveals that operating and maintenance cost constitutes the dominant expenditure (68–76 %). Including hydrogen storage increases the minimum LCOH and sharply penalizes electrolyser oversizing relative to storage capacity. For a 1 MWp base system minimum LCOH ranged from approximately $3.50/kg (existing PV no HS) to $6/kg (existing PV with HS) $11–12/kg (new PV no HS) and $22–25/kg (new PV with HS). Leveraging existing PV infrastructure drastically reduces LCOH. Furthermore significant economies of scale are observed with increasing PV facility capacity potentially lowering LCOH below $2/kg at the 100 MWp scale. The study therefore underscores that there is a critical interplay between system configuration component sizing operating and maintenance management and facility scale in determining the economic viability of solar hydrogen production.
Analysis of the Role of Temperature and Current Density in Hydrogen Production via Water Electrolysis: A Systematic Literature Review
Aug 2025
Publication
The production of hydrogen through water electrolysis has emerged as a promising alternative to decarbonizing the energy sector especially when integrated with renewable energy sources. Among the key operational parameters that affect electrolysis performance temperature and current density play a critical role in determining the energy efficiency hydrogen yield and durability of the system. The study presents a Systematic Literature Review (SLR) that includes peer-reviewed publications from 2018 to 2025 focusing on the effects of temperature and current density across a variety of electrolysis technologies including alkaline (AEL) proton exchange membrane (PEMEL) and solid oxide electrolysis cells (SOEC). A total of seven high-quality studies were selected following the PRISMA 2020 framework. The results show that high temperatures improve electrochemical kinetics and reduce excess potential especially in PEM and SOEC systems but can also accelerate component degradation. Higher current densities increase hydrogen production rates but lead to lower Faradaic efficiency and increased material stress. The optimal operating range was identified for each type of electrolysis with PEMEL performing best at 60–80 ◦C and 500–1000 mA/cm2 and SOEC at >750 ◦C. In addition system-level studies emphasize the importance of integrating hydrogen production with flexible generation and storage infrastructure. The review highlights several research gaps including the need for dynamic modeling multi-parameter control strategies and techno-economic assessments. These findings provide a basic understanding for optimizing hydrogen electrolysis systems in low-carbon energy architectures.
Hydrogen Production via Water Ultrasonication: A Review
Aug 2025
Publication
This review thoroughly examines the potential of water ultrasonication (US) for producing hydrogen. First it discusses ultrasonication reactor designs and techniques for measuring ultrasonication power and optimizing energy. Then it explores the results of hydrogen production via ultrasonication experiments focusing on the impact of processing factors such as ultrasonication frequency acoustic intensity dissolved gases pH temperature and static pressure on the process. Additionally it examines advanced ultrasonication techniques such as US/photolysis US/catalysis and US/photocatalysis emphasizing how these techniques could increase hydrogen production. Lastly to progress the efficacy and scalability of hydrogen generation through ultrasonication the review identifies existing challenges proposes solutions and suggests areas for future research.
Challenges and Potential Future Trends on High Entropy Alloy for Solid Hydrogen Storage: Systematic Review
Aug 2025
Publication
This work consists of a systematic review showing recent progress and trends in the development of high entropy alloys (HEA) for solid-state hydrogen storage. The information was compiled from academic papers from the following databases: Google Scholar ScienceDirect Springer SCOPUS American Chemical Society MDPI; as well as the patent banks United States Patent and Trademark Office Google Patent and lens.org. This article discusses key aspects such as HEA design (elements used thermodynamic and geometric characteristics thermodynamic simulations and synthesis methods); HEA evaluation focusing on crystallinity thermal behavior and hydrogen storage; HEA-related trends including MgH2 modification the advancement of lightweight alloys and the use of machine learning.
The Hydrogen Trade-Off: Optimizing Decarbonization Pathways for Urban Integrated Energy Systems
Aug 2025
Publication
Rapid socio-economic development has made energy application and environmental issues increasingly prominent. Hydrogen energy clean eco-friendly and highly synergistic with renewable energy has become a global research focus. This study using the EnergyPLAN model that includes the electricity transportation and industrial sectors takes Jinan City as the research object and explores how hydrogen penetration changes affect the decarbonization path of the urban integrated energy system under four scenarios. It evaluates the four hydrogen scenarios with the entropy weight method and technique placing them in an order of preference according to their similarity to the ideal solution considering comprehensive indicators like cost carbon emissions and sustainability. Results show the China Hydrogen Alliance potential scenario has better CO2 emission reduction potential and unit emission reduction cost reducing them by 7.98% and 29.39% respectively. In a comprehensive evaluation it ranks first with a score of 0.5961 meaning it is closest to the ideal scenario when cost environmental and sustainability indicators are comprehensively considered. The Climate Response Pioneer scenario follows with 0.4039 indicating that higher hydrogen penetration in terminal energy is not necessarily the most ideal solution. Instead appropriate hydrogen penetration scenarios should be selected based on the actual situation of different energy systems.
Energy Equivalent Consumption and Optimization Strategies for Hybrid Hydrogen Fuel Systems in Multirotor Drones
Jan 2025
Publication
This paper presents an improved Equivalent Consumption Minimization Strategy (ECMS) designed to optimize energy management for the hybrid hydrogen fuel power setups in multirotor drones. The proposed strategy aims to reduce hydrogen consumption and enhance the performance of the system consisting of Proton Exchange Membrane Fuel Cells (PEMFCs) and lithium batteries. Multirotor drones experience rapid power fluctuations due to their agile maneuvering but PEMFCs are unable to meet these demands swiftly due to their inherent limitations. To address this lithium batteries supplement peak power requirements and absorb excess energy on the DC bus. However this can lead to energy loss if the batteries are charged when not required. Our improved ECMS considers these inefficiencies and adjusts energy distribution to reduce hydrogen consumption and optimize the system’s performance. The proposed strategy effectively maintains the lithium batteries’ State of Charge (SOC) reduces hydrogen usage and enhances overall system efficiency when compared to traditional ECMS approaches.
Strategic Dynamics in Hydrogen Deployment: A Game-theoretical Review of Competition, Cooperation, and Coopetition
Sep 2025
Publication
As hydrogen products emerge as a promising energy alternative in multiple sectors low carbon hydrogen supply chains require concerted efforts among a diverse array of stakeholders. Within an evolving energy transition landscape stakeholders’ competition and cooperation play a critical role in expediting the deployment of the hydrogen economy. In this review different strategies referred to as Hydrogen Competition Cooperation and Coopetition (H2CCC) dynamics are analyzed from the lenses of game theory. The study employs hybrid literature review methodology integrating both bibliometric and structured review approaches. The study reveals that competition and cooperation represent a contrasting but interconnected dynamics that drive the energy transition. Coopetition models are less common. Furthermore it is observed that Integrated Energy Systems are mainly used in cooperative and coopetitive approaches while H2 technologies and Hydrogen Supply Chains are more explored in competitive approaches. Industrial and mobility sectors are present in H2CCC dynamics with technological players more present than institutional entities. Maps definitions gaps and perspectives are developed. These insights may be valuable for policymakers industry stakeholders modelers and researchers. There remains a need for further empirical H2CCC case studies and applications of pure coopetitive games.
A Systematic Review on Hydrogen Production via Hydrochar-based Gasification
Aug 2025
Publication
Hydrogen (H2) yields from various gasification and hydrothermal processes demonstrate significant variability depending on feedstock catalysts and process parameters. This systematic review explores hydrogen production through hydrochar-based gasification technologies focusing on the unique properties of hydrochar derived from biomass. Known for its ability to enhance syngas production especially hydrogen hydrochar’s porous structure high surface area and active catalytic sites significantly improve syngas quality and hydrogen yield. Studies show that supercritical water gasification (SCWG) of almond shells with hydrochars yielded up to 11.63 mmol/g while catalytic subcritical and SCWG of waste tires reached 19.7 mmol/g. Hydrothermal carbonization (HTC) coupled with gasification yields as high as 76.7 g H2/kg biochar for sewage sludge hydrochar with processes like anaerobic digestion and HTC producing 1278 mL/g from hemp hurd hydrochar. Key aspects such as the catalytic influence of hydrochar the role of additives and co-catalysts and optimization of gasification parameters including temperature pressure and equivalence ratios are explored. The review also delves into hydrochar preparation advancements such as alkali and alkaline earth metals (AAEMs) incorporation and highlights hydrochar’s role in reducing tar formation enhancing H2/CO ratios and stabilizing syngas heating value.
Long-term Integrated Assessment of the Water, GHG, and Cost Impacts of a Transition to Low-carbon Hydrogen Production: A Case Study for Canada
Jan 2025
Publication
Hydrogen-based greenhouse gas (GHG) mitigation strategies can have multi-sector benefits and are considered necessary to reach net-zero emissions by 2050. Assessments of hydrogen scale-up have not included long-term implications for water resources. This work aims to fill this knowledge gap through a long-term integrated assessment of the water consumption GHG emissions and costs of conventional and low-carbon hydrogen scenarios to the year 2050. A framework was developed and 120 long-term scenarios were assessed for the large-scale deployment of low-carbon hydrogen in a hydrogen-intensive economy. This study considered 15 different natural gas- and electrolysis-based hydrogen production technologies. A case study for Alberta a western Canadian province and a fossil fuel-intensive region was carried out. The results obtained project a cumulative mitigation of 9 to 162 million tonnes of carbon emissions between 2026 and 2050 through the implementation of low-carbon hydrogen production scenarios compared to the business-as-usual scenario. However cumulative water consumption increases considerably with the large-scale deployment of low-carbon hydrogen reaching 8 to 3815 million cubic meters. The adoption of green hydrogen technologies increases water consumption significantly. Depending on the jurisdiction of analysis and its water bodies this increase may or may not be a long-term issue. Low-carbon hydrogen scenarios start becoming cost-effective as the carbon price rises to $170/tCO2e. The developed integrated framework can be used globally to assess long-term hydrogen implementation with appropriate adjustments in data.
Underground Hydrogen Storage: Transforming Subsurface Science into Sustainable Energy Solutions
Feb 2025
Publication
As the global economy moves toward net-zero carbon emissions large-scale energy storage becomes essential to tackle the seasonal nature of renewable sources. Underground hydrogen storage (UHS) offers a feasible solution by allowing surplus renewable energy to be transformed into hydrogen and stored in deep geological formations such as aquifers salt caverns or depleted reservoirs making it available for use on demand. This study thoroughly evaluates UHS concepts procedures and challenges. This paper analyzes the most recent breakthroughs in UHS technology and identifies special conditions needed for its successful application including site selection guidelines technical and geological factors and the significance of storage characteristics. The integrity of wells and caprock which is important for safe and efficient storage can be affected by the operating dynamics of the hydrogen cycle notably the fluctuations in pressure and stress within storage formations. To evaluate its potential for broader adoption we also examined economic elements such as cost-effectiveness and the technical practicality of large-scale storage. We also reviewed current UHS efforts and identified key knowledge gaps primarily in the areas of hydrogen–rock interactions geochemistry gas migration control microbial activities and geomechanical stability. Resolving these technological challenges regulatory frameworks and environmental sustainability are essential to UHS’s long-term and extensive integration into the energy industry. This article provides a roadmap for UHS research and development emphasizing the need for further research to fully realize the technology’s promise as a pillar of the hydrogen economy
How Company History and Hydrogen Type Shape Public Trust and Acceptability: A Reputation Management Perspective
Aug 2025
Publication
Hydrogen is gaining interest as a clean energy source from both governments and fossil fuel companies. For hydrogen projects to succeed securing public acceptability is crucial with trust in the implementing actors playing a central role. Drawing from reputation management and attribution theory we experimentally evaluated whether people’s perceptions of energy companies wanting to start producing hydrogen for sustainability reasons differ based on two features of hydrogen production. Specifically we examined the influence of (1) the type of hydrogen (blue versus green) and (2) the energy company’s history in energy production (fossil fuels versus renewables) on perceptions about the companies’ reputation management efforts —that is the belief that companies adopt hydrogen primarily to improve their public image— as well as on levels of trust both overall and specifically in terms of integrity and competence. We further explored whether perceived reputation management explains the effects on trust and whether these factors also shape public acceptability of hydrogen production itself. Results indicated that people perceived the company with a history of working with fossil fuels as trying to improve its reputation more than one associated with renewables and trusted it less. Furthermore perceived reputation management explained the lower (general and integrity-based) trust people had in companies with a past in fossil fuels. For public acceptability of hydrogen the company’s history was not relevant with green hydrogen being more acceptable than blue regardless of which company produced it. We discuss these findings in relation to the literature on public perceptions of hydrogen.
Techno-Economic Analysis on Implementing Hydrogen in a Combined Heat and Power Plant in Luxembourg to Reduce Carbon Emissions
Apr 2025
Publication
In 2021 the global electricity and heat sector recorded the highest increase in carbon dioxide (CO2) emissions in comparison with the previous year highlighting the ongoing challenges in reducing emissions within the sector. Therefore combined heat and power (CHP) plants running on renewable fuels can play an important role in the energy transition by decarbonising a process increasing the efficiency and capacity factor. Since 2003 Luxembourgish CHP plants have been transitioning from natural gas to biomass mainly wood pellets. However even though wood pellets are a renewable alternative the market volatility in 2022 highlighted the vulnerability of a system reliant solely on one type of fuel. This study assesses the feasibility of using hydrogen to decarbonise a cogeneration plant powered by a natural gas-fuelled internal combustion engine. Although the technology to use hydrogen as a fuel for such systems already exists a technical and economic analysis of implementing a hydrogen-ready plant is still lacking. Our results show that from a technical perspective retrofitting an existing power plant to operate with hydrogen is feasible either by adapting or replacing the engine to accommodate hydrogen blends from 0 up to 100%. The costs of making the CHP plant hydrogen-ready vary depending on the scenario ranging from a 20% increase for retrofitting to a 60% increase for engine replacement in the best-case scenarios. However these values remain highly variable due to uncertainties associated with the ongoing technology development. From an economic standpoint as of 2024 running the plant on hydrogen remains more expensive due to significant initial investments and higher fuel costs. Nevertheless projections indicate that rising climate concerns CO2 taxes geopolitical factors and the development of the hydrogen framework in the region—through projects such as MosaHYc and HY4Link— could accelerate the competitiveness of hydrogen making it a more viable alternative to fossil-based solutions in the near future.
Recent Advances in Hydrogen Production, Storage and Fuel Cell Technologies with an Emphasis on Inventions, Innovations and Commercialization
Nov 2023
Publication
The future is bright for hydrogen as a clean mobile energy source to replace petroleum products. This paper examines new and emerging technologies for hydrogen production storage and conversion and highlights recent commercialization efforts to realize its potential. Also the paper presents selected notable patents issued within the last few years. There is no shortage of inventions and innovations in hydrogen technologies in both academia and industry. While metal hydrides and functionalized carbon-based materials have improved tremendously as hydrogen storage materials over the years storing gaseous hydrogen in underground salt caverns has also become feasible in many commercial projects. Production of “blue hydrogen” is rising as a method of producing hydrogen in large quantities economically. Although electric/battery powered vehicles are dominating the green transport today innovative hydrogen fuel cell technologies are knocking at the door because of their lower refueling time compared to EV charging time. However the highest impact of hydrogen technologies in trans portation might be seen in the aviation industry. Hydrogen is expected to play a key role and provides hope in transforming aviation into a zero-carbon emission transportation over the next few decades.
Exergo-Economic Analysis of Solar-Driven Ammonia Production System for a Sustainable Energy Carrier
Apr 2025
Publication
The industrial sector’s movement toward decarbonization is regarded as essential for governments. This paper assesses a system that uses only solar energy to synthesize liquid hydrogen and ammonia as energy carriers. Photovoltaic modules deliver electrical power while parabolic dish collectors are responsible for directing thermal energy to the solid oxide electrolyzer for hydrogen production which then mixes with nitrogen to produce ammonia after a number of compression stages. To investigate the proposed system comprehensive thermodynamic and exergo-economic studies are performed using an engineering equation solver and ASPEN PLUS software.
Levelized Cost of Hydrogen from Offtakers Standpoint: An Overlooked Perspective Via Case Studies in Warrnambool, Australia
Aug 2025
Publication
Green hydrogen is a promising energy vector for replacing fossil fuels in hard-to-abate sectors but its cost hinders widespread deployment. This research develops an exact MILP model to optimize the design of integrated green energy projects minimizing the total annual cost between different power configurations. The model is applied to a case study in regional Victoria Australia which supports a fleet of nine fuel cell electric buses requiring 1160 kg of hydrogen per week. The optimal system includes a 453 kW electrolyzer 212 kg of storage in compressed hydrogen vessels 704 kW of solar PV and 635 kW of wind power firmed with grid electricity. The LCOH is 14.8 A$/kg which is higher than other estimates in the literature for Australia. This is arguably due to the idle capacities resulting from intermittent hydrogen demand. Producing additional hydrogen with surplus or low-priced electricity could reduce LCOH to 12.4 A$/kg. Sensitivity analyzes confirm the robustness of the system to variations in key parameter costs resource availability and estimated energy supply and demand.
Sustainable Hydrogen Production with Negative Carbon Emission Through Thermochemical Conversion of Biogas/Biomethane
Apr 2025
Publication
Biogas (primarily biomethane) as a carbon-neutral renewable energy source holds great potential to replace fossil fuels for sustainable hydrogen production. Conventional biogas reforming systems adopt strategies similar to industrial natural gas reforming posing challenges such as high temperatures high energy consumption and high system complexity. In this study we propose a novel multi-product sequential separation-enhanced reforming method for biogas-derived hydrogen production which achieves high H2 yield and CO2 capture under mid-temperature conditions. The effects of reaction temperature steam-to-methane ratio and CO2/CH4 molar ratio on key performance metrics including biomethane conversion and hydrogen production are investigated. At a moderate reforming temperature of 425 ◦C and pressure of 0.1 MPa the conversion rate of CH4 in biogas reaches 97.1% the high-purity hydrogen production attains 2.15 mol-H2/mol-feed and the hydrogen yield is 90.1%. Additionally the first-law energy conversion efficiency from biogas to hydrogen reaches 65.6% which is 11 percentage points higher than that of conventional biogas reforming methods. The yield of captured CO2 reaches 1.88 kg-CO2/m3 -feed effectively achieving near-complete recovery of green CO2 from biogas. The mild reaction conditions allow for a flexible integration with industrial waste heat or a wide selection of other renewable energy sources (e.g. solar heat) facilitating distributed and carbonnegative hydrogen production.
Optimization of Hydrogen Combustion in Diesel Engines: A CFD-Based Approach for Efficient Hydrogen Mixing and Emission Reduction
Apr 2025
Publication
Hydrogen internal combustion engines (ICEs) have gained significant attention as a promising solution for achieving zero-carbon emissions in the transportation sector. This study investigates the conversion of a 2 L Diesel ICE into a lean hydrogen-powered ICE focusing on key challenges such as hydrogen mixing pre-ignition combustion flame development and NOx emissions. The novelty of this research lies in the specific modifications made to optimize engine performance and reduce emissions while utilizing the existing Diesel engine infrastructure. The study identifies several important design changes for the successful conversion of a Diesel engine to hydrogen including the following: Intake port design: transitioning from a swirl to a tumble design to enhance hydrogen mixing; Injection and spark plug configuration: using a lateral injection system combined with a central spark plug to improve combustion; Piston design: employing a lenticular piston shape with adaptable depth to enhance mixing; Mitigating Coanda effect: preventing hydrogen issues at the spark plug using deflectors or caps; and Head design: maintaining a flat head design for efficient mixing while ensuring adequate cooling to avoid pre-ignition. These findings highlight the importance of specific modifications for converting Diesel engines to hydrogen providing a solid foundation for further research in hydrogen-powered ICEs which could contribute to carbon emission reduction and a more sustainable energy transition.
Optimizing a Hydrogen and Methane Blending System Through Design and Simulation
Apr 2025
Publication
Hydrogen–methane gas mixtures are increasingly recognized as a viable path toward achieving carbon neutrality leveraging existing natural gas infrastructure while reducing greenhouse gas emissions. This study investigates a novel static mixing device designed for blending hydrogen and methane employing both experimental tests and threedimensional computational fluid dynamics (CFD) simulations. Hydrogen was introduced into a methane flow via direct injection with experimental mixtures ranging from 5% to 18% hydrogen. The mixture quality was assessed using a specialized gas chromatograph and the results were compared against simulated data to evaluate the mixer’s performance and the model’s accuracy. The system demonstrated effective blending maintaining uniform hydrogen concentrations across the outlet with minimal variations. Experimental and simulated results showed strong agreement with an average accuracy error below 2% validating the reliability of the CFD model. Smaller nozzles (0.4 mm) achieved greater mixing uniformity while larger nozzles (0.6 mm) facilitated higher hydrogen throughput indicating trade-offs between mixing precision and flow capacity. The mixing device proved compatible with existing pipeline infrastructure offering a scalable solution for hydrogen integration into natural gas networks. These findings underscore the mixer’s potential as a practical component in advancing the hydrogen economy and achieving sustainable energy transitions.
Research on Energy Management Strategy Based on Adaptive Equivalent Fuel Consumption Minimum for Hydrogen Hybrid Energy Systems
Mar 2025
Publication
Hydrogen has attracted widespread attention due to its zero emissions and high energy density and hydrogen-fueled power systems are gradually emerging. This paper combines the advantages of the high conversion efficiency of fuel cells and strong engine power to propose a hydrogen hybrid energy system architecture based on a mixture of fuel cells and engines in order to improve the conversion efficiency of the energy system and reduce its fuel consumption rate. Firstly according to the topology of the hydrogen hybrid energy system and the circuit model of its core components a state-space model of the hydrogen hybrid energy system is established using the Kirchhoff node current principle laying the foundation for the control and management of hydrogen hybrid energy systems. Then based on the state-space model of the hydrogen hybrid system and Pontryagin’s minimum principle a hydrogen hybrid system management strategy based on adaptive equivalent fuel consumption minimum strategy (A-ECMS) is proposed. Finally a hydrogen hybrid power system model is established using the AVL Cruise simulation platform and a control strategy is developed using matlab 2021b/Simulink to analyze the output power and fuel economy of the hybrid energy system. The results show that compared with the equivalent fuel consumption minimum strategy (ECMS) the overall fuel economy of A-ECMS could improve by 10%. Meanwhile the fuel consumption of the hydrogen hybrid energy system is less than half of that of traditional engines.
From Policy to Practice: Upper Bound Cost Estimates of Europe's Green Hydrogen Ambitions
Jul 2025
Publication
As the European countries strive to meet their ambitious climate goals renewable hydrogen has emerged to aid in decarbonizing energy-intensive sectors and support the overall energy transition. To ensure that hydrogen production aligns with these goals the European Commission has introduced criteria for additionality temporal correlation and geographical correlation. These criteria are designed to ensure that hydrogen production from renewable sources supports the growth of renewable energy. This study assesses the impact of these criteria on green hydrogen production focusing on production costs and technology impacts. The European energy market is simulated up to 2048 using stochastic programming applying these requirements exclusively to green hydrogen production without the phased-in compliance period outlined in the EU regulations. The findings show that meeting the criteria will increase expected system costs by €82 billion from 2024 to 2048 largely due to the rapid shift from fossil fuels to renewable energy. The additionality requirement which mandates the use of new renewable energy installations for electrolysis proves to be the most expensive but also the most effective in accelerating renewable energy adoption.
Hydrogen Production from Hydrogen Sulfide via a Uniquely Designed Electrolysis Process: Experimental Investigation
Oct 2025
Publication
The present work aims to develop a uniquely designed experimental test rig for hydrogen (H2) production from hydrogen sulfide (H2S) and perform performance tests. The experimental activity focuses on the FeCl3 hybrid process for H2S cracking followed by H2S absorption sulfur purification and electrolysis for efficient H2 production. Hydrogen production is studied using KOH and FeCl3 electrolytes under varying temperatures between 20-80 ◦C. An electrochemical impedance spectroscopy (EIS) is employed to characterize the electrochemical cell under potentiostatic (0.5-2.0 V) and galvanostatic (0-0.5 mA) modes to analyze the system’s electrochemical response. The study results showed that hydrogen production increased by over 426 % from 20 ◦C to 80 ◦C. EIS analysis under potentiostatic mode showed Nyquist semicircle diameter reduced as the applied voltage increased from 0.5 V to 1.5 V and phase angle shifted from -5.59◦ to -1.27◦ confirming enhanced conductivity. Under galvanostatic mode the impedance dropped from ~25 Ω to ~21 Ω as current increased demonstrating improved kinetics for efficient H2 production.
Global Trends in Innovation Across Hydrogen Production, Supply and Demand Chains
Aug 2025
Publication
The global shift away from fossil fuels necessitates swift and transformative action underscoring the need for timely and accurate insights into emerging low-carbon technologies. This review provides a comprehensive and systematic analysis of innovation trends within the hydrogen technology ecosystem. Drawing on global patent data as a key indicator of industrial innovation the study offers a forward-looking assessment of technological developments spanning the entire hydrogen value chain like production storage distribution transformation and end-use applications across various sectors. By evaluating patent activity over time and across regions the review highlights significant innovation trends identifies leading industrial contributors and maps the evolving global competitive landscape. Particular attention is given to regional dynamics and sector-specific breakthroughs offering a nuanced perspective for policymakers investors and stakeholders engaged in energy transition planning. As hydrogen becomes increasingly central to decarbonization strategies worldwide this study serves as a critical intelligence resource illuminating current trajectories and signalling potential technological inflection points in the ongoing energy transformation.
Advanced Online Fuel Cell Stack Water Management Strategies for Fuel Cell Stacks in Vehicle Powertrain Control
Sep 2025
Publication
Effective water management is crucial for the optimal performance and durability of proton exchange membrane fuel cells (PEMFCs) in automotive applications. Conventional techniques like electrochemical impedance spectroscopy (EIS) face challenges in accurately measuring high-frequency resistance (HFR) impedance during dynamic vehicle operations. This study proposes a novel stack water management stability control and vehicle energy control method to address these limitations. Simulation and experimental results demonstrate improved system and powertrain efficiency extended stack lifespan and optimized hydrogen consumption. These findings contribute to advancing robust water management strategies supporting the transition toward sustainable zero-emission fuel cell vehicles.
Review of Offshore Superconducting Wind Power Generation for Hydrogen Production
Apr 2025
Publication
Green hydrogen plays a vital role in facilitating the transition to sustainable energy systems with stable and high-capacity offshore wind resources serving as an ideal candidate for large-scale green hydrogen production. However as the capacity of offshore wind turbines continues to grow the increasing size and weight of these systems pose significant challenges for installation and deployment. This study investigates the application of high-temperature superconducting (HTS) materials in the generator and the power conducting cables as a promising solution to these challenges. Compared to conventional wind turbines HTS wind turbines result in significant reductions in weight and size while simultaneously enhancing power generation and transmission efficiency. This paper conducts a comprehensive review of mainstream electrolysis-based hydrogen production technologies and advanced hydrogen storage methods. The main contribution of this research is the development of an innovative conceptual framework for a superconducting offshore windto-hydrogen energy system where a small amount of liquid hydrogen is used to provide a deep-cooling environment for the HTS wind turbine and the remaining liquid hydrogen is used for the synthesis of ammonia as a final product. Through functional analysis this study demonstrates its potential for enabling large-scale offshore hydrogen production and storage. Additionally this paper discusses key challenges associated with real-world implementation including optimizing the stability of superconducting equipment and ensuring component coordination. The findings offer crucial insights for advancing the offshore green hydrogen sector showing that HTS technology can significantly enhance the energy efficiency of offshore wind-to-hydrogen systems. This research provides strong technical support for achieving carbon neutrality and fostering sustainable development in the offshore renewable energy sector.
Lifecycle CO2 Analysis for Urban Emission Reduction of Hydrogen-fuelled and Battery Electric Buses in the European Union Current and Future Energetic Scenarios
Apr 2025
Publication
As the need to reduce Greenhouse Gas (GHG) emissions and dependence on fossil fuels grows new vehicle concepts are emerging as sustainable solutions for urban mobility. Beyond evaluating tailpipe emissions indirect emissions associated with energy and hydrogen production as vehicle manufacturing must be accounted offering a holistic Lifecycle Assessment (LCA) perspective. This study compares Battery Electric Vehicles (BEVs) Fuel Cell Vehicles (FCVs) Hydrogen Internal Combustion Engine Vehicles (H2ICEVs) and hybrid H2ICEVs analyzing energy efficiency and GHG emissions in urban environment across the European Union. Future scenarios (2030 2050) are examined as well with evolving energy mixes and manufacturing impacts. Findings show BEVs as the most efficient configuration with the lowest GHG emissions in 2024 while FCVs become the best option in future scenarios due to greener hydrogen production and improved manufacturing. This study emphasizes the need for tailored strategies to achieve sustainable urban mobility providing insights for policymakers and stakeholders.
Techno-Economic Optimal Operation of an On-Site Hydrogen Refueling Station
Oct 2025
Publication
An on-site hydrogen refueling station (HRS) directly supplies hydrogen to vehicles using an on-site hydrogen production method such as electrolysis. For the efficient operation of an on-site HRS it is essential to optimize the entire process from hydrogen production to supply. However most existing approaches focus on the efficiency of hydrogen production. This study proposes an optimal operation model for a renewable-energy-integrated on-site HRS which considers the degradation of electrolyzers and operation of compressors. The proposed model maximizes profit by considering the hydrogen revenue electricity costs and energy storage system degradation. It estimates hydrogen production using a voltage equation models compressor power using a shaft power equation and considers electrolyzer degradation using an empirical voltage model. The effectiveness of the proposed model is evaluated through simulation. Comparison with a conventional control strategy shows an increase of over 56% in the operating revenue.
Hydrogen Production from Biowaste: A Systematic Review of Conversion Technologies, Environmental Impacts, and Future Perspectives
Aug 2025
Publication
The escalating climate crisis and unsustainable waste management practices necessitate integrated approaches that simultaneously address energy security and environmental degradation. Hydrogen with its high energy density and zero-carbon combustion is a key vector for decarbonization; however conventional production methods are fossildependent and carbon-intensive. This systematic review explores biowaste-to-hydrogen (WtH) technologies as dual-purpose solutions converting organic waste to clean hydrogen while reducing greenhouse gas emissions and landfill reliance. A comprehensive analysis of different conversion pathways including thermochemical (gasification pyrolysis hydrothermal and partial oxidation (POX)) biochemical (dark fermentation photofermentation and sequential fermentation) and electrochemical methods (MECs) is presented assessing their hydrogen yields feedstock compatibilities environmental impacts and technological readiness. Systematic literature review methods were employed using databases such as Scopus and Web of Science with strict inclusion criteria focused on recent peerreviewed studies. This review highlights hydrothermal gasification and dark fermentation as particularly promising for wet biowaste streams like food waste. Comparative environmental analyses reveal that bio-based hydrogen pathways offer significantly lower greenhouse gas emissions energy use and pollutant outputs than conventional methods. Future research directions emphasize process integration catalyst development and lifecycle assessment. The findings aim to inform technology selection policymaking and strategic investment in circular low-carbon hydrogen production.
The Growing Demand for Hydrogen: Current Trends, Sectoral Analysis, and Future Projections
Mar 2025
Publication
Hydrogen has emerged as a pivotal energy carrier in the global transition toward sustainable energy systems. This study analyses current trends sectoral dynamics and future demand projections for hydrogen employing a multi-methodological framework that integrates Compound Annual Growth Rate (CAGR) extrapolation scenario-based modeling and regional comparative analysis. By leveraging historical growth patterns of geothermal bioenergy and wind energy sectors in the European Union (EU) three hydrogen demand scenarios—Conservative (3.25 % CAGR) Moderate (8.33 % CAGR) and Optimistic (15.42 % CAGR)—are projected to 2050. Results indicate that global hydrogen demand could range from 18.8 to 381.3 million tonnes per year by 2050 depending on technological advancements policy frameworks and infrastructure investments. The transportation and industrial sectors are identified as critical drivers while regional disparities highlight leadership from the EU the U.S. and Asia-Pacific nations. The study underscores the necessity of coordinated policy cost reduction in green hydrogen production and infrastructure scalability to realize hydrogen’s potential in decarbonizing energy systems.
Coupling High-temperature Electrolysis and Industrial Waste Heat for On-site Green Hydrogen Production: Energy, Economic and Environmental Analysis
Apr 2025
Publication
High-temperature electrolysis offers a solution for industry decarbonisation by high-efficiency hydrogen production. This study presents a system based on Solid Oxide Electrolysis Cells (SOEC) fed by photovoltaic and waste heat recovery for hydrogen blending with natural gas in industrial burners. The aim of this work is to assess techno-economic feasibility of the proposed configuration investigating hydrogen blending limits Levelized Cost of Hydrogen (LCOH) and decarbonisation cost. LCOH values below 6 €/kgH2 cannot be achieved at current SOEC costs. The system can be applied without significant burner modifications since maximum hydrogen volumetric fractions are less than 20 %. Higher efficiency and emission reduction potential in comparison to alkaline electrolysers can be achieved but they are offset by higher LCOH and carbon abatement costs. Forthcoming reduction in SOEC costs can improve the cost-effectiveness and high natural gas prices experienced during the energy crisis make the decarbonisation cost competitive with the emission trading system.
Hotspots in Hydrogen Research and Developments: Current Status, Pathways, Challenges, and Vision to 2050
Jul 2025
Publication
The climate crisis and global warming have created an urgent need for the scalable adoption of affordable and clean energy sources to achieve net-zero carbon emissions by 2050. Decarbonization of global industries is critical to achieving the targets of the Paris Agreement and the United Nations Sustainable Development Goals (especially Goals 7 and 13). Green hydrogen is becoming a key solution in the transition to renewable energy and the decarbonization with low-carbon energy options. This review presents an overview of the status and trends of hydrogen production storage transportation and application as well as key research areas with a forward-looking perspective to 2050. It explores the key challenges such as limited infrastructure high production costs and heavy energy demands. The study also identifies the drivers and barriers influencing hydrogen adoption across utility-scale electricity generation heating and niche markets. Key actions of governments in these pillar areas are necessary to accelerate hydrogen deployment through strategic investments and a policy framework to reduce technological costs and drive innovation. Transformative innovation in power generation transportation industrial processes and infrastructure will be essential to achieving deep decarbonization. In addition progress in digitalization automation data-driven decision-making recycling incentives and circular economies are essential to a social transformation and a global transition toward sustainability. Emerging hydrogen markets are also playing an increasingly dominant role in economic and human development particularly in low- and middle-income countries as the world works to transition to the use of renewable hydrogen.
Solar-heat-assisted Hydrogen Production using Solid Oxide Electrolysis Cells in Japan
Aug 2025
Publication
Japan and other industrialized countries rely on the import of green hydrogen (H2 ) as they lack the resources to meet their own demand. In contrast countries such as Australia have the potential to produce hydrogen and its derivatives using wind and solar energy. Solar energy can be harnessed to produce electricity using photovoltaic systems or to generate thermal energy by concentrating solar irradiation. Thus thermal and electrical energy can be used in a solid oxide electrolysis process for low-cost hydrogen production. The operation of a solid oxide electrolysis cell (SOEC) stack integrated with solar energy is experimentally investigated and further analyzed using a validated simulation model. Furthermore a techno-economic assessment is conducted to estimate the hydrogen production costs including the expenses associated with liquefaction and transportation from Australia to Japan. High conversion efficiencies and low-cost SOECs are projected to result in production costs below 4 USD/kg.
Pipeline Regulation for Hydrogen: Choosing Between Paths and Networks
Oct 2025
Publication
The reliance on hydrogen as part of the transition towards a low-carbon economy will require developing dedicated pipeline infrastructure. This deployment will be shaped by regulatory frameworks governing investment and access conditions ultimately structuring how the commodity is traded. The paper assesses the market design for hydrogen infrastructure assuming the application of unbundling requirements. For this purpose it develops a general economic framework for regulating pipeline infrastructure focusing on asset specificity market power and access rules. The paper assesses the scope of application of infrastructure regulation which can be set to individual pipelines or to entire networks. When treated as entire networks the infrastructure can provide flexibility to enhance market liquidity. However this requires establishing network monopolies which rely on central planning and reduce the overall dynamic efficiency of the sector. The paper further compares the regulation applied to US and EU natural gas pipeline infrastructure. Based on the different challenges faced by the EU hydrogen sector including absence of wholesale concentration and large infrastructure needs the paper draws lessons for a regulatory framework establishing the main building blocks of a hydrogen target model. The paper recommends a review of the current EU regulatory framework in the Hydrogen and Decarbonised Gas Package to enable i) the application of regulation to individual pipelines rather than entire networks; ii) the use of negotiated third-party access light-touch regulation and possibly marketbased coordination mechanisms for the access to the infrastructure and iii) a more significant role for long-term capacity contracts to underpin infrastructure investments.
A GAN‑and‑Transformer‑Assisted Scheduling Approach for Hydrogen‑Based Multi‑Energy Microgrid
Sep 2025
Publication
Against the backdrop of ever‑increasing energy demand and growing awareness of en‑ vironmental protection the research and optimization of hydrogen‑related multi‑energy systems have become a key and hot issue due to their zero‑carbon and clean characteristics. In the scheduling of such multi‑energy systems a typical problem is how to describe and deal with the uncertainties of multiple types of energy. Scenario‑based methods and ro‑ bust optimization methods are the two most widely used methods. The first one combines probability to describe uncertainties with typical scenarios and the second one essentially selects the worst scenario in the uncertainty set to characterize uncertainties. The selection of these scenarios is essentially a trade‑off between the economy and robustness of the so‑ lution. In this paper to achieve a better balance between economy and robustness while avoiding the complex min‑max structure in robust optimization we leverage artificial in‑ telligence (AI) technology to generate enough scenarios from which economic scenarios and feasible scenarios are screened out. While applying a simple single‑layer framework of scenario‑based methods it also achieves both economy and robustness. Specifically first a Transformer architecture is used to predict uncertainty realizations. Then a Gener‑ ative Adversarial Network (GAN) is employed to generate enough uncertainty scenarios satisfying the actual operation. Finally based on the forecast data the economic scenar‑ ios and feasible scenarios are sequentially screened out from the large number of gener‑ ated scenarios and a balance between economy and robustness is maintained. On this ba‑ sis a multi‑energy collaborative optimization method is proposed for a hydrogen‑based multi‑energy microgrid with consideration of the coupling relationships between energy sources. The effectiveness of this method has been fully verified through numerical exper‑ iments. Data show that on the premise of ensuring scheduling feasibility the economic cost of the proposed method is 0.67% higher than that of the method considering only eco‑ nomic scenarios. It not only has a certain degree of robustness but also possesses good economic performance.
Modelling Green Hydrogen Storage in Salt Caverns: Implications of Future Storage Demands on Cavern Operation
Mar 2025
Publication
The transition to a renewable energy system based mainly on an electricity and hydrogen infrastructure places new requirements and constraints on the infrastructure systems involved. This study investigates the impact of future hydrogen storage demands on a representative salt cavern considering two cases: a regional focus on Lower Saxony with high wind energy penetration and a national perspective on Germany with a PV-dominated mix of installed capacities. A numerical model is developed for in-depth assessment of the thermodynamics inside the cavern. Hydrogen storage profiles generated from 2045 renewable electricity projections for Germany reveal substantial storage demands. Key parameters such as hydrogen production and storage share turnover rate and storage interval length vary significantly between the two cases. In the Lower Saxony case high wind shares lead to increased turnover rates and reduced required working gas volumes but also result in steeper pressure and temperature gradients inside the cavern and necessitate larger compressor systems. In contrast the PV-dominated Germany case experiences lower internal cavern stresses but requires more flexible surface components to manage frequent fluctuations in hydrogen flow. These findings underscore the complex interplay between regional power mixes storage facility design and operational requirements.
Mitigating Urban Pollution: A Comparative Life Cycle Assessment of Hydrogen, Electric, and Diesel Buses for Urban Transportation
Mar 2025
Publication
Urban transportation systems particularly public buses contribute significantly to global pollution creating an urgent need for sustainable solutions. Alternative fuel buses and other disruptive technological advancements in this field are essential to resolve these problems. The absence of studies on the life cycle assessment (LCA) of hydrogen-fueled buses along with comparative analyses of alternative-fueled buses makes this research particularly timely. This study develops a comprehensive LCA framework to measure the economic and environmental impact of using different technologies (i.e. hydrogen-fueled electric and diesel buses). Different fuel production methods were examined considering operational factors such as energy consumption across various routes. This study contributes to enhancing the LCA methodology for public bus operations by using machine learning algorithms to cluster routes and identify optimal demonstration routes for analysis. The results highlight the impact of fuel production methods for hydrogen-fueled buses in the significant pollutant reductions (e.g. CO2 and NO ) despite their high life cycle costs. The proposed framework is validated with real data from Halifax Canada and expanded to assess public bus networks in cities with varying routes topology and population levels. The paper’s analyses consider future technological advances to lower costs aligning them with electric buses over time. This study helps policymakers choose the best public bus alternatives to improve the economic environmental and social sustainability of urban transportation.
Enhancing Renewable Energy Integration via Robust Multi-Energy Dispatch: A Wind–PV–Hydrogen Storage Case Study with Spatiotemporal Uncertainty Quantification
Aug 2025
Publication
This paper addresses the challenge of renewable energy curtailment which stems from the inherent uncertainty and volatility of wind and photovoltaic (PV) generation by developing a robust model predictive control (RMPC)-based scheduling strategy for an integrated wind–PV–hydrogen storage multi-energy flow system. By building a “wind– PV–hydrogen storage–fuel cell” collaborative system the time and space complementarity of wind and PV is used to stabilize fluctuations and the electrolyzer–hydrogen production– gas storage tank–fuel cell chain is used to absorb surplus power. A multi-time scale state-space model (SSM) including power balance equation equipment constraints and opportunity constraints is established. The RMPC scheduling framework is designed taking the wind–PV joint probability scene generated by Copula and improved K-means and SSM state variables as inputs and the improved genetic algorithm is used to solve the min–max robust optimization problem to achieve closed-loop control. Validation using real-world data from Xinjiang demonstrates a 57.83% reduction in grid power fluctuations under extreme conditions and a 58.41% decrease in renewable curtailment rates markedly enhancing the local system’s capacity to utilize wind and solar energy.
Computational Thermo-mechanical Modelling and Design-space Exploration of Cryogenic Hydrogen Tanks for Aviation
Aug 2025
Publication
A tool for parametric finite element modeling and analysis of LH2 tanks for aviation is developed. Passively insulated cryogenic composite sandwich pressure vessels are investigated as they conjugate simplicity effectiveness and lightweight design for aeronautical applications. Several parametric analyses are performed with the aim of gaining both general and case-specific understanding of how particular design choices may impact the tank mechanical and thermal performance. Differently from most of previous studies multiple design choices including tank walls thicknesses constraints for airframe integration strategies as well as the presence position and integration of refuelling cutouts and anti-sloshing bulkheads are considered. The thermo-mechanical analyses are performed considering first a simple reference configuration with the aim of evaluating possible directions for performance enhancement. Results indicate how different design features affect the gravimetric and thermal efficiency of the tank without compromising structural integrity if the walls thicknesses are suitably sized. The effects of different constraints and geometric discontinuities which reflect specific fuselage integration choices must be carefully assessed as they reduce safety margins. Ultimately a vessel model including features necessary for safe operation is presented as it serves as a baseline for further optimization.
Efficient and Stable N-type Sulfide Overall Water Splitting with Separated Hydrogen Production
Aug 2025
Publication
N-type sulfide semiconductors are promising photocatalysts due to their broad visible-light absorption facile synthesis and chemical diversity. However photocorrosion and limited electron transport in one-step excitation and solid-state Z-scheme systems hinder efficient overall water splitting. Liquidphase Z-schemes offer a viable alternative but sluggish mediator kinetics and interfacial side reactions impede their construction. Here we report a stable Z-scheme system integrating n-type CdS and BiVO₄ with a [Fe(CN)₆]³⁻/[Fe(CN)₆]⁴⁻ mediator achieving 10.2% apparent quantum yield at 450 nm with stoichiometric H₂/O₂ evolution. High activity reflects synergies between Pt@CrOx and Co3O4 cocatalysts on CdS and cobalt-directed facet asymmetry in BiVO₄ resulting in matched kinetics for hydrogen and oxygen evolution in a reversible mediator solution. Stability is dramatically improved through coating CdS and BiVO4 with different oxides to inhibit Fe4[Fe(CN)6]3 precipitation and deactivation by a hitherto unrecognized mechanism. Separate hydrogen and oxygen production is also demonstrated in a twocompartment reactor under visible light and ambient conditions. This work unlocks the long-sought potential of n-type sulfides for efficient durable and safe solar-driven hydrogen production.
Hydrogen Production Technologies from Water Decomposition: A Review
Mar 2025
Publication
Hydrogen is a promising energy carrier in the future which can help improve air quality and enhance energy security. Hydrogen production mainly relies on fossil fuels (natural gas and coal). Hydrogen production from fossil fuels can result in the significant emissions of carbon dioxide aggravating the global greenhouse effect. At the same time fossil fuels are non-renewable and the use of fossil fuels to produce hydrogen further exacerbates the crisis of fossil fuel shortages. Fortunately water as a carbon-free and hydrogen-rich renewable resource offers one of the best solutions to replace hydrogen production from fossil fuels through its decomposition. Furthermore hydrogen production by decomposition of water is vital for the realization of the sustainable development. In this paper we review the current mainstream technologies (electrolysis pyrolysis and photolysis) for hydrogen production by decomposing water. The principles processes advantages and disadvantages and the latest progresses of these technologies are also discussed. At last this paper provides a summary and outlook on water decomposition for hydrogen production and thinks that the yield energy efficiency and cost of hydrogen production from water decomposition are largely dependent on the development of new materials and the improvement of existing materials. Moreover utilizing renewable energy to decompose water for hydrogen production offers the possibility of achieving the hydrogen economy.
Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology from Fossil Fuels to a Renewable and Sustainable Hydrogen Economy
Aug 2021
Publication
Hydrogen plays a key role in many industrial applications and is currently seen as one of the most promising energy vectors. Many efforts are being made to produce hydrogen with zero CO 2 footprint via water electrolysis powered by renewable energies. Nevertheless the use of fossil fuels is essentialin the short term. The conventional coal gasification and steam methane reforming processes for hydrogen production are undesirable due to the huge CO2 emissions. A cleaner technologybased on natural gas that has received special attention in recent years is methane pyrolysis. The thermal decomposition of methane gives rise to hydrogen and solid carbon and thus the release of greenhouse gases is prevented. Therefore methane pyrolysis is a CO2-free technology that can serve as a bridge from fossil fuels torenewable energies.
A Techno-Economic Assessment of Steam Methane Reforming and Alkaline Water Electrolysis for Hydrogen Production
Mar 2025
Publication
This study explores hydrogen’s potential as a sustainable energy source for Brunei given the nation’s reliance on fossil fuels and associated environmental concerns. Specifically it evaluates two hydrogen production technologies; steam methane reforming (SMR) and alkaline water electrolysis (AWE) through a techno-economic framework that assesses life cycle cost (LCC) efficiency scalability and environmental impact. SMR the most widely used technique is cost-effective but carbon-intensive producing considerable carbon dioxide emissions unless combined with carbon capture to yield “blue hydrogen”. On the other hand AWE particularly when powered by renewable energy offers a cleaner alternative despite challenges in efficiency and cost. The assessment revealed that AWE has a significantly higher LCC than SMR making AWE the more economically viable hydrogen production method in the long term. A sensitivity analysis was also conducted to determine the main cost factors affecting the LCC providing insights into the long term viability of each technology from an operational and financial standpoint. AWE’s economic viability is mostly driven by the high electricity and feedstock costs while SMR relies heavily on feedstock costs. However Environmental Impact Analysis (EIA) indicates that AWE produces significantly higher carbon dioxide emissions than SMR which emits approximately 9100 metric tons of carbon dioxide annually. Nevertheless findings suggest that AWE remains the more sustainable option due to its higher LCC costs and compatibility with renewable energy especially in regions with access to low-cost renewable electricity
Multi-Time-Scale Layered Energy Management Strategy for Integrated Production, Storage, and Supply Hydrogen Refueling Stations Based on Flexible Hydrogen Load Characteristics of Ports
Mar 2025
Publication
Aiming at resolving the problem of stable and efficient operation of integrated green hydrogen production storage and supply hydrogen refueling stations at different time scales this paper proposes a multi-time-scale hierarchical energy management strategy for integrated green hydrogen production storage and supply hydrogen refueling station (HFS). The proposed energy management strategy is divided into two layers. The upper layer uses the hourly time scale to optimize the operating power of HFS equipment with the goal of minimizing the typical daily operating cost and proposes a parameter adaptive particle swarm optimization (PSA-PSO) solution algorithm that introduces Gaussian disturbance and adaptively adjusts the learning factor inertia weight and disturbance step size of the algorithm. Compared with traditional optimization algorithms it can effectively improve the ability to search for the optimal solution. The lower layer uses the minute-level time scale to suppress the randomness of renewable energy power generation and hydrogen load consumption in the operation of HFS. A solution algorithm based on stochastic model predictive control (SMPC) is proposed. The Latin hypercube sampling (LHS) and simultaneous backward reduction methods are used to generate and reduce scenarios to obtain a set of high-probability random variable scenarios and bring them into the MPC to suppress the disturbance of random variables on the system operation. Finally real operation data of a HFS in southern China are used for example analysis. The results show that the proposed energy management strategy has a good control effect in different typical scenarios.
Natural Gas–Hydrogen Blends to Power: Equipment Adaptation and Experimental Study
Apr 2025
Publication
An experimental study was devised to assess the technical environmental and economic impact of incorporating hydrogen into natural gas. The experimental tests were conducted on a GUNT ET 792 demonstration unit characterized by operating on a gas cycle in a twin-shaft configuration. The equipment was adapted to accommodate natural gas and mixtures of natural gas with hydrogen in volumetric fractions of 5% 10% and 20%. The tests carried out ensured the viability of using these mixtures from a safety perspective. On the other hand it was possible to evaluate the main differences in the use of these fuel gases in terms of the temperatures and pressures that characterize the main points of the gas cycle fuel injection pressures air/fuel ratios excess air power output overall cycle efficiencies NOX and CO2 emissions and operational cost.
Hydrogen-Containing Fuel Influence on Compression-Ignition Engine Part Wear and Emissions of Toxic Substances
Mar 2025
Publication
Issues related to the components of modern fuel equipment wear processes have been discussed. The fuel injector is one of the key elements of the fuel equipment system because it is a device responsible for distributing and spraying hydrogen-containing fuel in the engine combustion chamber. It is mounted in the modern engine head directly in the combustion chamber. If the fuel injector is faulty it affects the operating parameters and in particular the ecological parameters of the modern engine such as the emission of toxic substances into the environment. Additionally a hydrogen reactor has been installed in the Common Rail (CR) system the task of which is to produce hydrogen. As a result of the temperature prevailing in the operating environment of the injection equipment various types of wear occur inside the system including hydrogen degradation. The types of degradation processes of precision pairs of modern fuel injectors have been analyzed and classified. Microscopic tests were performed to analyze the contamination in the fuel system and to compare the ecological parameters of the engine operating on efficient and worn fuel injectors. The emission of nitrogen oxides carbon monoxide and soot has been analyzed as a key ecological parameter. It has been established that the loss of precision of pairs of elements of a damaged fuel injector significantly affects the size of the injection doses of the fuel mixture containing hydrogen.
Ways to Assess Hydrogen Production via Life Cycle Analysis
Apr 2025
Publication
As global energy demand increases and reliance on fossil fuels becomes unsustainable hydrogen presents a promising clean energy alternative due to its high energy density and potential for significant CO2 emission reductions. However current hydrogen production methods largely depend on fossil fuels contributing to considerable CO2 emissions and underscoring the need to transition to renewable energy sources and improved production technologies. Life Cycle Analysis (LCA) is essential for evaluating and optimizing hydrogen production by assessing environmental impacts such as Global Warming Potential (GWP) energy consumption toxicity and water usage. The key findings indicate that energy sources and feedstocks heavily influence the environmental impacts of hydrogen production. Hydrogen production from renewable energy sources particularly wind solar and hydropower demonstrates significantly lower environmental impacts than grid electricity and fossil fuel-based methods. Conversely hydrogen production from grid electricity primarily derived from fossil fuels shows a high GWP. Furthermore challenges related to data accuracy economic analysis integration and measuring mixed gases are discussed. Future research should focus on improving data accuracy assessing the impact of technological advancements and exploring new hydrogen production methods. Harmonizing assessment methodologies across different production pathways and standardizing functional units such as “1 kg of hydrogen produced “ are critical for enabling transparent and consistent sustainability evaluations. Techniques such as stochastic modelling and Monte Carlo simulations can improve uncertainty management and enhance the reliability of LCA results.
Research on Hydrogen Induced Cracking Behavior and Service Performance of Metal Pipeline Material
Aug 2025
Publication
This study systematically investigates the fracture behavior of X80 pipeline steel welded joints under hydrogen-induced cracking (HIC) conditions through combined experimental characterization and numerical simulation. Microstructural observations and Vickers hardness testing reveal significant heterogeneity in the base metal heat-affected zone (HAZ) and weld metal (WM) resulting in spatially non-uniform mechanical properties. A userdefined subroutine (USDFLD) was employed to assign continuous material property distributions within the finite element model accurately capturing mechanical heterogeneity and its influence on crack-tip mechanical fields and crack propagation paths. Results show that welding thermal cycles induce pronounced microstructural evolution significantly altering hardness and strength distributions which in turn affect the evolution of crack-tip stress and plastic strain fields. Crack propagation preferentially occurs toward regions of higher yield strength where limited plasticity leads to intensified cracktip stress concentration accelerating crack growth and extending propagation paths. Moreover crack growth is accompanied by local unloading near the crack tip reducing peak stress and strain compared to the initial stationary crack tip. The stress and strain field reconfiguration are primarily localized near the crack tip while the far-field mechanical response remains largely stable.
Research on Pricing Strategy of Shared Electro-thermal-hydrogen Energy Storage in Integrated Energy Multi-microgrid Based on Hybrid Game
May 2025
Publication
Against the backdrop of high investment costs in distributed energy storage systems this paper proposes a bi-level energy management model based on shared multi-type energy storage to enhance system economics and resource utilization efficiency. First an electricity–heat–hydrogen coupled shared storage architecture is developed incorporating hydrogen-blended gas turbines gas boilers and hydrogen loads to achieve deep coupling between the power grid and natural gas network. Then a bi-level game model is formulated with the upper-level objective of minimizing the storage operator’s cost and the lower-level objective of minimizing the cost of the integrated energy microgrid (IEM) aggregator. A cooperative game mechanism is introduced within the microgrids to support peer-to-peer energy trading. Nash bargaining theory is applied to determine benefit allocation and dynamic pricing strategies among microgrids. The model is solved using a genetic algorithm (GA) and the alternating direction method of multipliers (ADMM). Simulation results validate the proposed strategy’s effectiveness and feasibility in reducing system costs improving overall benefits and achieving fair benefit allocation.
Sustainable Fuel Supply for Very Small Island Transportation: The Potential of Hybrid Renewable Energy and Green Hydrogen
Mar 2025
Publication
The transition to a low-carbon future necessitates innovative approaches to renewable energy deployment particularly in the marine environment where abundant resources remain underutilized. This paper explores the potential of hybrid renewable energy systems and green hydrogen production to address the energy challenges faced by Very Small Islands (VSIs). These islands heavily rely on imported fossil fuels making them vulnerable to global price fluctuations and contributing to economic instability and environmental degradation. Offshore floating platforms present a transformative opportunity by harnessing marine renewable resources integrating wind solar and wave energy to maximize energy production while minimizing land use conflicts. Green hydrogen produced through the electrolysis of seawater powered by these renewable sources offers a sustainable alternative for decarbonizing transportation particularly in the maritime sector. The study aims to assess the feasibility of converting small conventional passenger vessels to hydrogen propulsion and evaluate the technical economic and environmental impacts of deploying offshore platforms for hydrogen production. By examining these aspects this research contributes to the broader discourse on sustainable energy solutions for island communities and provides actionable insights into implementing renewable hydrogen-based maritime transport.
Advances in Bio-Hydrogen Production: A Critical Review of Pyrolysis Gas Reforming
Apr 2025
Publication
Supplying the growing energy demand of emerging economies by utilizing available biogenic streams will be a key challenge in the coming years. Hydrogen is a promising alternative energy carrier to support the transition of the energy sector and other industries. In recent years the use of biomass as a renewable energy source for bio-based hydrogen production has gained significant attention due to its potential to reduce environmental impact. Among the various thermochemical processes biomass pyrolysis can be used to produce hydrogen though the current use of this process is limited. Reforming the volatile fraction of biomass pyrolysis products has been only marginally explored differently from gasification; the reforming of pyrogasses can then be seen as a viable method to enhance hydrogen yield. This review explores the key factors influencing hydrogen yield including operating conditions and the role of catalysts. It is noteworthy that most of the studies evaluated in this review are in the laboratory and pilot scales and the focus of this study is on the slow pyrolysis process in the first stage. Findings indicate that hydrogen production can be significantly improved with the proper choice of catalysts with metal-based and nonmetal-based catalysts among the most effective. The outcomes of this review highlight the key effect of increasing the reforming temperature and steam-to-biomass ratio to enhance hydrogen production.
No more items...