Publications
Techno-economic Comparative Study of Grid-connected PV/Reformer/FC Hybrid Systems with Distinct Solar Tracking Systems
Feb 2023
Publication
The purpose of this study is to analyze and compare the techno-economic performance of grid-connected Hybrid Energy Systems (HES) consisting of Photovoltaic (PV) and Reformer Fuel-Cell (RF-FC) using different types of solar PV tracking techniques to supply electricity to a small location in the City of Chlef Algeria. The PV tracking systems considered in this study include fixed facing south at four different angles (32◦ 34◦ 36◦ 38◦) horizontal-axis with continuous adjustment vertical-axis with continuous adjustment and a two-axis tracking system. The software tool HOMER Pro (Hybrid Optimization of Multiple Energy Resources) is used to simulate and analyze the technical feasibility and life-cycle cost of these different configurations. The meteorological data consisting of global solar radiation and air temperature used in this study was collected from the geographical area of the City of Chlef during the year 2020. This study has shown that the optimal design of a grid-connected hybrid PV/RF-FC energy system with Vertical Single Axis Tracker (VSAT) leads to the best economic perfor mance with low values of Net Present Cost (NPC) Cost of Energy (COE) with a Positive Return on Investment (ROI) and the shortest Simple Payback (SP) period. In addition from the simulation results obtained it can be concluded that the Horizontal and Vertical Single-Axis Trackers (HSAT and VSAT) as well as the Dual-Axis Tracker (DAT) are not always cost effective compared to the Fixed Tilt System (FTS). Therefore it is neces sary to carefully analyze the use of each tracker to assess whether the energy gain achieved outweighs the overall shortcomings of the tracker.
New Protocol for Hydrogen Refueling Station Operation
Aug 2025
Publication
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the hydrogen compressor power requirement and the energy consumption for refilling the vehicle tank; therefore the proposed alternative design for hydrogen refueling stations is feasible and compatible with low-intensity renewable energy sources like solar photovoltaic wind farms or micro-hydro plants. Additionally the cascade method supplies higher pressure to the dispenser throughout the day thus reducing the refueling time for specific vehicle driving ranges. The simulation shows that the energy saving using the cascade method achieves 9% to 45% depending on the vehicle attendance. The hydrogen refueling station design supports a daily vehicle attendance of 9 to 36 with a complete refueling process coverage. The carried-out simulation proves that the vehicle tank achieves the maximum attainable pressure of 700 bars with a storage system of six tanks. The data analysis shows that the daily hourly hydrogen demand follows a sinusoidal function providing a practical tool to predict the hydrogen demand for any vehicle attendance allowing the planners and station designers to resize the elements to fulfill the new requirements. The proposed system is also applicable to hydrogen ICE vehicles.
Integrated Membrane Distillation-solid Electrolyte-based Alkaline Water Electrolysis for Enhancing Green Hydrogen Production
Jan 2025
Publication
This paper investigates the circularity of green hydrogen and resource recovery from brine using an integrated approach based on alkaline water electrolysis (AWE). Traditional AWE employs highly alkaline electrolytes which can lead to electrode corrosion undesirable side reactions and gas cross-over issues. Conversely indirect brine electrolysis requires pre-treatment steps which negatively impact both techno-economics and environmental sustainability. In response this study proposes an innovative brine electrolysis process utilizing solid electrolytes (SELs). The process includes an on-site brine treatment facility leveraging a self-driven phase transition technique and incorporates a hydrophobic membrane as part of a membrane distillation (MD) system to facilitate the gas pathway. Polyvinyl alcohol (PVA) and tetraethylammonium hydroxide (TEAOH)-based electrolytes combined with potassium hydroxide (KOH) at various concentrations function as a self-wetted electrolyte (SWE). This design partially disperses water vapor while effectively preventing the intrusion of contaminated ions into the SWE and electrode-catalyst interfaces. PVA-TEAOH-KOH-30 wt% SWE demonstrated the highest ion conductivity (112.4 mScm−1) and excellent performance with a current density of 375 mAcm−2. Long-term electrolysis confirmed with a nine-fold brine in volume concentration factor (VCF) demonstrated stable performance without MD membrane wetting. The Cl−/ClO− and Br− concentrations in the SWE were reduced by five orders of magnitude compared to the original brine. This electrolyzer supports the circular use of resources with hydrogen as an energy carrier and concentrated brine and oxygen as valuable by-products aligning with the sustainable development goals (SDGs) and net-zero emissions by 2050.
Advances in Type IV Tanks for Safe Hydrogen Storage: Materials, Technologies and Challenges
Oct 2025
Publication
This paper provides a comprehensive review of Type IV hydrogen tanks with a focus on materials manufacturing technologies and structural issues related to high-pressure hydrogen storage. Recent advances in the use of advanced composite materials such as carbon fibers and polyamide liners useful for improving mechanical strength and permeability have been reviewed. The present review also discusses solutions to reduce hydrogen blistering and embrittlement as well as exploring geometric optimization methodologies and manufacturing techniques such as helical winding. Additionally emerging technologies such as integrated smart sensors for real-time monitoring of tank performance are explored. The review concludes with an assessment of future trends and potential solutions to overcome current technical limitations with the aim of fostering a wider adoption of Type IV tanks in mobility and stationary applications.
A Complete Control-Oriented Model for Hydrogen Hybrid Renewable Microgrids with High-Voltage DC Bus Stabilized by Batteries and Supercapacitors
Oct 2025
Publication
The growing penetration of renewable energy sources requires resilient microgrids capable of providing stable and continuous operation. Hybrid energy storage systems (HESS) which integrate hydrogen-based storage systems (HBSS) battery storage systems (BSS) and supercapacitor banks (SCB) are essential to ensuring the flexibility and robustness of these microgrids. Accurate modelling of these microgrids is crucial for analysis controller design and performance optimization but the complexity of HESS poses a significant challenge: simplified linear models fail to capture the inherent nonlinear dynamics while nonlinear approaches often require excessive computational effort for real-time control applications. To address this challenge this study presents a novel state space model with linear variable parameters (LPV) which effectively balances accuracy in capturing the nonlinear dynamics of the microgrid and computational efficiency. The research focuses on a high-voltage DC bus microgrid architecture in which the BSS and SCB are connected directly in parallel to provide passive DC bus stabilization a configuration that improves system resilience but has received limited attention in the existing literature. The proposed LPV framework employs recursive linearisation around variable operating points generating a time-varying linear representation that accurately captures the nonlinear behaviour of the system. By relying exclusively on directly measurable state variables the model eliminates the need for observers facilitating its practical implementation. The developed model has been compared with a reference model validated in the literature and the results have been excellent with average errors MAE RAE and RMSE values remaining below 1.2% for all critical variables including state-of-charge DC bus voltage and hydrogen level. At the same time the model maintains remarkable computational efficiency completing a 24-h simulation in just 1.49 s more than twice as fast as its benchmark counterpart. This optimal combination of precision and efficiency makes the developed LPV model particularly suitable for advanced model-based control strategies including real-time energy management systems (EMS) that use model predictive control (MPC). The developed model represents a significant advance in microgrid modelling as it provides a general control-oriented approach that enables the design and operation of more resilient efficient and scalable renewable energy microgrids.
Conceptual Design of a Process for Hydrogen Production from Waste Biomass and its Storage in form of Liquid Ammonia
Feb 2023
Publication
In this work we present the simulation of a plant for the exploitation of renewable hydrogen (e.g. from biomass gasification) with production of renewable ammonia as hydrogen vector and energy storage medium. The simulation and sizing of all unit operations were performed with Aspen Plus® as software. Vegetable waste biomass is used as raw material for hydrogen production more specifically pine sawdust.<br/>The hydrogen production process is based on a gasification reactor operating at high temperature (700–800 °C) in the presence of a gasifying agent such as air or steam. At the outlet a solid residue (ash) and a certain amount of gas which mainly contains H2 CH4 CO and some impurities (e.g. sulphur or chlorine compounds) are obtained. Subsequently this gas stream is purified and treated in a series of reactors in order to maximize the hydrogen yield. In fact after the removal of the sulphur compounds through an absorption column with MEA (to avoid poisoning of the catalytic processes) 3 reactors are arranged in series: Methane Steam Reforming (MSR) High temperature Water-Gas Shift (HT-WGS) Low temperature Water-Gas Shift (LT-WGS).<br/>In the first MSR reactor methane reacts at 1000 °C in presence of steam and a nickel-based catalyst in order to obtain mainly H2 CO and CO2. Subsequently two steps of WGS are present to convert most of the CO into H2 and CO2. Also these reactions are carried out in the presence of a catalyst and with an excess of water.<br/>All the oxygenated compounds must be carefully eliminated: the remaining traces of CO are methanated while CO2 is removed by a basic scrubbing with MEA (35 wt%) inside an absorption column. The Haber-Bosch synthesis of ammonia was carried out at 200 bar and in a temperature range between 300 and 400 °C using two catalysts: Fe (wustite) and Ru/C.<br/>As overall balance from an hourly flow rate of 1000 kg of dry biomass and 600 kg of nitrogen 550 kg of NH3 at 98.8 wt% were obtained demonstrating the proof of concept of this newly designed process for the production of hydrogen from renewable waste biomass and its transformation into a liquid hydrogen vector to be easily transported and stored.
Decarbonizing Insular Energy Systems: A Literature Review of Practical Strategies for Replacing Fossil Fuels with Renewable Energy Sources
Feb 2025
Publication
The reliance on fossil fuels for electricity production in insular regions creates critical environmental economic and logistical challenges particularly for ecologically fragile islands. Transitioning to renewable energy is essential to mitigate these impacts enhance energy security and preserve unique ecosystems. This systematic review addresses key research questions: what practical strategies have proven effective in reducing fossil fuel dependency in island contexts and what barriers hinder their widespread adoption? By applying the PRISMA methodology this study examines a decade (2014–2024) of research on renewable energy systems highlighting successful initiatives such as the integration of solar and wind systems in Hawaii energy storage advancements in La Graciosa hybrid renewable grids in the Galápagos Islands and others. Specific barriers include high upfront costs regulatory challenges and technical limitations such as grid instability due to renewable energy intermittency. This review contributes by synthesizing lessons from diverse case studies and identifying innovative approaches like hydrogen storage predictive control systems and community-driven renewable projects. The findings offer actionable insights for policymakers and researchers to accelerate the transition towards sustainable energy systems in island environments.
Analyzing the Adoption of Hybrid Electric and Hydrogen Vehicles in Indonesia: A Multi-criteria and Total Cost of Ownership Approach
Jan 2025
Publication
Indonesia faces mounting challenges from climate change and environmental degradation underscoring the need for sustainable transportation solutions. This study evaluates factors influencing the adoption of Hybrid Electric Vehicles (HEV) Battery Electric Vehicles (BEV) and Hydrogen Fuel Cell Vehicles (HFCV) using Multi-Criteria Analysis (MCA) and Total Cost of Ownership (TCO) approaches. Eight key factors were analyzed: safety operational and maintenance costs initial cost government incentives charging speed resale value and environmental impact. Findings reveal that safety concerns particularly for hydrogen vehicles rank as the highest priority for consumers followed by cost efficiency and government support. Environmental considerations while significant were lower in priority. The study highlights the importance of targeted subsidies enhanced safety features and infrastructure investments to overcome barriers to adoption. By providing actionable recommendations such as raising public awareness of the long-term benefits of environmentally friendly vehicles this research supports policymakers in driving the transition to sustainable transportation in Indonesia. These insights contribute to addressing rising vehicle emissions and fostering the adoption of HEV5 BEV2 and HFCV6 aligning with Indonesia’s broader climate goals.
Unlocking Solar and Hydrogen Potentials: A Comparative Analysis of Solar Tracking Systems for South Africa's Energy Transition
Aug 2025
Publication
This study explores the potential of solar tracking technologies to enhance South Africa’s energy transition focusing on their role in supporting green hydrogen production for domestic use and export. Using the Global Energy System Model (GENeSYS-MOD) it evaluates four solar tracking technologies — horizontal axis tilted horizontal axis vertical axis and dual-axis — across six scenarios: tracking and non-tracking versions of a Business-as-Usual (BAU) scenario a 2 ◦C scenario and a high hydrogen demand and export (HighH2) scenario. The results identify horizontal axis tracking as the most cost-effective option followed by tilted horizontal axis tracking which is particularly prominent in the HighH2 scenario. Tracking systems enhance hydrogen production by extending power output and increasing electrolyzer full-load hours. In the HighH2 scenario they reduce hydrogen production costs in 2050 from 1.47 e/kg to 1.34 e/kg and system cost by 0.66% positioning South Africa competitively in the global hydrogen market. By integrating tracking technologies South Africa can align hydrogen production ambitions with renewable energy growth while mitigating grid and financial challenges. The research underscores the need for targeted energy investments and policies to maximize renewable energy and hydrogen potential ensuring a just energy transition that supports export opportunities domestic energy security and equitable socio-economic growth.
Impact of Hydrogen Release on Accidental Consequences in Deep-Sea Floating Photovoltaic Hydrogen Production Platforms
Jul 2025
Publication
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical model of FPHP comprehensively characterizes hydrogen leakage dynamics under varied rupture diameters (25 50 100 mm) transient release duration dispersion patterns and wind intensity effects (0–20 m/s sea-level velocities) on hydrogen–air vapor clouds. FLACS-generated data establish the concentration–dispersion distance relationship with numerical validation confirming predictive accuracy for hydrogen storage tank failures. The results indicate that the wind velocity and rupture size significantly influence the explosion risk; 100 mm ruptures elevate the explosion risk producing vapor clouds that are 40–65% larger than 25 mm and 50 mm cases. Meanwhile increased wind velocities (>10 m/s) accelerate hydrogen dilution reducing the high-concentration cloud volume by 70–84%. Hydrogen jet orientation governs the spatial overpressure distribution in unconfined spaces leading to considerable shockwave consequence variability. Photovoltaic modules and inverters of FPHP demonstrate maximum vulnerability to overpressure effects; these key findings can be used in the design of offshore platform safety. This study reveals fundamental accident characteristics for FPHP reliability assessment and provides critical insights for safety reinforcement strategies in maritime hydrogen applications.
Evaluating Freshwater, Desalinated Water, and Treated Brine as Water Feed for Hydrogen Production in Arid Regions
Aug 2025
Publication
Hydrogen production is increasingly vital for global decarbonization but remains a waterand energy-intensive process especially in arid regions. Despite growing attention to its climate benefits limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment (LCA) approach to evaluate three water supply strategies for hydrogen production: (1) seawater desalination without brine treatment (BT) (2) desalination with partial BT and (3) freshwater purification. Scenarios are modeled for the United Arab Emirates (UAE) Australia and Spain representing diverse electricity mixes and water stress conditions. Both electrolysis and steam methane reforming (SMR) are evaluated as hydrogen production methods. Results show that desalination scenarios contribute substantially to human health and ecosystem impacts due to high energy use and brine discharge. Although partial BT aims to reduce direct marine discharge impacts its substantial energy demand can offset these benefits by increasing other environmental burdens such as marine eutrophication especially in regions reliant on carbon-intensive electricity grids. Freshwater scenarios offer lower environmental impact overall but raise water availability concerns. Across all regions feedwater for SMR shows nearly 50% lower impacts than for electrolysis. This study focuses solely on the environmental impacts associated with water sourcing and treatment for hydrogen production excluding the downstream impacts of the hydrogen generation process itself. This study highlights the trade-offs between water sourcing brine treatment and freshwater purification for hydrogen production offering insights for optimizing sustainable hydrogen systems in water-stressed regions.
Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes
Apr 2015
Publication
The current fossil fuel-based generation of energy has led to large-scale industrial development. However the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2) a clean energy carrier with high-energy yields; upon the combustion of H2 H2O is the only major by-product. In recent decades the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation the biological routes for H2 production are categorized into four groups: photobiological fermentation anaerobic fermentation enzymatic and microbial electrolysis and a combination of these processes. Thus this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations and we delineate the limitations. Additionally alternative options such as bioaugmentation multiple process integration and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications.
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
Aug 2025
Publication
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However to the best of the authors’ knowledge no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment including both on-grid and off-grid configurations. Subsequently the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally potential barriers to large-scale implementation are discussed along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing.
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
Aug 2025
Publication
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology which is highly successful in mitigating carbon emissions has increased. On the other hand hydrogen is an important energy carrier for storing and transporting energy and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless the integration of CCS technologies into power production processes is a significant challenge requiring the enhancement of the combined power generation–CCS process. In recent years there has been a growing interest in process intensification (PI) which aims to create smaller cleaner and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive multi-scale multi-phase dynamic computational fluid dynamics (CFD)-based process model is constructed which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57% signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR.
Numerical Investigation of Transmission and Sealing Characteristics of Salt Rock, Limestone, and Sandstone for Hydrogen Underground Energy Storage in Ontario, Canada
Feb 2025
Publication
With the accelerating global transition to clean energy underground hydrogen storage (UHS) has gained significant attention as a flexible and renewable energy storage technology. Ontario Canada as a pioneer in energy transition offers substantial underground storage potential with its geological conditions of salt limestone and sandstone providing diverse options for hydrogen storage. However the hydrogen transport characteristics of different rock media significantly affect the feasibility and safety of energy storage projects warranting in-depth research. This study simulates the hydrogen flow and transport characteristics in typical energy storage digital rock core models (salt rock limestone and sandstone) from Ontario using the improved quartet structure generation set (I-QSGS) and the lattice Boltzmann method (LBM). The study systematically investigates the distribution of flow velocity fields directional characteristics and permeability differences covering the impact of hydraulic changes on storage capacity and the mesoscopic flow behavior of hydrogen in porous media. The results show that salt rock due to its dense structure has the lowest permeability and airtightness with extremely low hydrogen transport velocity that is minimally affected by pressure differences. The microfracture structure of limestone provides uneven transport pathways exhibiting moderate permeability and fracture-dominated transport characteristics. Sandstone with its higher porosity and good connectivity has a significantly higher transport rate compared to the other two media showing local high-velocity preferential flow paths. Directional analysis reveals that salt rock and sandstone exhibit significant anisotropy while limestone’s transport characteristics are more uniform. Based on these findings salt rock with its superior sealing ability demonstrates the best hydrogen storage performance while limestone and sandstone also exhibit potential for storage under specific conditions though further optimization and validation are required. This study provides a theoretical basis for site selection and operational parameter optimization for underground hydrogen storage in Ontario and offers valuable insights for energy storage projects in similar geological settings globally.
Synergizing Water Desalination and Hydrogen Production using Solar Stills with Novel Sensible Heat Storage and an Alkaline Electrolyzer
Dec 2024
Publication
This study tested a cogeneration (desalination/hydrogen production) system with natural and black sand as sensible heat storage considering the thermal efficiencies environmental impact water quality cost aspects and hydrogen generation rate. The black sand-modified distiller attained the highest water production of 4645 mL more than the conventional distiller by 1595 mL. It also offered better energy and exergy efficiencies of 45.26% and 3.72% respectively compared to 32.10% and 2.19% for the conventional one. Both modified distillers showed impressive improvements in water quality by significant reductions in total dissolved solids (TDS) from 29300 mg/L to 60–61 mg/L. Moreover the black sand-modified still reduced chemical oxygen demand (COD) to 135 mg/L. The production cost was minimized by using black sand to 0.0111$/L higher than one-fifth in the case of the lab-based distiller. Regarding hydrogen production the highest rate was obtained using distilled water from a labbased distiller of 0.742 gH₂/hr with an energy efficiency of 11.00%; however it was not much higher than the case of black sand-modified still (0.736 gH₂/hr production rate and 10.91% efficiency). Moreover the black sand-modified still showed the highest annual exergy output of 70.4 kWh/year with a significant annual decarbonization of 1.69 ton-CO2.
Experimental Assessment of Performance and Emissions for Hydrogen-diesel Dual Fuel Operation in a Low Displacement Compression Ignition Engine
Apr 2022
Publication
The combustion of pure H2 in engines is still troublesome needing further research and development. Using H2 and diesel in a dual-fuel compression ignition engine appears as a more feasible approach. Here we report an experimental assessment of performance and emissions for a single-cylinder four-stroke air-cooled compression ignition engine operating with neat diesel and H2-diesel dual-fuel. Previous studies typically show the performance and emissions for a specific operation condition (i.e. a fixed engine speed and torque) or a limited operating range. Our experiments covered engine speeds of 3000 and 3600 rpm and torque levels of 3 and 7 Nm. An in-house designed and built alkaline cell generated the H2 used for the partial substitution of diesel. Compared with neat diesel the results indicate that adding H2 decreased the air-fuel equivalence ratio and the Brake Specific Diesel Fuel Consumption Efficiency by around 14–29 % and 4–31 %. In contrast adding H2 increased the Brake Fuel Conversion Efficiency by around 3–36 %. In addition the Brake Thermal Efficiency increased in the presence of H2 in the range of 3–37 % for the lower engine speed and 27–43 % for the higher engine speed compared with neat diesel. The dual-fuel mode resulted in lower CO and CO2 emissions for the same power output. The emissions of hydrocarbons decreased with H2 addition except for the lower engine speed and the higher torque. However the dual-fuel operation resulted in higher NOx emissions than neat diesel with 2–6 % and 19–48 % increments for the lower and higher engine speeds. H2 emerges as a versatile energy carrier with the potential to tackle current energy and emissions challenges; however the dual-fuel strategy requires careful management of NOx emissions.
Hydrogen Pipelines Safety Using System Dynamics
Oct 2025
Publication
With the global expansion of hydrogen infrastructure the safe and efficient transportation of hydrogen is becoming more important. In this study several technical factors including material degradation pressure variations and monitoring effectiveness that influence hydrogen transportation using pipelines are examined using system dynamics. The results show that hydrogen embrittlement which is the result of microstructural trapping and limited diffusion in certain steels can have a profound effect on pipeline integrity. Material incompatibility and pressure fluctuations deepen fatigue damage and leakage risk. Moreover pipeline monitoring inefficiency combined with hydrogen’s high flammability and diffusivity can raise serious safety issues. An 80% decrease in monitoring efficiency will result in a 52% reduction in the total hydrogen provided to the end users. On the other hand technical risks such as pressure fluctuations and material weakening from hydrogen embrittlement also affect overall system performance. It is essential to understand that real-time detection using hydrogen monitoring is particularly important and will lower the risk of leakage. It is crucial to know where hydrogen is lost and how it impacts transport efficiency. The model offers practical insights for developing stronger and more reliable hydrogen transport systems thereby supporting the transition to a low-carbon energy future.
Geomechanics of Geological Storage of Hydrogen: Knowledge Gaps and Future Directions
Aug 2025
Publication
Underground hydrogen storage is critical for supporting the transition to renewable energy systems addressing the intermittent nature of solar and wind power. Despite its promise as a carbon-neutral energy carrier there remains limited understanding of the geomechanical behavior of subsurface reservoirs under hydrogen storage conditions. This knowledge gap is particularly significant for fast-cycling operations which have yet to be implemented on a large scale. This review evaluates current knowledge on the geomechanics of underground hydrogen storage focusing on risks and challenges in geological formations such as salt caverns depleted hydrocarbon reservoirs saline aquifers and lined rock caverns. Laboratory experiments field studies and numerical simulations are synthesized to examine cyclic pressurization induced seismicity thermal stresses and hydrogen-rock interactions. Notable challenges include degradation of rock properties fault reactivation micro-seismic activity in porous reservoirs and mineral dissolution/precipitation caused by hydrogen exposure. While salt caverns are effective for low-frequency hydrogen storage their behavior under fast-cyclic loading requires further investigation. Similarly the mechanical evolution of porous and fractured reservoirs remains poorly understood. Key findings highlight the need for comprehensive geomechanical studies to mitigate risks and enhance hydrogen storage feasibility. Research priorities include quantifying cyclic loading effects on rock integrity understanding hydrogen-rock chemical interactions and refining operational strategies. Addressing these uncertainties is essential for enabling large-scale hydrogen integration into global energy systems and advancing sustainable energy solutions. This work systematically focuses on the geomechanical implications of hydrogen injection into subsurface formations offering a critical evaluation of current studies and proposing a unified research agenda.
Enhancing Hydrogen Production from Chlorella sp. Biomass by Pre-Hydrolysis with Simultaneous Saccharification and Fermentation (PSSF)
Mar 2019
Publication
Simultaneous saccharification and fermentation (SSF) and pre-hydrolysis with SSF (PSSF) were used to produce hydrogen from the biomass of Chlorella sp. SSF was conducted using an enzyme mixture consisting of 80 filter paper unit (FPU) g-biomass−1 of cellulase 92 U g-biomass−1 of amylase and 120 U g-biomass−1 of glucoamylase at 35 ◦C for 108 h. This yielded 170 mL-H2 g-volatile-solids−1 (VS) with a productivity of 1.6 mL-H2 g-VS−1 h −1 . Pre-hydrolyzing the biomass at 50 ◦C for 12 h resulted in the production of 1.8 g/L of reducing sugars leading to a hydrogen yield (HY) of 172 mL-H2 g-VS−1 . Using PSSF the fermentation time was shortened by 36 h in which a productivity of 2.4 mL-H2 g-VS−1 h −1 was attained. To the best of our knowledge the present study is the first report on the use of SSF and PSSF for hydrogen production from microalgal biomass and the HY obtained in the study is by far the highest yield reported. Our results indicate that PSSF is a promising process for hydrogen production from microalgal biomass.
Realizing the Role of Hydrogen Energy in Ports: Evidence from Ningbo Zhoushan Port
Jul 2025
Publication
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port operations using the Chuanshan Port Area of Ningbo Zhoushan Port (CPANZP) as a case study. Through a comprehensive analysis of hydrogen production storage refueling and consumption technologies we demonstrate the feasibility and benefits of integrating hydrogen systems into port infrastructure. Our findings highlight the successful deployment of a hybrid “wind-solar-hydrogen-storage” energy system at CPANZP which achieves 49.67% renewable energy contribution and an annual reduction of 22000 tons in carbon emissions. Key advancements include alkaline water electrolysis with 64.48% efficiency multi-tier hydrogen storage systems and fuel cell applications for vehicles and power generation. Despite these achievements challenges such as high production costs infrastructure scalability and data integration gaps persist. The study underscores the importance of policy support technological innovation and international collaboration to overcome these barriers and accelerate the adoption of hydrogen energy in ports worldwide. This research provides actionable insights for port operators and policymakers aiming to balance operational efficiency with sustainability goals.
Risk Analysis of Hydrogen Leakage at Hydrogen Producing and Refuelling Integrated Station
Feb 2025
Publication
Hydrogen energy is considered the most promising clean energy in the 21st century so hydrogen refuelling stations (HRSs) are crucial facilities for storage and supply. HRSs might experience hydrogen leakage (HL) incidents during their operation. Hydrogen-producing and refuelling integrated stations (HPRISs) could make thermal risks even more prominent than those of HRSs. Considering HL as the target in the HPRIS through the method of fault tree analysis (FTA) and analytic hierarchy process (AHP) the importance degree and probability importance were appraised to obtain indicators for the weight of accident level. In addition the influence of HL from storage tanks under ambient wind conditions was analysed using the specific model. Based upon risk analysis of FTA AHP and ALOHA preventive measures were obtained. Through an evaluation of importance degree and probability importance it was concluded that misoperation material ageing inadequate maintenance and improper design were four dominant factors contributing to accidents. Furthermore four crucial factors contributing to accidents were identified by the analysis of the weight of the HL event with AHP: heat misoperation inadequate maintenance and valve failure. Combining the causal analysis of FTA with the expert weights from AHP enables the identification of additional crucial factors in risk. The extent of the hazard increased with wind speed and yet wind direction did not distinctly affect the extent of the risk. However this did affect the direction in which the risk spreads. It is extremely vital to rationally plan upwind and downwind buildings or structures equipment and facilities. The available findings of the research could provide theoretical guidance for the applications and promotion of hydrogen energy in China as well as for the proactive safety and feasible emergency management of HPRISs.
Optimized Activation of Coffee-ground Carbons for Hydrogen Storage
Mar 2025
Publication
This study evaluates and compares physical chemical and dual activation methods for preparing activated carbons from spent coffee grounds to optimize their porosity for hydrogen storage. Activation processes including both one-step and two-step chemical and physical methods were investigated incorporating a novel dual activation process that combines chemical and physical activation. The findings indicate that the two-step chemical activation yields superior results producing activated carbons with a high specific surface area of 1680 m2 /g and a micropore volume of 0.616 cm3 /g. These characteristics lead to impressive hydrogen uptake capacities of 2.65 wt% and 3.66 wt% at 77 K under pressures of 1 and 70 bar respectively. The study highlights the potential of spent coffee grounds as a cost-effective precursor for producing high-performance activated carbons.
Trends, Challenges, and Viability in Green Hydrogen Initiatives
Aug 2025
Publication
This review explores the current status of green hydrogen integration into energy and industrial ecosystems. By considering notable examples of existing and developing green hydrogen initiatives combined with insights from the relevant scientific literature this paper illustrates the practical implementation of those systems according to their main end use: power and heat generation mobility industry or their combination. Main patterns are highlighted in terms of sectoral applications geographical distribution development scales storage solutions electrolyzer technology grid interaction and financial viability. Open challenges are also addressed including the high production costs an underdeveloped transport and distribution infrastructure the geopolitical aspects and the weak business models with the industrial sector appearing as the most favorable environment where such challenges may first be overcome in the medium term.
Combustion and Specific Fuel Consumption Evaluation of a Single-cylinder Engine Fueled with Ethanol, Gasoline, and a Hydrogen-rich Mixture
Mar 2024
Publication
This study evaluates the effects of adding a hydrogen gaseous mixture (HGM) to primary fuel in a single cylinder research engine (SCRE). Storage and transportation of high-purity hydrogen limit the application of this gas. With the development of fuel reforming methods using hydrogenenriched mixtures in spark-ignited internal combustion engines is a convenient option to fossil fuels. Ethanol and gasoline were used as primary fuel by direct injection (DI) and gaseous mixture was added by fumigation system (FS). The experimental analysis was developed in Spark Ignition (SI) four-stroke engine 4 valves and 0.45 L of cubic capacity. For each operation condition and primary fuel spark timing and amount of HGM were adjusted in order to keep air-fuel ratio stochiometric (λ = 100). However the spark timing and the percentage of gas varied aiming to evaluate the behavior of the air-fuel mixture. It was evaluated the specific fuel consumption and the evolution of the combustion process. The results showed that the addition of reformed gas promotes acceleration of the combustion process ethanol and gasoline. Results were expressive when using ethanol. A reduction in fuel-specific consumption - for this fuel - with combustion centralized which did not occur when gasoline was employed.
Process Flexibility of Soprtion-enhanced Steam Reforming for Hydrogen Production from Gas Mixtures Representative of Biomass-derived Syngas
Sep 2025
Publication
Hydrogen is a critical enabler of CO2 valorization essential for the synthesis of carbon-neutral fuels such as efuels and advanced biofuels. Biohydrogen produced from renewable biomass is a stable and dispatchable source of low-carbon hydrogen helping to address supply fluctuations caused by the intermittency of renewable electricity and the limited availability of electrolytic hydrogen. This study experimentally demonstrates that sorption-enhanced steam reforming (SESR) is a robust and adaptable process for hydrogen production from biomass-derived syngas-like gas streams. By incorporating in situ CO2 capture SESR overcomes the thermodynamic limits of conventional reforming achieving high hydrogen yields (>96 %) and purities (up to 99.8 vol%) across a wide range of syngas compositions. The process maintains high conversion efficiency despite variations in CO CH4 and CO2 concentrations and sustains performance even with H2-rich feeds conditions that typically inhibit reforming reactions. Among the operating parameters temperature has the greatest influence on performance followed by the steam-to-carbon ratio and space velocity. Multi-objective optimization shows that SESR can maintain high hydrogen yield (>96 %) selectivity (>99 %) and purity (>99.5 vol%) within a moderately flexible operating window. Methane reforming is identified as the main performance-limiting step with a stronger constraint on H2 yield and purity than CO conversion through the water–gas shift reaction. In addition to hydrogen SESR produces a concentrated CO2 stream suitable for downstream utilization or storage. These results support the potential of SESR as a flexible and efficient approach for hydrogen production from heterogeneous renewable feedstocks.
Towards Water-conscious Green Hydrogen and Methanol: A Techno-economic Review
Jan 2025
Publication
To enable a sustainable and socially accepted hydrogen and methanol economy it is crucial to prioritize green and water-conscious production. In this review we reveal that there is a significant research gap regarding comprehensive assessments of such production methods. We present an innovative process chain consisting of adsorption-based direct air capture solid oxide electrolysis and methanol synthesis to address this issue. To allow future comprehensive techno-economic assessments we perform a systematic literature review and harmonization of the techno-economic parameters of the process chain’s technologies. Based on the conducted literature review we find that the long-term median specific energy demand of adsorption-based direct air capture is expected to decrease to 204 kWhel/tCO2 and 1257 kWhth/tCO2 while the capture cost is expected to decrease to 162 €2024/tCO2 with a relative high uncertainty. The evaluated sources expect a future increase in system efficiency of solid oxide electrolysis to 80% while the purchase equipment costs are expected to decrease significantly. Finally we demonstrate the feasibility of the process chain from a technoeconomic perspective and show a potential reduction in external heat demand of the DAC unit of up to 34% when integrated in the process chain.
A Novel Flow Channel Design for Improving Water Splitting in Anion Exchange Membrane Electrolysers
Jul 2025
Publication
Anion exchange membrane (AEM) alkaline water electrolyser s are a promising reactor in large - scale industrial green hydrogen production. However the configurations of electrolysers especially the flow channel are not well optimised. In this work we demonstrate that the several existing flow channel designs e.g. single serpentine parallel pin can significantly affect the AEM electrolysers’ performance. The two -phase flow behaviours associated with the mass transfer of both electrolyte and produced gas bubbles within these flow channels have been simulated and thoroughly studied via a three -dimensional (3D) computational fluid dynamics (CFD) model . A novel flow channel design named Parpentine that combines the features of Parallel and Single serpentine designs is proposed with an optimised balance among the electrolyte flow distribution bubble removal rate and pressure drop. The superiority of the Parpentine flow channel is well verified in practical AEM water electrolyser experiments using commercial Ni foam and self-designed efficient NiFe and NiMo electrodes. At a cell voltage of 2.5 V compared to the benchmark serpentine design a 12.4% ~ 34.8% increase in hydrogen production efficiency can be achieved in both 1 M and 5 M KOH conditions at room temperature. This work discovers a novel design and a new method for highly efficient water electrolysers.
Direct-Coupled Improvement of a Solar-Powered Proton Exchange Membrane Electrolyzer by a Reconfigurable Source
Sep 2024
Publication
This paper deals with proton exchange membrane (PEM) electrolyzers directly coupled with a photovoltaic source. It proposes a method to increase the energy delivered to the electrolyzer by reconfiguring the electrical connection of the arrays according to solar radiation. Unlike the design criterion proposed by the literature the suggested approach considers a source obtained by connecting arrays in parallel depending on solar radiation based on a fixed photovoltaic configuration. This method allows for the optimization of the operating point at medium or low solar radiation where the fixed configuration gives poor results. The analysis is performed on a low-power plant (400 W). It is based on a commercial photovoltaic cell whose equivalent model is retrieved from data provided by the manufacturer. An equivalent model of the PEM electrolyzer is also derived. Two comparisons are proposed: the former considers a photovoltaic source designed according to the traditional approach i.e. a fixed configuration; in the latter a DC/DC converter as interface is adopted. The role of the converter is discussed to highlight the pros and cons. The optimal set point of the converter is calculated using an analytical equation that takes into account the electrolyzer model. In the proposed study an increase of 17% 62% and 93% of the delivered energy has been obtained in three characteristic days summer spring/autumn and winter respectively compared to the fixed PV configuration. These results are also better than those achieved using the converter. Results show that the proposed direct coupling technique applied to PEM electrolyzers in low-power plants is a good trade-off between a fixed photovoltaic source configuration and the use of a DC/DC converter.
Analysis of Hydrogen-fuelled Combustor Design for Micro Gas Turbine Applications: Performance, Emissions, and Stability Considerations
Oct 2025
Publication
To address global CO2 emissions and the intermittency of renewables hydrogen is emerging as a promising carbon-free fuel for micro gas turbines (MGTs) offering potential for grid stability and decarbonization. However its high flame speed and adiabatic temperature present challenges including flashback and elevated NOx emissions. Conventional combustors often lack the compactness and NOx control needed for MGT-scale systems. This study numerically investigates pure hydrogen combustion in a compact MGT combustor using a secondary air dilution strategy. Based on the experimental setup of Tanneberger et al. simulations were conducted in ANSYS Fluent using steady-state RANS equations a CRECK-based chemical mechanism and the Flamelet Generated Manifold (FGM) model. The parametric study explores three design variables swirler blockage (B) central fuel tube length (C) and fuel injection split (S) along with five secondary air configurations (T1–T5). Results show that the secondary air hole pattern significantly affects flow structure and temperature uniformity. Configuration T1 provided the most uniform exhaust and lowest NOx emissions due to better air penetration and earlier dilution. Higher B and S increased local flame temperature intensifying thermal NOx via the Zeldovich mechanism. The findings offer design guidance for stable low-emission hydrogen combustors suitable for compact MGT applications.
Research Sites of the H2STORE Project and the Relevance of Lithological Variations for Hydrogen Storage at Depths
Sep 2013
Publication
The H2STORE collaborative project investigates potential geohydraulic petrophysical mineralogical microbiological and geochemical interactions induced by the injection of hydrogen into depleted gas reservoirs and CO2- and town gas storage sites. In this context the University of Jena performs mineralogical and geochemical investigations on reservoir and cap rocks to evaluate the relevance of preferential sedimentological features which will control fluid (hydrogen) pathways thus provoking fluid-rock interactions and related variations in porosity and permeability. Thereby reservoir sand- and sealing mudstones of different composition sampled from distinct depths (different: pressure/temperature conditions) of five German locations are analysed. In combination with laboratory experiments the results will enable the characterization of specific mineral reactions at different physico-chemical conditions and geological settings.
Operating Solutions to Improve the Direct Reduction of Iron Ore by Hydrogen in a Shaft Furnace
Aug 2025
Publication
The production of iron and steel plays a significant role in the anthropogenic carbon footprint accounting for 7% of global GHG emissions. In the context of CO2 mitigation the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based direct reduction of iron ore in shaft furnaces. Before industrialization detailed modeling and parametric studies were needed to determine the proper operating parameters of this promising technology. The modeling approach selected here was to complement REDUCTOR a detailed finite-volume model of the shaft furnace which can simulate the gas and solid flows heat transfers and reaction kinetics throughout the reactor with an extension that describes the whole gas circuit of the direct reduction plant including the top gas recycling set up and the fresh hydrogen production. Innovative strategies (such as the redirection of part of the bustle gas to a cooling inlet the use of high nitrogen content in the gas and the introduction of a hot solid burden) were investigated and their effects on furnace operation (gas utilization degree and total energy consumption) were studied with a constant metallization target of 94%. It has also been demonstrated that complete metallization can be achieved at little expense. These strategies can improve the thermochemical state of the furnace and lead to different energy requirements.
Biomass-based Chemical Looping Hydrogen Production: Performance Evaluation and Economic Viability
Oct 2025
Publication
Chemical looping hydrogen generation (CLHG) from biomass is a promising technology for producing carbonnegative hydrogen. However achieving autothermal operation without sacrificing hydrogen yield presents a significant thermodynamic challenge. This study proposes and evaluates a novel thermal management strategy that enables a self-sustaining process by balancing the system’s heat load with its internal exothermic reactions. A comprehensive analysis was conducted using process simulation to assess the system’s thermodynamic performance identify key sources of inefficiency through exergy analysis and determine its economic viability via a detailed techno-economic assessment. The results show that a 200 MWth CLHG plant can produce 2.06 t-H2/h with a hydrogen production efficiency and exergy efficiency of 34.46 % and 44.4 % respectively. The exergy analysis identified the fuel reactor as the largest source of thermodynamic inefficiency accounting for 66.4 % of the total exergy destruction. The techno-economic analysis yielded a base-case minimum selling price (MSP) of hydrogen of 2.63 USD/kg a rate competitive with other carbon-capture-enabled hydrogen production methods. Sensitivity analysis confirmed that the MSP is most influenced by biomass price and discount rate. Crucially the system’s carbon-negative nature allows it to leverage carbon pricing schemes which can significantly improve its economic performance. Under the EU’s current carbon price the MSP falls to 0.98 USD/kg-H2 and it can become negative in regions with higher carbon taxes suggesting profitability from carbon credits alone. This study demonstrates that the proposed CLHG system is a technically robust and economically compelling pathway for clean hydrogen production particularly in regulatory environments that incentivize carbon capture.
After-Treatment Technologies for Emissions of Low-Carbon Fuel Internal Combustion Engines: Current Status and Prospects
Jul 2025
Publication
In response to increasingly stringent emission regulations low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels methane methanol hydrogen and ammonia by systematically summarizing their combustion characteristics and emission profiles along with a review of existing after-treatment technologies tailored to each fuel type. For methane engines unburned hydrocarbon (UHC) produced during lowtemperature combustion exhibits poor oxidation reactivity necessitating integration of oxidation strategies such as diesel oxidation catalyst (DOC) particulate oxidation catalyst (POC) ozone-assisted oxidation and zoned catalyst coatings to improve purification efficiency. Methanol combustion under low-temperature conditions tends to produce formaldehyde and other UHCs. Due to the lack of dedicated after-treatment systems pollutant control currently relies on general-purpose catalysts such as three-way catalyst (TWC) DOC and POC. Although hydrogen combustion is carbon-free its high combustion temperature often leads to elevated nitrogen oxide (NOx) emissions requiring a combination of optimized hydrogen supply strategies and selective catalytic reduction (SCR)-based denitrification systems. Similarly while ammonia offers carbon-free combustion and benefits from easier storage and transportation its practical application is hindered by several challenges including low ignitability high toxicity and notable NOx emissions compared to conventional fuels. Current exhaust treatment for ammonia-fueled engines primarily depends on SCR selective catalytic reduction-coated diesel particulate filter (SDPF). Emerging NOx purification technologies such as integrated NOx reduction via hydrogen or ammonia fuel utilization still face challenges of stability and narrow effective temperatures.
Optimization Operation Method for Hydrogen-compressed Natural Gas-Integrated Energy Systems Considering Hydrogen-Thermal Multi-Energy Inertia
Dec 2024
Publication
Hydrogen-enriched compressed natural gas (HCNG) holds significant promise for renewable energy absorption and hydrogen utilization while also increasing the complexity of Integrated Energy System (IES) structures which presents challenges for optimal HCNG-IES operation. Energy inertia provides IES with potential operational flexibility. However existing HCNG-IES optimization technologies inadequately account for hydrogen and thermal inertia leaving significant opportunities to enhance system performance. In this study we begin with a comprehensive analysis and modeling of the hydrogen-thermal multi-energy inertia (HTMEI) processes which encompass the hydrogen inertia of HCNG loads and hydrogen storage tanks as well as the thermal inertia of thermal storage tanks and buildings. Following this we develop an optimization model for the operation of HCNG-IES that incorporates HTMEI to optimize the system's overall performance in terms of economic environmental and energy efficiency criteria. The resulting optimal scheduling scheme integrates the outputs of energy devices and multi-energy inertia processes. Case studies validate the efficacy of the proposed operational optimization method. The results indicate that in comparison with an operational optimization method that does not consider energy inertia the proposed approach reduces operational costs by 34.79% carbon emissions by 32.93% electricity purchased from the grid by 95.37% and natural gas consumption by 11.8%. Furthermore the analysis has verified the mutual enhancement between hydrogen inertia and thermal inertia along with their positive individual impacts on operational performance of the HCNGIES.
The Hydrogen Revolution in Diesel Engines: A Comprehensive Review of Performance, Combustion, and Emissions
Aug 2025
Publication
Fossil fuels have been the conventional source of energy that has driven economic growth and industrial development for a long time. However their extensive use has led to immense environmental problems especially concerning the emission of greenhouse gases. These problems have stimulated researchers to turn their attention to renewable alternative fuels. Hydrogen has risen in recent years as a prospective energy carrier because it is possible to produce it in an environmentally friendly manner and because it is the most common element. Hydrogen may be used in diesel engines in a dual-fuel mode. Hydrogen has a higher heating value flame speed and diffusivity in air. These superior fuel properties can enhance performance and combustion efficiency. Hydrogen can decrease carbon monoxide unburned hydrocarbons and soot emissions due to the absence of carbon in hydrogen. However hydrogen-fuelled diesel engines have problems such as engine knocking and high nitrogen oxide emission. This paper presents a comprehensive review of the recent literature on the performance combustion and emission characteristics of hydrogen-fuelled diesel engines. Moreover this paper discusses the long-term sustainability of hydrogen production methods nitrogen oxide emission reduction techniques challenges to the large-scale use of hydrogen economic implications of hydrogen use safety issues in hydrogen applications regulations on hydrogen safety conflicting NOx emission results in the literature and material incompatibility issues in hydrogen applications. This study highlights state-of-the-art developments along with critical knowledge gaps that will be useful in guiding future research. These findings can support researchers and industry professionals in the integration of hydrogen into both existing and future diesel engine technologies. According to the literature the use of hydrogen up to 46% decreased smoke emissions by over 75% while CO2 and CO emissions significantly decreased. Moreover hydrogen addition improved thermal efficiency up to 7.01% and decreased specific fuel consumption up to 7.19%.
Hydrogen Production via Ammonia Decomposition: Kinetic Analysis
Jul 2025
Publication
Ammonia (NH3) has emerged as a promising hydrogen carrier due to its high hydrogen content favourable storage and transport properties and carbon-free utilisation. Its ability to be stored as a liquid under relatively mild conditions and its compatibility with existing industrial infrastructure make it an efficient and scalable solution for hydrogen distribution. This study conducts a detailed investigation into the kinetics of ammonia decomposition over rutheniumbased catalysts which are known for their high catalytic activity for ammonia cracking. Experimental data across a wide range of operating conditions are used to validate the proposed models with a promising catalyst (0.5 wt.% Ru/Al2O3). The study employs kinetic models based on different theoretical frameworks such as the Langmuir isotherm the Temkin-Pyzhev approach and the microkinetic model focusing on evaluating various rate-determining steps. A comparison of these models shows that those that consider nitrogen desorption a ratedetermining step provide the best predictions of NH3 conversion effectively capturing the dependencies on temperature and feed molar fractions of reactants and products. This multifaceted approach integrates experimental data with proposed kinetic models contributing to a better understanding of NH3 decomposition through parameter optimisation. The findings provide valuable insights for modelling catalytic reactors optimising conditions and enhancing catalyst performance for efficient hydrogen production from ammonia.
An Experimental Study of Jet-wall and Jet-jet Interactions of Directly Injected Hydrogen and Methane in a Wave-piston Geometry
Oct 2025
Publication
This study investigates the interactive dynamics of directly injected (DI) hydrogen and methane jets with wall and neighboring jets in a non-reactive environment focusing on the influence of wave-shaped piston geometry. Experiments were conducted in a high-pressure optical chamber using a custom 2-hole DI injector with Schlieren imaging employed to capture the temporal evolution of jet structures for varying injection durations and injection pressure ratios. Comparative analyses between conventional flat and wave-shaped wall geometries reveals that the wave geometry significantly alters post-impingement jet behavior particularly enhancing jet guidance toward the center and promoting early detachment from the wall. For both hydrogen and methane jets impinging on the wave wall exhibited accelerated formation of a central flow structure akin to the radial mixing zone (RMZ) observed in reactive diesel combustion. This effect was most pronounced after end of injection where the trailing edge of the impinged jets in the wave geometry detached earlier and exhibited inward momentum forming U-shaped flow patterns indicative of efficient mixing. Quantitative jet area analysis further showed that the wave geometry confined and redirected the jets more effectively than the flat wall especially for hydrogen at shorter injection durations. These results demonstrate that the wave-piston concept originally developed for soot reduction in diesel engines also enhances jet-jet and jet-wall interaction efficiency in gaseous DI systems by promoting structured recirculation. Moreover these results suggest that wave-based piston geometries can substantially influence fuel-air mixing dynamics even in the absence of combustion providing a foundation for optimizing combustion chamber designs for low-carbon and high-diffusive gaseous fuels.
Minimum Hydrogen Consumption Energy Management for Hybrid Fuel Cell Ships Using Improved Weighted Antlion Optimization
Oct 2025
Publication
Energy management in hybrid fuel cell ship systems faces the dual challenges of optimizing hydrogen consumption and ensuring power quality. This study proposes an Improved Weighted Antlion Optimization (IW-ALO) algorithm for multi-objective problems. The method incorporates a dynamic weight adjustment mechanism and an elite-guided strategy which significantly enhance global search capability and convergence performance. By integrating IW-ALO with the Equivalent Consumption Minimization Strategy (ECMS) an improved weighted ECMS (IW-ECMS) is developed enabling real-time optimization of the equivalence factor and ensuring efficient energy sharing between the fuel cell and the lithium-ion battery. To validate the proposed strategy a system simulation model is established in Matlab/Simulink 2017b. Compared with the rule-based state machine control and optimization-based ECMS methods over a representative 300 s ferry operating cycle the IW-ECMS achieves a hydrogen consumption reduction of 43.4% and 42.6% respectively corresponding to a minimum total usage of 166.6 g under the specified load profile while maintaining real-time system responsiveness. These reductions reflect the scenario tested characterized by frequent load variations. Nonetheless the results highlight the potential of IW-ECMS to enhance the economic performance of ship power systems and offer a novel approach for multi-objective cooperative optimization in complex energy systems.
Production of Hydrogen-Rich Syngas via Biomass-Methane Co-Pyrolysis: Thermodynamic Analysis
Oct 2025
Publication
This study presents a thermodynamic equilibrium analysis of hydrogen-rich syngas production via biomass–methane co-pyrolysis employing the Gibbs free energy minimization method. A critical temperature threshold at 700 ◦C is identified below which methanation and carbon deposition are thermodynamically favored and above which cracking and reforming reactions dominate enabling high-purity syngas generation. Methane addition shifts the reaction pathway towards increased reduction significantly enhancing carbon and H2 yields while limiting CO and CO2 emissions. At 1200 ◦C and a 1:1 methane-tobiomass ratio cellulose produces 50.84 mol C/kg 119.69 mol H2/kg and 30.65 mol CO/kg; lignin yields 78.16 mol C/kg 117.69 mol H2/kg and 19.14 mol CO/kg. The H2/CO ratio rises to 3.90 for cellulose and 6.15 for lignin with energy contents reaching 43.16 MJ/kg and 52.91 MJ/kg respectively. Notably biomass enhances methane conversion from 25% to over 53% while sustaining a 67% H2 selectivity. These findings demonstrate that syngas composition and energy content can be precisely controlled via methane co-feeding ratio and temperature offering a promising approach for sustainable tunable syngas production.
Green Hydrogen Production with 25 kW Alkaline Electrolyzer Pilot Plant Shows Hydrogen Flow Rate Exponential Asymptotic Behavior with the Stack Current
Sep 2025
Publication
Green H2 production using electrolyzer technology is an emerging method in the current mandate using renewable-based power sources integrated with electrolyzer technology. Prior research has been extensively studied to understand the effects of intermittent power sources on the hydrogen production output. However in this context the characteristics of the working electrolyzer behave differently under system-level operation. In this paper we investigated a 25 kW alkaline electrolyzer for its stack performance in terms of stack efficiency the stack current vs. stack voltage and the relationship between the H2 flow rate and stack current. It was found that the current of 52 A produces the best system efficiency of 64% under full load operation for 1 h. The H2 flow rate behaves in an exponential asymptotic pattern and it is also found that the ramp-up time for hydrogen generation by the electrolyzer is significantly low thus marking it as an efficient option for producing green hydrogen with the input of a hybrid grid and renewable PV-based power sources. Hydrogen production techno-economic analysis has been conducted and the LCOH is found to be on the higher side for the current electrolyzer under investigation.
Detonation Processes Application to Increase Thermal Efficiency in Gas Turbine Cycles: Case Study for Hydrogen Enriched Fuels
Dec 2024
Publication
This work describes a thermodynamic comparison of the thermal efficiency of gas turbine engines featuring a conventional combustion chamber and a detonation combustion chamber using methane ethanol and mixtures of both ethanol and hydrogen and methane and hydrogen as fuels. The composition of gases was determined by the minimization of the Gibbs free energy whereas temperature pressure and velocity of detonation waves were determined by the Chapman-Jouguet theory. The results obtained here show that the DCC gas turbine cycle has a higher net work output and thermal efficiency than the CCC gas turbine cycle for all fuels studied in this work. The maximum thermal efficiency obtained with the DCC gas turbine cycle is indeed 57.22% which represents a 53.75% improvement over the maximum thermal efficiency obtained with the CCC gas turbine cycle (which has a peak thermal efficiency of 37.22%) under the same pressure ratio and turbine inlet temperature.
Alkaline Electrolysis for Green Hydrogen Production: A Novel, Simple Model for Thermo-electrochemical Coupled System Analysis
Dec 2024
Publication
Alkaline water electrolysis (AWE) is the most mature electrochemical technology for hydrogen production from renewable electricity. Thus its mathematical modeling is an important tool to provide new perspectives for the design and optimization of energy storage and decarbonization systems. However current models rely on numerous empirical parameters and neglect variations of temperature and concentration alongside the electrolysis cell which can impact the application and reliability of the simulation results. Thus this study proposes a simple four-parameter semi-empirical model for AWE system analysis which relies on minimal fitting data while providing reliable extrapolation results. In addition the effect of model dimensionality (i.e. 0D 1/2D and 1D) are carefully assessed in the optimization of an AWE system. The results indicate that the proposed model can accurately reproduce literature data from four previous works (R 2 ≥ 0.98) as well as new experimental data. In the system optimization the trade-offs existing in the lye cooling sizing highlight that maintaining a low temperature difference in AWE stacks (76-80°C) leads to higher efficiencies and lower hydrogen costs.
Optimization of Green Hydrogen Production via Direct Seawater Electrolysis Powered by Hybrid PV-Wind Energy: Response Surface Methodology
Oct 2025
Publication
This study explored the optimization of green hydrogen production via seawater electrolysis powered by a hybrid photovoltaic (PV)-wind system in KwaZulu-Natal South Africa. A Box–Behnken Design (BBD) adapted from Response Surface Methodology (RSM) was utilized to address the synergistic effect of key operational factors on the integration of renewable energy for green hydrogen production and its economic viability. Addressing critical gaps in renewable energy integration the research evaluated the feasibility of direct seawater electrolysis and hybrid renewable systems alongside their techno-economic viability to support South Africa’s transition from a coal-dependent energy system. Key variables including electrolyzer efficiency wind and PV capacity and financial parameters were analyzed to optimize performance metrics such as the Levelized Cost of Hydrogen (LCOH) Net Present Cost (NPC) and annual hydrogen production. At 95% confidence level with regression coefficient (R2 > 0.99) and statistical significance (p < 0.05) optimal conditions of electricity efficiency of 95% a wind-turbine capacity of 4960 kW a capital investment of $40001 operational costs of $40000 per year a project lifetime of 29 years a nominal discount rate of 8.9% and a generic PV capacity of 29 kW resulted in a predictive LCOH of 0.124$/kg H2 with a yearly production of 355071 kg. Within the scope of this study with the goal of minimizing the cost of production the lowest LCOH observed can be attributed to the architecture of the power ratios (Wind/PV cells) at high energy efficiency (95%) without the cost of desalination of the seawater energy storage and transportation. Electrolyzer efficiency emerged as the most influential factor while financial parameters significantly affected the cost-related responses. The findings underscore the technical and economic viability of hybrid renewable-powered seawater electrolysis as a sustainable pathway for South Africa’s transition away from coal-based energy systems.
Low-Carbon Hydrogen Production and Use on Farms: European and Global Perspectives
Oct 2025
Publication
This article examines the growing potential of low-emission hydrogen as an innovative solution supporting the decarbonization of the agricultural sector. It discusses its potential applications on farms including as an energy source for powering agricultural machinery producing fertilizers and storing energy from renewable sources. Within the European context it considers actions arising from the European Green Deal and the “Fit for 55” strategy which promote the development of hydrogen infrastructure and support research into low-emission technologies. The article also discusses global initiatives and trends in the development of the hydrogen economy pointing to international cooperation investment and the need for technology standardization. It highlights the challenges related to cost infrastructure and scalability as well as the opportunities hydrogen offers for a sustainable and energy-efficient agriculture of the future.
Assessing Cement Durability in Hydrogen-driven Underground Storage Systems
Oct 2025
Publication
As the world shifts towards renewable energy sources the need for reliable large-scale energy storage solutions becomes increasingly critical. Underground Hydrogen Storage (UHS) emerges as a promising option to bridge this gap. However the success of UHS heavily depends on the durability of infrastructure materials particularly cement in wellbores and in unlined rock caverns (URCs) where it serves a dual role in grouting and sealing. This study explores the chemical interactions between hydrogen and cement in these environments exploring how hydrogen might compromise cement integrity over time. We employed advanced thermodynamic analyses kinetic batch tests and 1D reactive transport models to simulate the behaviour of cement when exposed to hydrogen under conditions found in two potential UHS sites: the Haje URC in the Czech Republic and a depleted gas field in the Perth Basin Western Australia. Our results reveal that while certain cement phases are vulnerable to dissolution the overall increase in porosity is minimal suggesting a lower risk of significant degradation. Notably hydrogen was found to penetrate 5 cm of cement within just 4–5 days at both sites. These insights are crucial for enhancing the design and maintenance strategies of UHS facilities. Moreover this study not only advances our understanding of material sciences in the context of hydrogen energy storage but also underscores the importance of sustainable infrastructure in the transition away from fossil fuels.
Adaptive Hydrogen Fuel Cell Vehicle Scheduling Strategy Based on Traffic State Assessment in Power-Transportation Coupled Networks
Aug 2025
Publication
As the global demand for energy increases and the transition to renewable and clean sources accelerates microgrid (MG) has emerged as a promising solution. Hydrogen fuel cell vehicles (HFCVs) offer significant advantages over gasoline vehicles in terms of reducing carbon dioxide emissions. However the development of HFCVs is hindered by the substantial up-front costs of hydrogen refueling stations (HRSs) coupled with the high cost of hydrogen transportation and the limitations of the hydrogen supply chain. This research proposes a multimicrogrid (MMG) system that integrates hydrogen energy and utilizes it as the HRS for fuel vehicle refueling. An adaptive hydrogen energy management method is employed for fuel cell vehicles to optimize the coupling between the transportation network and the power system. An integrated transportation state assessment model is developed and a smart MMG system is deployed to receive information from the transportation network. Building on this foundation an adaptive hydrogen scheduling model is developed. HFCVs are influenced by the hydrogen price adjustments leading them to travel to different MGs for refueling which in turn regulates the unit output of the MMG system. The MMG system is then integrated with the IEEE 33 bus distribution system to analyze the daily load balance. This integrated approach results in reduced traffic congestion lower MG costs and optimized power distribution network load balance.
Is Green Hydrogen a Strategic Opportunity for Albania? A Techno-Economic, Environmental, and SWOT Analysis
Oct 2025
Publication
Hydrogen is increasingly recognized as a clean energy vector and storage medium yet its viability and strategic role in the Western Balkans remain underexplored. This study provides the first comprehensive techno-economic environmental and strategic evaluation of hydrogen production pathways in Albania. Results show clear trade-offs across options. The levelized cost of hydrogen (LCOH) is estimated at 8.76 €/kg H2 for grid-connected 7.75 €/kg H2 for solar and 7.66 €/kg H2 for wind electrolysis—values above EU averages and reliant on lower electricity costs and efficiency gains. In contrast fossil-based hydrogen via steam methane reforming (SMR) is cheaper at 3.45 €/kg H2 rising to 4.74 €/kg H2 with carbon capture and storage (CCS). Environmentally Life Cycle Assessment (LCA) results show much lower Global Warming Potential.
Techno-economic Evaluation of Retrofitting Power-to-methanol: Grid-connected Energy Arbitrage vs Standalone Renewable Energy
Aug 2025
Publication
The power-to-methanol (PtMeOH) will play a crucial role as a form of renewable chemical energy storage. In this paper PtMeOH techno-economics are assessed using the promising configuration from the previous work (Mbatha et al. [1]). This study evaluated the effect of parameters such as the CO2 emission tax electricity price and CAPEX reduction on the product methanol economic parity with respect to a reference case. Superior to previous economic studies a scenario where an existing methanol synthesis infrastructure is 100 % retrofitted with the promising electrolyser is assessed in terms of its economics and the associated economic parity. The volatile South African electricity market is considered as a case study. The sensitivity of the PtMeOH and green H2 profitability are checked. Grid-connected and standalone renewable energy PtMeOH scenarios are assessed. Foremost generalisable effect trends of these parameters on the net present value (NPV) and the levelized cost of methanol(LCOMeOH) and H2 (LCOH2) are discussed. The results show that economic parity of H2 (LCOH2 = current selling price = 4.06 €/kg) can be reached with an electricity price of 30 €/MWh and 70 % of the CAPEX. While the LCOMeOH will still be above 2 €/kg at 80 % of the CAPEX and electricity price of 20 €/MWh. This indicates that even if the CAPEX reduces to 20 % of its original in this study and the electricity price reduces to about 20 €/MWh the LCOMEOH will still not reach economic parity (LCOMeOH > current selling price = 0.44 €/kg). The results show that to make the retrofitted plant with a minimum of 20 years of life span profitable a feasible reduction in the electricity price to below 10 €/MWh along with favourable incentives such as CO2 credit and reduction in CAPEX particularly that of the electrolyser and treatment of the PtMeOH as a multiproduct plant will be required.
Reviewing Sector Coupling in Offshore Energy System Integration Modelling: The North Sea Context
Dec 2024
Publication
Offshore energy system integration is particularly important for realising a rapid and cost-effective low-carbon energy transition in the North Sea region. Effective implementation of strategies that require collaboration be tween countries developers and operators must be underpinned by robust and comprehensive modelling results. Intra-system interactions and diversity of sectors needed to facilitate the energy transition must be adequately captured within whole-system models. Historically consideration of the offshore energy environment within macro-scale models has been supplementary to the onshore system. However increased deployment of offshore wind focus on geological storage for energy security and technological development and investment in hydrogen and carbon storage projects highlights the importance of expanding the role of the offshore system within modelling. This study presents a comprehensive investigation of energy system integration challenges within offshore system modelling and how these define the requirements of the employed methodology. The findings suggest large-scale offshore system modelling studies typically include few energy vectors limited spatial resolution and simplified network flow characteristics. Despite the North Sea focus these challenges reflect fundamental barriers within large-scale offshore energy system modelling and thus extend to similar offshore contexts globally. Key approaches are identified to maximise sectoral and technological diversity while maintaining sufficient temporal and spatial resolution to suitably represent the evolving offshore system are identified. We make concrete suggestions for future work in this field based on identified best practice among the reviewed literature.
No more items...