Publications
Use of Depleted Oil and Gas Reservoirs as Bioreactors to Produce Hydrogen and Capture Carbon Dioxide
Aug 2025
Publication
The biological production of hydrogen offers a renewable and potentially sustainable alternative for clean energy generation. In Northeast Brazil depleted oil reservoirs (DORs) present a unique opportunity to integrate biotechnology with existing fossil fuel infrastructure. These subsurface formations rich in residual hydrocarbons (RH) and native H2 producing microbiota can be repurposed as bioreactors for hydrogen production. This process often referred to as “Gold Hydrogen” involves the in situ microbial conversion of RH into H2 typically via dark fermentation and is distinct from green blue or grey hydrogen due to its reliance on indigenous subsurface biota and RH. Strategies include nutrient modulation and chemical additives to stimulate native hydrogenogenic genera (Clostridium Petrotoga Thermotoga) or the injection of improved inocula. While this approach has potential environmental benefits such as integrated CO2 sequestration and minimized surface disturbance it also presents risks namely the production of CO2 and H2S and fracturing which require strict monitoring and mitigation. Although infrastructure reuse reduces capital expenditures achieving economic viability depends on overcoming significant technical operational and biotechnological challenges. If widely applied this model could help decarbonize the energy sector repurpose legacy infrastructure and support the global transition toward low-carbon technologies.
Robust Operation of Electric–Heat–Gas Integrated Energy Systems Considering Multiple Uncertainties and Hydrogen Energy System Heat Recovery
Aug 2025
Publication
Due to the high cost of hydrogen utilization and the uncertainties in renewable energy generation and load demand significant challenges are posed for the operation optimization of hydrogen-containing integrated energy systems (IESs). In this study a robust operational model for an electric–heat–gas IES (EHG-IES) is proposed considering the hydrogen energy system heat recovery (HESHR) and multiple uncertainties. Firstly a heat recovery model for the hydrogen system is established based on thermodynamic equations and reaction principles; secondly through the constructed adjustable robust optimization (ARO) model the optimal solution of the system under the worst-case scenario is obtained; lastly the original problem is decomposed based on the column and constraint generation method and strong duality theory resulting in the formulation of a master problem and subproblem with mixed-integer linear characteristics. These problems are solved through alternating iterations ultimately obtaining the corresponding optimal scheduling scheme. The simulation results demonstrate that our model and method can effectively reduce the operation and maintenance costs of HESHR-EHG-IES while being resilient to uncertainties on both the supply and demand sides. In summary this study provides a novel approach for the diversified utilization and flexible operation of energy in HESHR-EHG-IES contributing to the safe controllable and economically efficient development of the energy market. It holds significant value for engineering practice.
Techno-economic Analysis of Hydrogen Production in the Sugarcane Industry by Steam Reforming of Ethanol with Carbon Capture
Feb 2025
Publication
Renewable hydrogen production is a pivotal technology in transitioning to sustainable energy and is essential for global decarbonisation efforts. This study explores the integration of hydrogen production into sugarcane bio refineries which have shifted from traditional sugar production to integrated bioenergy hubs. Specifically steam reforming of ethanol was selected as the process for hydrogen generation. A comprehensive techno-economic analysis was developed to address research gaps and guide future work. A scenario of hydrogen production coupled with carbon capture was analysed illustrating the potential to reduce the carbon footprint and utilise carbon dioxide for producing chemicals. The minimum selling price for hydrogen was determined to be 4.6 US $/kg for the base case scenario and 4.9 US$/kg for the comparison scenario with carbon capture positioning it below the current average market price of 7.2 US$/kg. The capital and operating expenditures were determined to be US$ 273.1 million and 157.8 million for a 42400 t/y hydrogen plant and integrating carbon capture considering 282800 t/y of carbon co-product yield was calculated at US$ 344.1 million and US$ 167.8 million respectively. This dual approach of hydrogen production and carbon capture presents a strategy for imple menting low-carbon processes that future biorefineries may consider. The primary impact highlighted by this integration is the enhancement of the sugarcane biorefineries’ value proposition leveraging undervalued energy sources such as electricity and biogas. This study underscores the economic and environmental benefits of incorporating hydrogen production into sugarcane biorefineries on a large scale offering a framework for future research and technological development.
Functionalization of Nanomaterials for Energy Storage and Hydrogen Production Applications
Feb 2025
Publication
This review article provides a comprehensive overview of the pivotal role that nanomaterials particularly graphene and its derivatives play in advancing hydrogen energy technologies with a focus on storage production and transport. As the quest for sustainable energy solutions intensifies the use of nanoscale materials to store hydrogen in solid form emerges as a promising strategy toward mitigate challenges related to traditional storage methods. We begin by summarizing standard methods for producing modified graphene derivatives at the nanoscale and their impact on structural characteristics and properties. The article highlights recent advancements in hydrogen storage capacities achieved through innovative nanocomposite architectures for example multi-level porous graphene structures containing embedded nickel particles at nanoscale dimensions. The discussion covers the distinctive characteristics of these nanomaterials particularly their expansive surface area and the hydrogen spillover effect which enhance their effectiveness in energy storage applications including supercapacitors and batteries. In addition to storage capabilities this review explores the role of nanomaterials as efficient catalysts in the hydrogen evolution reaction (HER) emphasizing the potential of metal oxides and other composites to boost hydrogen production. The integration of nanomaterials in hydrogen transport systems is also examined showcasing innovations that enhance safety and efficiency. As we move toward a hydrogen economy the review underscores the urgent need for continued research aimed at optimizing existing materials and developing novel nanostructured systems. Addressing the primary challenges and potential future directions this article aims to serve as a roadmap to enable scientists and industry experts to maximize the capabilities of nanomaterials for transforming hydrogen-based energy systems thus contributing significantly to global sustainability efforts.
Research on Coordinated Control of Power Distribution in Hydrogen-Containing Energy Storage Microgrids
Feb 2025
Publication
The integration of renewable energy sources such as wind and solar power at high proportions has become an inevitable trend in the development of power systems under the new power system framework. The construction of a microgrid system incorporating hydrogen energy storage and battery energy storage can leverage the complementary advantages of long-term and short-term hybrid storage achieving power and energy balance across multiple time scales in the power system. To prevent frequent startstop cycles of hydrogen storage devices and lithium battery storage under overcharge and overdischarge conditions a coordinated control strategy for power distribution in a microgrid with hydrogen storage is proposed. First a fuzzy control algorithm is used for power distribution between hydrogen storage and lithium battery storage. Then the hydrogen storage tank’s state of health (SOH) and the lithium battery’s state of charge (SOC) are compared with the goal of selecting a multi-stack fuel cell system operating at its optimal efficiency point where each fuel cell stack outputs 10 kW. This further ensures that the SOC and SOH remain within reasonable ranges. Finally simulations are conducted in MATLAB/Simulink R2018b to verify that the proposed strategy maintains stability in the DC bus and alleviates issues of overcharge and overdischarge ensuring that both the system’s SOC and SOH remain within a reasonable range thereby enhancing equipment lifespan and system stability
Probabilistic Analysis of Electricity Production from a Photovoltaic–Wind Energy Mix for Sustainable Transport Needs
Nov 2024
Publication
Renewable Energy Sources (RESs) are characterized by high unevenness cyclicality and seasonality of energy production. Due to the trends in the production of electricity itself and the utilization of hydrogen distributed generation systems are preferred. They can be connected to the energy distribution network or operate without its participation (off-grid). However in both cases such distributed energy sources should be balanced in terms of power generation. According to the authors it is worth combining different RESs to ensure the stability of energy production from such a mix. Within the mix the sources can complement and replace each other. According to the authors an effective system for generating energy from RESs should contain at least two different sources and energy storage. The purpose of the analyses and calculations performed is to determine the characteristics of energy generation from a photovoltaic system and a wind turbine with a specific power and geographical location in the Lublin region in Poland. Another important goal is to determine the substitutability of the sources studied. Probabilistic analysis will be used to determine the share of given energy sources in the energy mix and will allow us to estimate the size of the stationary energy storage. The objective of these procedures is to strive for the highest possible share of renewable energy in the total energy required to charge electric vehicle fleets and to produce low-emission hydrogen for transportation. The article proves that the appropriately selected components of the photovoltaic and wind energy mix located in the right place lead to the self-balancing of the local energy network using a small energy storage. The conclusions drawn from the conducted research can be used by RES developers who intend to invest in new sources of power generation to produce low-emission hydrogen. This is in line with the current policy of the European Union aimed at climate and energy transformation of many companies using green hydrogen.
Multidimensional Comparison of Life Cycle Footprint of Hydrogen Production Technologies
Feb 2025
Publication
Hydrogen as an energy carrier will play an important role in the future in achieving sustainable development goals in the energy and mobility sectors as well as to reach decarbonization goals. Currently adopted hydrogen strategies foresee a significant increase in the amount of hydrogen used in the future. To meet this increased volume in the most sustainable way a careful analysis of potential hydrogen production technologies is necessary considering real environmental impacts. This paper provides a comprehensive overview of different non-renewable and renewable hydrogen production technologies and evaluates their environmental effects based on global warming potential (GWP). Environmental footprint data discussed in this paper are based on published life-cycle assessment (LCA) results. As direct comparison of LCA results is difficult due to different LCA scenarios selected system boundaries various material components and manufacturing techniques a novel multidimensional comparison approach was developed to understand LCA results better and to give a more comprehensive picture of environmental footprint components. In addition to methodological issues the key influencing factors of the carbon footprint of different hydrogen production technologies were also identified. It is not possible to identify one stand-alone technology that would be the most environmentally friendly in all circumstances it is essential to investigate all the technologies in the given context of use. Regarding watersplitting it is outstandingly crucial to examine the source of the electricity because it strongly influences the GWP of this H2 production technology. If the GWP of the electricity is high this technology could be more harmful to the environment than the steam methane reforming (SMR).
Electrifying with High-Temperature Water Electrolysis to Produce Syngas from Wood via Oxy-Gasification, Leading to Superior Carbon Conversion Yield for Methanol Synthesis
Mar 2021
Publication
Due to concerns regarding fossil greenhouse gas emissions biogenic material such as forest residues is viewed nowadays as a valuable source of carbon atoms to produce syngas that can be used to synthesise biofuels such as methanol. A great challenge in using gasified biomass for methanol production is the large excess of carbon in the syngas as compared to the H2 content. The water–gas shift (WGS) reaction is often used to add H2 and balance the syngas. CO2 is also produced by this reaction. Some of the CO2 has to be removed from the gaseous mixture thus decreasing the process carbon yield and maintaining CO2 emissions. The WGS reaction also decreases the overall process heat output. This paper demonstrates the usefulness of using an extra source of renewable H2 from steam electrolysis instead of relying on the WGS reaction for a much higher performance of syngas production from gasification of wood in a simple system with a fixed-bed gasifier. A commercial process simulation software is employed to predict that this approach will be more efficient (overall energy efficiency of about 67%) and productive (carbon conversion yield of about 75%) than relying on the WGS reaction. The outlook for this process that includes the use of the solid oxide electrolyser technology appears to be very promising because the electrolyser has the dual function of providing all of the supplemental H2 required for syngas balancing and all the O2 required for the production of a suitable hot raw syngas. This process is conducive to biomethanol production in dispersed small plants using local biomass for end-users from the same geographical area thus contributing to regional sustainability.
An Overview of Photocatalyst Eco-design and Development for Green Hydrogen Production
Feb 2024
Publication
Photocatalysis emerged as a promising alternative to address fossil fuel scarcity and the limitations of other clean energy sources. Photocatalysis enables hydrogen production via water splitting using photocatalysts and light irradiation which can be stored and utilized across various applications. Photocatalysis has exhibited significant improvements and promising yields in hydrogen production surpassing its initial stages. The current photocatalyst market offers diverse materials with unique characteristics and continuous evolution is observed in their synthesis methods. This contribution aims to compile recent literature on advancements in photocatalysts for hydrogen production with particular emphasis on photocatalyst type hydrogen production performance and market trends.
From LNG to LH2 in Maritime Transport: A Review of Technology, Materials, and Safety Challenges
Sep 2025
Publication
The adoption of low-carbon fuels in maritime propulsion requires operational autonomy material suitability and compliance with safety standards making liquid fuels like LNG and LH2 the most viable options. LNG is widely used for reducing GHG NOx and SOx emissions while LH2 though new to the maritime sector leverages aerospace experience. This paper explores the operational requirements and challenges of LH2 cryogenic handling systems using LNG practices as a reference. Key comparisons are made between LNG and LH2 supply systems focusing on cryogenic materials hydrogen embrittlement and structural integrity under maritime conditions. Most maritime-approved materials are suitable for cryogenic use and hydrogen embrittlement is less critical at cryogenic temperatures due to reduced atomic mobility. Risk assessments suggest LH2’s safety record stems from limited operational data rather than superior inherent safety. The paper also addresses crucial safety and regulatory considerations for both fuels underscoring the need for strict adherence to standards to ensure the safe and compliant integration of LH2 in the maritime industry.
Solid Oxide Fuel Cells for Marine Applications
May 2023
Publication
The marine industry must reduce emissions to comply with recent and future regulations. Solid oxide fuel cells (SOFCs) are seenas a promising option for efficient power generation on ships with reduced emissions. However it is unclear how the devices canbe integrated and how this affects the operation of the ship economically and environmentally. This paper reviews studies thatconsider SOFC for marine applications. First this article discusses noteworthy developments in SOFC systems includingpower plant options and fuel possibilities. Next it presents the design drivers for a marine power plant and explores how anSOFC system performs. Hereafter the possibilities for integrating the SOFC system with the ship are examined alsoconsidering economic and environmental impact. The review shows unexplored potential to successfully integrate SOFC withthermal and electrical systems in marine vessels. Additionally it is identified that there are still possibilities to improve marineSOFC systems for which a holistic approach is needed for design at cell stack module and system level. Nevertheless it isexpected that hybridisation is needed for a technically and economically feasible ship. Despite its high cost SOFC systemscould significantly reduce GHG NO X SO X PM and noise emissions in shipping
Systematic Evaluation of Physicochemical Properties for the Selection of Alternative Liquid Organic Hydrogen Carriers
Jan 2023
Publication
Chemical hydrogen storage is a key step for establishing hydrogen as a main energy vector. For this purpose liquid organic hydrogen carriers (LOHCs) present the outstanding advantage of allowing a safe efficient and high-density hydrogen storage being also highly compatible with existing transport infrastructures. Typical LOHCs are organic compounds able to be hydrogenated and dehydrogenated at mild conditions enabling the hydrogen storage and release respectively. In addition the physical properties of these chemicals are also critical for practical implementation. In this work key properties of potential LOHCs of three different chemical families (homoaromatics and Nand O-heteroaromatics) are estimated using molecular simulations. Thus density viscosity vapour pressure octanol-water coefficient melting point flash point dehydrogenation enthalpy and hydrogen content are estimated using the programs COSMO-RS and HYSYS. In addition we have also evaluated the performance of several binary mixtures as LOHCs using these methodologies. Considering the hydrogen content characteristic temperatures and previous experimental results of the cyclic process; our simulation results suggest that 1-methylnaphthalene/1-methyldecahydronaftalene and methylbenzylpyridine/perhydromethylbenzylpyridine pairs are appropriate candidates for chemical hydrogen storage. Binary mixtures of LOHCs are also relevant alternatives since substances with a great potential can be used as LOHCS when dissolved. That is the case of naphthalene and 1-methyl-naphthalene mixtures or indoles dissolved in benzene or benzylbenzene. Concerning O-compounds although several pairs could be used as LOHCs thermodynamic and kinetic feasibility of the hydrogenation/dehydrogenation cycles must be better studied.
Numerical Investigation for Hazardous Gas Cloud Form and Dissipation of Hydrogen-blended Natural Gas in a Confined Space
Jan 2025
Publication
The safety of hydrogen-blended natural gas (HBNG) in a confined space is an issue especially for ventilation processes. In this study leakage and ventilation processes of low-pressure HBNG with different hydrogen-blended ratio (HBR) in a confined space are simulated and validated by experiment based on similarity criteria. For the leakage process the leak direction and HBR do not significantly affect gas accumulation behaviour. The required time for a gas cloud to fill space decreases slightly with HBR rising and they generally show a linear relationship. For the ventilation process the main influences on the leakage process are the total leakage mass and the ventilation conditions. The required time for hazardous gas cloud dissipation increases with total leakage mass and decreases with HBR. For different ventilation conditions the ranking of required time to exhaust leaked gas is low > centre > high > mix. Through the analysis of pressure distribution it is found time difference is produced by different airflow patterns. With the asymmetric layout outside air rushes into the confined space from the high side and then flows out from the low side carrying the leaked HBNG. These findings inform the design of ventilation for HBNG utilization scenarios like restaurant facing the street.
Conceptual Design and Comprehensive Study of a Dual-mode Engine Intgrated with Hydrogen Fuel Cells and Gas Turbines for Wide-body Aircraft
Sep 2025
Publication
This paper proposes a novel dual-fuel dual-mode dual-thermodynamic cycle aviation propulsion system for the first time and conducts theoretical research on it based on a moderately simplified mathematical model. It is specifically designed to significantly reduce carbon emissions for wide-body aircraft. A comprehensive thermodynamic model is developed for this hybrid power system which integrates a high-temperature proton exchange membrane fuel cell with a dual-rotor turbofan engine. The matching characteristics between aircraft and engine performance are analyzed by systematically varying the fuselage length of the dual-fuel aircraft configuration. Results show that the specific fuel consumption of the proposed engine is decreased by 12.6% compared with that of the traditional turbofan engine as the Mach number increases. Conversely as the relative physical rotational speed decreases the thrust of the novel engine is increased by 10%. With a 20 % extension in fuselage length the dual-fuel aircraft operating on 100 % hydrogen fuel can achieve an endurance exceeding 17 h representing a 20 % endurance improvement over conventional aviation kerosene-powered aircraft. In this case the aircraft weight can be reduced by 96.79 tons and CO2 emissions can be decreased by 301.65 tons.
Control Strategy for Hydrogen Production System using HTO-based Hybrid Electrolyzers
Feb 2025
Publication
Renewable energy-based water electrolysis for hydrogen production is an effective pathway to achieve green energy transition. However the intermittency and randomness of renewable energy pose numerous challenges to the safe and stable operation of hydrogen production systems with the wide power fluctuation adaptability and economic efficiency of electrolyzers being prominent issues. Hybrid electrolyzers combine the operational characteristics of proton exchange membrane (PEM) and alkaline electrolyzers leveraging the advantages of both to improve adaptability to wide power fluctuations and economic efficiency thereby enhancing the overall system efficiency. To ensure coordinated operation of hybrid electrolyzers it is essential to consider their startstop characteristics and the impact of hydrogen to oxygen (HTO) concentration on the hydrogen production system. To achieve this we first discuss the operating characteristics of both types of electrolyzers and the in fluence of system parameters on HTO concentration. A control scheme for hybrid electrolyzer systems consid ering HTO content is proposed. By analyzing the electrolyzer efficiency curve the optimal efficiency point under low power operation is identified enabling the electrolyzers to operate at this optimal efficiency thus enhancing the efficiency of the hybrid electrolyzer system. The implementation of a dual-layer rotation control strategy effectively balances the lifecycle loss of the electrolyzers. Additionally reducing the pressure during startup broadens the startup range of the hybrid electrolyzer.
Integrative Assessment of Hydrogen-natural Gas Mixtures in Energy Grids: An Overview of the H2SAREA Project Experience
Jan 2025
Publication
This paper presents the results of the H2SAREA project which focuses on integrating hydrogen (H2) into the existing natural gas (NG) distribution network with blends of up to 20%. A key component of the project was the H2Loop testing platform built using ex-service materials and components to realistically assess the impact of hydrogen on current systems and components. The investigation covered several critical areas including gas injection and blending network capacity leak detection gas pressure regulation station (GPRS) performance valve and meter functionality materials compatibility permeation testing and gas deblending. Results show the feasibility of safely injecting up to 20% hydrogen into the existing system offering valuable insights to guide the transition of gas distribution networks toward a hydrogen-based energy future.
Risk Management in a Containerized Metal Hydride Storage System
Sep 2024
Publication
HyCARE project supported by the Clean Hydrogen Partnership of the European Union deals with a prototype hydrogen storage tank using a solid-state hydrogen carrier. Up to 40 kilograms of hydrogen are stored in 12 tanks at less than 50 barg and less than 100°C. The innovative design is based on a standard 20-foot container including 12 TiFe-based metal hydride (MH) hydrogen storage tanks coupled with a thermal energy storage in phase change materials (PCM). This article aims at showing the main risks related to hydrogen storage in a MH system and the safety barriers considered based on HyCARE’s specific risk analysis. Regarding the TiFe MH material used to store hydrogen experimental tests showed that the exposure of the MH to air or water did not cause spontaneous ignition. Furthermore an explosion within the solid MH cannot propagate due to internal pore size. Additionally in case of leakage the speed of hydrogen desorption from the MH is self-limited which is an important safety characteristic since it reduces the potential consequences from the hydrogen release. Regarding the integrated system the critical scenarios identified during the risk analysis were explosion due to release of hydrogen inside or outside the container internal explosion inside MH tanks due to accidental mix of hydrogen and air and asphyxiation due to inert gas accumulation in the container. The identification phase of risk analysis identified the most relevant safety barriers already in place and recommended additional ones if needed which were later implemented to further reduce the risk. The main safety barriers identified were material and component selection (including the MH selected) safety interlocks safety valves ventilation gas detection and safety distances. The risk management process based on risk identification and assessment contributed to coherently integrate inherently safe design features and safety barriers.
Thermodynamic Analysis of Gas Turbine Systems Fueled by a CH4/H2 Mixture
Jan 2025
Publication
In the coming years as a result of changing climate policies and finite fossil fuel resources energy producers will be compelled to introduce new fuels with lower carbon footprints. One of the solutions is hydrogen which can be burned or co-fired with methane in energy generation systems. Therefore this study presents a thermodynamic and emission analysis of a gas turbine fueled by a mixture of CH4 and H2 as well as pure hydrogen. Numerical studies were conducted for the actual operating parameters of the LM6000 gas turbine in both simple and combined cycles. Aspen Hysys and Chemkin-Pro 2023R1 commercial software were used for the calculations. It was demonstrated that with a constant turbine inlet temperature set at 1723 K the thermal efficiency increased from 39.4% to 40.2% for the gas turbine cycle and from 49% to 49.4% for the combined cycle gas turbine. Nitrogen oxides emissions were calculated using the reactor network revealing that an increase in H2 content above 20%vol. in the fuel leads to a significant rise in nitric oxides emissions. In the case of pure H2 emissions are more than three times higher than for CH4 . The main reason for this increase in emissions was identified as the greater presence of H O and OH radicals in the reaction zone causing an acceleration in the formation of nitric oxides.
Markov Decision Process for Current Density Optimization to Improve Hydrogen Production by Water Electrolysis
Jun 2025
Publication
Maximizing the hydrogen evolution reaction (HER) remains challenging due to its nonlinear kinetics and complex charge interactions within the electric double layer (EDL). This study introduces an adaptive current density control approach using a Markov Decision Process (MDP) to enhance HER performance in alkaline water electrolysis. The MDP algorithm dynamically adjusts current release timings from three capacitors connected to the cathode based on feedback from hydrogen concentration levels. Results show that this fluctuating control strategy is more effective than static or linearly increasing methods as it helps minimize overpotential reduce heat buildup and prevent hydrogen bubble accumulation. The MDP -optimized system achieved 7460 ppm in 60 minutes outperforms the control condition (5802 ppm ) produced under uncontrolled conditions. This work highlights a novel application of reinforcement learning to actively regulate electrochemical parameters offering a promising mechanism for improving electrolyzer efficiency.
Investigating the Investments Required to Transition New Zealand’s Heavy-Duty Vehicles to Hydrogen
Mar 2021
Publication
Reducing greenhouse gas emissions in the transport sector is known to be an important contribution to climate change mitigation. Some parts of the transport sector are particularly difficult to decarbonize; this includes the heavy-duty vehicle sector which is considered one of the “hardto-abate” sectors of the economy. Transitioning from diesel trucks to hydrogen fuel cell trucks has been identified as a potential way to decarbonize the sector. However the current and future costs and efficiencies of the enabling technologies remain unclear. In light of these uncertainties this paper investigates the investments required to decarbonize New Zealand’s heavy-duty vehicle sector with green hydrogen. By combining system dynamics modelling literature and hydrogen transition modelling literature a customized methodology is developed for modelling hydrogen transitions with system dynamics modelling. Results are presented in terms of the investments required to purchase the hydrogen production capacity and the investments required to supply electricity to the hydrogen production systems. Production capacity investments are found to range between 1.59 and 2.58 billion New Zealand Dollars and marginal electricity investments are found to range between 4.14 and 7.65 billion New Zealand Dollars. These investments represent scenarios in which 71% to 90% of the heavy-duty vehicle fleet are replaced with fuel cell trucks by 2050. The wide range of these findings reflects the large uncertainties in estimates of how hydrogen technologies will develop over the course of the next thirty years. Policy recommendations are drawn from these results and a clear opportunity for future work is outlined. Most notably the results from this study should be compared with research investigating the investments required to decarbonize the heavy-duty vehicle sectors with alternative technologies such as battery-electric trucks biodiesel and catenary systems. Such a comparison would ensure that the most cost effective decarbonization strategy is employed.
Genetic Algorithm-Based Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles
Aug 2025
Publication
Enhancing system durability and fuel economy stands as a crucial factor in the energy management of fuel cell hybrid vehicles. This paper proposes an Equivalent Consumption Minimization Strategy (ECMS) based on the Genetic Algorithm (GA) aiming to minimize the overall operating cost of the system. First this study establishes a dynamic model of the hydrogen–electric hybrid vehicle a static input–output model of the hybrid power system and an aging model. Next a speed prediction method based on an Autoregressive Integrated Moving Average (ARIMA) model is designed. This method fits a predictive model by collecting historical speed data in real time ensuring the robustness of speed prediction. Finally based on the speed prediction results an adaptive Equivalence Factor (EF) method using a GA is proposed. This method comprehensively considers fuel consumption and the economic costs associated with the aging of the hydrogen–electric hybrid system forming a total operating cost function. The GA is then employed to dynamically search for the optimal EF within the cost function optimizing the system’s economic performance while ensuring real-time feasibility. Simulation outcomes demonstrate that the proposed energy management strategy significantly enhances both the durability and fuel economy of the fuel cell hybrid vehicle.
Consequence Analysis of Liquid Hydrogen Leakage from Storage Tanks at Urban Hydrogen Refueling Stations: A Case Study
Aug 2025
Publication
Hydrogen energy is considered a crucial clean energy carrier for replacing fossil fuels in the future. Liquid hydrogen (LH2) with its economic advantages and high purity is central to the development of future hydrogen refueling stations (HRSs). However leakage poses significant fire and explosion risks challenging its safe industrial use. In this study a numerical model of LH2 leakage at an HRS in Chongqing was established using Computational Fluid Dynamics (CFD) software. The diffusion law of a flammable gas cloud (FGC) was examined under the synergistic effect of the leakage direction rate and wind speed of an LH2 storage tank in an HRS. The phase transition of LH2 presents dual risks of combustion and frostbite owing to the spatial overlap between low-temperature areas and FGCs. The findings revealed that the equivalent stoichiometric gas cloud volume (Q9) reached 685 m3 in the case of crosswind leakage with the superimposed effect of reflected waves from the LH2 transport vehicle resulting in a peak explosion overpressure of 0.61 bar. The low-temperature hazard area and the FGC (with a concentration of 30–75%) show significant spatial overlap. These research outcomes offer crucial theoretical underpinning for enhancing equipment layout optimization and safety protection strategies at HRSs.
Hydrogen Production by Water Electrolysis Driven by a Photovoltaic Source: A Review
May 2024
Publication
The integration of water electrolyzers and photovoltaic (PV) solar technology is a potential development in renewable energy systems offering new avenues for sustainable energy generation and storage. This coupling consists of using PV-generated electricity to power water electrolysis breaking down water molecules into hydrogen and oxygen. While oxygen is a useful byproduct the created hydrogen is used as a clean storable energy carrier or feedstock for numerous businesses. It is possible to operate the device with or without battery storage. When solar energy is combined with batteries excess solar energy may be stored for later use maximizing energy efficiency and guaranteeing a steady supply of electricity even in the absence of direct sunlight. On the other hand battery-free systems depend on the electrolyzer’s continuous power generation to convert solar energy into hydrogen during the day. In addition to allowing for the production of renewable hydrogenthis hybrid PV-solar and water electrolyzer setup contributes to grid stability by offering demand-side flexibility. Moreover the modularity of these systems enables scalability to meet diverse energy requirements spanning from residential to industrial applications thereby fostering a cleaner and more sustainable energy landscape. This review delves into various topologies for PV-driven electrolysis and conducts a thorough exploration of the dynamics of low-temperature water electrolyzers. Specifically it examines their integration with three primary technologies: Proton Exchange Membrane Alkaline and Anion Exchange Membrane shedding light on their implications for the broader integration landscape. Through detailed analysis and insights this study enriches the understanding of the potential and challenges inherent in the convergence of PV solar water electrolysis and renewable energy systems.
Catalysis as a Driver for Sustainable Technologies in Africa - A Perspective by the Catalysis Institute at the University of Cape Town
Mar 2023
Publication
One of the biggest global challenges we are facing today is the provision of affordable green and sustainable energy to a growing population. Enshrined in multiple United Nation Sustainable Development Goals – Goal 7: Affordable and Clean Energy; Goal 11: Sustainable Cities and Communities; Goal 12: Responsible Consumption and Production and Goal 13: Climate Action – as well as at the core of the Paris Agreement it is our task as scientists and engineers to develop innovative technologies that satisfy society’s needs while pivoting away from the use of fossil resources. This is a mammoth task with an ambitious timeline. The global development of the industrial sector as we know it is solely based on the exploitation of energy-rich fossil fuels that remain cost-competitive today. However a gradual change from a market driven to a policy-driven transition allows alternative technologies to make inroads and find applications. One of the most prominently discussed approaches is the Power-to-X (PtX) process envelope. It describes a series of catalytic conversions using only renewable energy water and captured CO2 to produce green hydrogen liquid hydrocarbon fuels and chemicals. Especially for sectors that are difficult or impossible to decarbonise such processes that effectively defossilising the production of energy and goods represent an important solution. The Catalysis Institute at the University of Cape Town (herein/after referred to as the Catalysis Institute) builds on decades of experience in the individual catalytic processes combined in the PtX concept. In collaboration with our global partners we are therefore able to develop technologies for the full value chain considering interdependencies and develop solutions for the African and indeed global society.
Optimization of Baseload Electricity and Hydrogen Services by Renewables for a Nuclear-sized District in South Italy
Nov 2024
Publication
We present an optimization model of an energy district in South Italy that supplies baseload electricity and hydrogen services. The district is sized such that a nuclear reactor could provide these services. We define scenarios for 2050 to explore the system effects of discount rate sensitivity vetoes on technologies and cost uncertainties. We address the following issues relevant to decarbonization in South Italy: land-based wind and solar vs. exclusive solar rooftop extra cost of a veto on nuclear conservative assumptions on future storage technology and the role of pumped hydro storage lack of low-cost geological storage of hydrogen and the industrial competitiveness of this carrier and the methanation synergy with the agroforestry sector. Our results quantify the high system cost of vetoes on land-based wind and solar. Nuclear may enter the optimal mix only with a veto against onshore wind and a hypothesis of equal project risk hence an equal discount rate with renewables. Scenarios with land-based wind and solar obtain low-cost hydrogen and thus allow industrial uses for this carrier. The methanation synergy with the agroforestry sector does not offer a system cost advantage but improves the district’s configuration. The extra cost of full decarbonization relative to unregulated fossil gas is small with land-based wind and solar and significant with vetoes to these technologies.
Spray Cooling for Enhancing Cooling Performance and Reducing Power Consumption of Radiator in Hydrogen Fuel Cell System
Feb 2025
Publication
During the development of hydrogen fuel cell systems with the augmentation of power conventional air-cooling systems which are frequently employed in portable scenarios encounter difficulties in maintaining the balance between radiator heat dissipation and power consumption. In contrast liquid-cooling systems are widely adopted in high-power applications. In this regard aiming to address the heat dissipation problem and make use of the wastewater from the stack tailpipe a novel spray cooling system integrated with the traditional air-cooling for the radiator of hydrogen fuel cell systems is put forward. Through experimental investigations based on heat transfer theory and the design principles of fuel cell systems it is discovered that under specific nozzle apertures and spray water pressures the heat dissipation rate can be enhanced by 40 % and 30 % respectively. With particular radiator internal water flow rates and fan speeds the heat dissipation rate can be increased by 30 % and 108 % respectively. And the spray angle of 60 ◦ is the best angle. In contrast to the conventional air-cooling system the spray-air cooling system exhibits a heat dissipation rate that is approximately 50 % higher. Exper imental analyses demonstrate that the new system effectively harnesses water resources and enhances the heat dissipation performance of the radiator thereby providing a technical reference for the application of spray cooling in the radiators of hydrogen fuel cell systems.
Fuel Cell Technology in the European Union - Status Report on Technology Development, Trends, Vlue Chains & Markets
Jan 2024
Publication
This report is an output of the Clean Energy Technology Observatory (CETO). CETO's objective is to provide an evidence-based analysis feeding the policy making process and hence increasing the effectiveness of R&I policies for clean energy technologies and solutions. It monitors EU research and innovation activities on clean energy technologies needed for the delivery of the European Green Deal; and assesses the competitiveness of the EU clean energy sector and its positioning in the global energy market. CETO is being implemented by the Joint Research Centre for DG Research and Innovation in coordination with DG Energy.
Cost-effect Scheduling of a Hydrogen-based Iron and Steel Plant Powered by a Grid-assisted Renewable Energy System
Feb 2025
Publication
The iron and steel industry contributes approximately 25% of global industrial CO2 emissions necessitating substantial decarbonisation efforts. Hydrogen-based iron and steel plants (HISPs) which utilise hydrogen-based direct reduction of iron ore followed by electric arc furnace steelmaking have attracted substantial research interest. However commercialisation of HISPs faces economic feasibility issues due to the high electricity costs of hydrogen production. To improve economic feasibility HISPs are jointly powered by local renewable generators and bulk power grid i.e. by a grid-assisted renewable energy system. Given the variability of renewable energy generation and time-dependent electricity prices flexible scheduling of HISP production tasks is essential to reduce electricity costs. However cost-effectively scheduling of HISP production tasks is non-trivial as it is subject to critical operational constraints arising from the tight coupling and distinct operational characteristics of HISPs sub-processes. To address the above issues this paper proposes an integrated resource-task network (RTN) to elaborately model the critical operational constraints such as resource balance task execution and transfer time. More specifically each sub-process is first modelled as an individual RTN which is then seamlessly integrated through boundary dependency constraints. By embedding the formulated operational constraints into optimisation a cost-effective scheduling model is developed for HISPs powered by the grid-assisted renewable energy system. Numerical results demonstrate that compared to conventional scheduling approaches the proposed method significantly reduces total operational costs across various production scales.
Systematic Analysis of the Hydrogen Value Chain from Production to Utilization
Jul 2025
Publication
Hydrogen produced from renewable sources has the potential to tackle various energy challenges from allowing cost-effective transportation of renewable energy from production to consumption regions to decarbonizing intensive energy consumption industries. Due to its application versatility and non-greenhouse gaseous emissions characteristics it is expected that hydrogen will play an important role in the decarbonization strategies set out for 2050. Currently there are some barriers and challenges that need to be addressed to fully take advantage of the opportunities associated with hydrogen. The present work aims to characterize the state of the art of different hydrogen production storage transport and distribution technologies which compose the hydrogen value chain. Based on the information collected it was possible to conclude the following: (i) Electrolysis is the frontrunner to produce green hydrogen at a large scale (efficiency up to 80%) since some of the production technologies under this category have already achieved a commercially available state; (ii) in the storage phase various technologies may be suitable based on specific conditions and purposes. Technologies of the physical-based type are the ones mostly used in real applications; (iii) transportation and distribution options should be viewed as complementary rather than competitive as the most suitable option varies based on transportation distance and hydrogen quantity; and (iv) a single value chain configuration cannot be universally applied. Therefore each case requires a comprehensive analysis of the entire value chain. Methodologies like life cycle assessment should be utilized to support the decision-making process.
An Innovatively Designed Community-based Hybrid Energy System to Generate its Needs of Electricity, Heat, Hot Water and Hydrogen in a Sustainable Manner
Jun 2025
Publication
This study introduces an innovative nuclear-biomass integrated energy and cleaner production multigeneration system incorporating sonohydrogen technology and a desalination unit for the sustainable and efficient production of hydrogen electricity hot water and heat. A small modular nuclear reactor acts as the primary energy source ensuring stable and low-carbon power generation while enhancing hydrogen yield through sonochemical processes. Biomass-derived biogas is strategically utilized for both electricity generation and hydrogen production via steam methane reforming. The heat wasted in the system is efficiently utilized. A high-performance multistage flash desalination unit converts some of the waste heat into desalinated seawater. In addition a portion of the waste heat is utilized for heat production. The results of this study show that the overall energy and exergy efficiencies of the integrated system are 82.7 % and 68.3 % respectively. Through detailed energy and exergy assessments the study demonstrates the feasibility of the proposed system in enhancing energy conversion efficiency improving waste heat utilization and increasing sustainability. In addition the results of the cost assessment show that the integrated energy system is economically viable in the long term with hydrogen production driving substantial annual revenue and profitability projected within the first decade of operation. The findings highlight the system’s potential to contribute to cleaner energy production by reducing greenhouse gas emissions maximizing resource efficiency and advancing hydrogen and freshwater production technologies.
How the Boundaries of the Supply Chain Affect Climate Profile: The Case of Renewable Electricity and Green Hydrogen for Italy and the UK
Feb 2025
Publication
Green hydrogen obtained from renewable electricity can play an essential role in the decarbonization of different sectors. The reliability of the data used to model the entire supply chain is a crucial parameter in Life Cycle Assessment. In this study the authors show how photovoltaic and wind electricity supply chains influence the carbon footprint of green H2. While most published studies rely on default datasets from commercial libraries the current work exploits the actual supply chain of the PV panels and builds an updated average European wind turbine supply chain. The updated values for PV-based H2 experiencing a 40–60% reduction are 2.7 and 1.8 kg CO2 eq./kg H2 for the UK and Italy. The carbon footprint of UK offshore wind-based H2 can be reduced up to 24% and get close to 0.6 kg CO2 eq./kg H2. The findings emphasize the sensitivity of the final climate profile generated by the processes upstream of the electrolysis system.
Roadmap for the Decarbonization of Domestic Passenger Ferries in the Republic of Korea
Feb 2025
Publication
This study examines the steps to lower air emissions in South Korea’s domestic shipping sector. It highlights the significant contributions of the sector to air pollution and greenhouse gas emissions emphasizing its impact on environmental sustainability and climate change mitigation. By looking at the current shipping energy use and emissions the research identifies ways to reduce the environmental impact of domestic shipping. Data was collected from domestic ferry routes and the fuel use was reviewed with respect to existing global technologies for reducing emissions. The results show that operational changes and current energy-efficient technologies can quickly cut emissions. Furthermore a long-term plan is suggested involving the development of new ship designs and the use of net-zero fuels like biofuels methanol hydrogen and ammonia. These efforts aim to meet climate goals targeting a 40% reduction in greenhouse emissions by 2030 and a 70% reduction by 2050 making South Korea’s shipping industry more sustainable and resilient.
A Review of Influence of Hydrogen on Fracture Toughness and Mechanical Properties of Gas Transmission Pipeline Steels
Jan 2025
Publication
The existing gas transmission pipeline network can be a convenient and cost-effective way to transport hydrogen. However hydrogen can cause hydrogen embrittlement (HE) of the steels used in pipeline construction. HE is typically manifested as a reduction in fracture toughness and ductility. To ensure structural integrity it is thus important to understand the fracture toughness of pipeline steels in hydrogen gas at pipeline pressures. This paper reviews (i) the influence of hydrogen on the fracture toughness of pipeline steels and (ii) the phenomena that occurs during fracture toughness tests of pipeline steel in air and hydrogen. Also reviewed are (i) the in fluence of hydrogen on tensile properties and (ii) the diffusion and solubility of hydrogen in pipeline steels under conditions relevant to hydrogen transport in gas transmission pipelines.
Green Hydrogen in Jordan: Stakeholder Perspectives on Technological, Infrastructure, and Economic Barriers
Jul 2025
Publication
Green hydrogen produced via renewable-powered electrolysis offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological infrastructural and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured survey of 52 national stakeholders including water scarcity low electrolysis efficiency limited grid compatibility and underdeveloped transport infrastructure. Respondents emphasised that overcoming these challenges requires investment in smart grid technologies seawater desalination advanced electrolysers and policy instruments such as subsidies and public–private partnerships. These findings are consistent with global assessments which recognise similar structural and financial obstacles in scaling up green hydrogen across emerging economies. Despite the constraints over 50% of surveyed stakeholders expressed optimism about Jordan’s potential to develop a competitive green hydrogen sector especially for industrial and power generation uses. This paper provides empirical context-specific insights into the conditions required to scale green hydrogen in developing economies. It proposes an integrated roadmap focusing on infrastructure modernisation targeted financial mechanisms and enabling policy frameworks.
Simulation of PEM Electrolyzer Power Management with Renewable Generation in Owerri, Nigeria
Jan 2025
Publication
Proton exchange membrane electrolyzers are an attractive technology for hydrogen production due to their high efficiency low maintenance cost and scalability. To receive these benefits however electrolyzers require high power reliability and have relatively high demand. Due to their intermittent nature integrating renewable energy sources like solar and wind has traditionally resulted in a supply too sporadic to consistently power a proton exchange membrane electrolyzer. This study develops an electrolyzer model operating with renewable energy sources at a highly instrumented university site. The simulation uses dynamic models of photovoltaic solar and wind systems to develop models capable of responding to changing climatic and seasonal conditions. The aim therefore is to observe the feasibility of operating a proton exchange membrane system fuel cell yearround at optimal efficiency. To address the problem of feasibility with dynamic renewable generation a case study demonstrates the proposed energy management system. A site with a river onsite is chosen to ensure sufficient wind resources. Aside from assessing the feasibility of pairing renewable generation with proton exchange membrane systems this project shows a reduction in the intermittency plaguing previous designs. Finally the study quantifies the performance and effectiveness of the PEM energy management system design. Overall this study highlights the potential of proton exchange membrane electrolysis as a critical technology for sustainable hydrogen production and the importance of modeling and simulation techniques in achieving its full potential.
Barriers to Creating a Market for Hydrogen: Insights from Global Roadmaps and Stakeholders in the United States
Feb 2025
Publication
We analyze barriers to setting up a hydrogen market by using a PESTEL framework that examines political economic social technological environmental and legal barriers. This framework is advantageous for analyzing macro-environmental factors to understand potential challenges and opportunities in creating such a market. Internationally the framework was applied to analyzing barriers in 56 national hydrogen roadmaps and domestically in the U.S. to semi-structured interviews with 43 stakeholders involved with hydrogen projects across the U.S. today. In the country-level international analysis infrastructure development was the most identified barrier with 43 countries including this factor. Infrastructure development included infrastructure for hydrogen storage transportation and distribution and frequently alluded not only to the need for the infra structure but also the costs associated. The second most identified barrier was related to the need for market development - including but not limited to capital costs economic competition supply and demand matching and first-mover reticence. For the domestic analysis results from qualitative content analysis confirmed considerable variability across regions and stakeholder backgrounds. Particularly notable were divergent views about the importance of public understanding of and support for hydrogen projects with industry respondents arguing this was not important and government and academic respondents considering it very important. The barriers seen as having the largest impact on deployment of hydrogen projects was a lack of regulatory clarity and lack of decision makers’ knowledge and awareness. Domestically the most often introduced barriers were the need for the support of market demand and the need to develop a hydrogen workforce.
A Multi-agent Optimal Operation Methodology of Electric, Thermal, and Hydrogen Integrated Energy System based on ADMM Algorithm
Aug 2024
Publication
This article presents a study on the distributed optimization operation method for micro-energy grid clusters within an electric thermal and hydrogen integrated energy system. The research focuses on precisely modeling the Power-toHydrogen (P2H) conversion process in electrolytic cells by considering their startup characteristics. An optimization operation model is established with each micro-energy grid as the principal entity to cater to their individual interests and demands. The Alternating Direction Method of Multipliers (ADMM) algorithm is adopted for distributed solution. Case studies demonstrate that the connection topology between micro-energy grids significantly impacts the total operating cost and the effectiveness of the ADMM algorithm is validated through a comparison with centralized optimization approaches.
A Model for Assessing the Risk of Liquid Hydrogen Transport through Road Tunnels
Sep 2023
Publication
Among the new energy carriers aimed at reducing greenhouse gas emissions the use of hydrogen is expected to grow significantly in various applications and sectors (i.e. industrial commercial transportation etc.) due to its high energy content by weight and zero carbon emissions. The increasingly widespread use of hydrogen will require massive distribution from production sites to final consumers and the delivery by means of liquid hydrogen road tankers may be a suitable cost-effective option for market penetration in the short-medium term. Liquid hydrogen (LH2) presents different hazards compared to gaseous hydrogen and an accidental release in confined spaces such as road tunnels might lead to the formation of a flammable hydrogen cloud that might deflagrate or even detonate. Nevertheless the potential negative effects on users in the event of accidental leakage of liquid hydrogen from a tanker in road tunnels so far have not been sufficiently investigated. Therefore a 3D Computational Fluid Dynamics model for the release of LH2 and its dispersion within a road tunnel was developed in this study. The proposed model was validated by a comparison with certain experimental and numerical studies found in the literature. Such modeling is demanding for long tunnels. Therefore the results of the simulations (e.g. the amount of hydrogen contained within the cloud) were combined with established simplified consequence methods to estimate the overpressures generated from a potential hydrogen deflagration. This was then used to evaluate the effects on users while evacuating from the tunnel. The findings showed that the worst scenario is when the release is in the middle of the tunnel length and the ignition occurs 90 s after the leakage.
Numerical Analysis of Dual Fuel Combustion in a Medium Speed Marine Engine Supplied with Methane/Hydrogen Blends
Sep 2023
Publication
Compression ignition engines will still be predominant in the naval sector: their high efficiency high torque and heavy weight perfectly suit the demands and architecture of ships. Nevertheless recent emission legislations impose limitations to the pollutant emissions levels in this sector as well. In addition to post-treatment systems it is necessary to reduce some pollutant species and therefore the study of combustion strategies and new fuels can represent valid paths for limiting environmental harmful emissions such as CO2 . The use of methane in dual fuel mode has already been implemented on existent vessels but the progressive decarbonization will lead to the utilization of carbon-neutral or carbon-free fuels such as in the last case hydrogen. Thanks to its high reactivity nature it can be helpful in the reduction of exhaust CH4 . On the contrary together with the high temperatures achieved by its oxidation hydrogen could cause uncontrolled ignition of the premixed charge and high emissions of NOx. As a matter of fact a source of ignition is still necessary to have better control on the whole combustion development. To this end an optimal and specific injection strategy can help to overcome all the before-mentioned issues. In this study three-dimensional numerical simulations have been performed with the ANSYS Forte® software (version 19.2) in an 8.8 L dual fuel engine cylinder supplied with methane hydrogen or hydrogen–methane blends with reference to experimental tests from the literature. A new kinetic mechanism has been used for the description of diesel fuel surrogate oxidation with a set of reactions specifically addressed for the low temperatures together with the GRIMECH 3.0 for CH4 and H2 . This kinetics scheme allowed for the adequate reproduction of the ignition timing for the various mixtures used. Preliminary calculations with a one-dimensional commercial code were performed to retrieve the initial conditions of CFD calculations in the cylinder. The used approach demonstrated to be quite a reliable tool to predict the performance of a marine engine working under dual fuel mode with hydrogen-based blends at medium load. As a result the system modelling shows that using hydrogen as fuel in the engine can achieve the same performance as diesel/natural gas but when hydrogen totally replaces methane CO2 is decreased up to 54% at the expense of the increase of about 76% of NOx emissions.
Laminar Burning Velocities of Hydrogen-Blended Methane–Air and Natural Gas–Air Mixtures, Calculated from the Early Stage of p(t) Records in a Spherical Vessel
Nov 2021
Publication
The flammable hydrogen-blended methane–air and natural gas–air mixtures raise specific safety and environmental issues in the industry and transportation; therefore their explosion characteristics such as the explosion limits explosion pressures and rates of pressure rise have significant importance from a safety point of view. At the same time the laminar burning velocities are the most useful parameters for practical applications and in basic studies for the validation of reaction mechanisms and modeling turbulent combustion. In the present study an experimental and numerical study of the effect of hydrogen addition on the laminar burning velocity (LBV) of methane–air and natural gas–air mixtures was conducted using mixtures with equivalence ratios within 0.90 and 1.30 and various hydrogen fractions rH within 0.0 and 0.5. The experiments were performed in a 14 L spherical vessel with central ignition at ambient initial conditions. The LBVs were calculated from p(t) data determined in accordance with EN 15967 by using only the early stage of flame propagation. The results show that hydrogen addition determines an increase in LBV for all examined binary flammable mixtures. The LBV variation versus the fraction of added hydrogen rH follows a linear trend only at moderate hydrogen fractions. The further increase in rH results in a stronger variation in LBV as shown by both experimental and computed LBVs. Hydrogen addition significantly changes the thermal diffusivity of flammable CH4–air or NG–air mixtures the rate of heat release and the concentration of active radical species in the flame front and contribute thus to LBV variation.
Performance, Emissions, and Economic Analyses of Hydrogen Fuel Cell Vehicles
May 2024
Publication
The transport sector is considered to be a significant contributor to greenhouse gas emissions as this sector emits about one-fourth of global CO2 emissions. Transport emissions contribute toward climate change and have been linked to adverse health impacts. Therefore alternative and sustainable transport options are urgent for decarbonising the transport sector and mitigating those issues. Hydrogen fuel cell vehicles are a potential alternative to conventional vehicles which can play a significant role in decarbonising the future transport sector. This study critically analyses the recent works related to hydrogen fuel cell integration into vehicles modelling and experimental investigations of hydrogen fuel cell vehicles with various powertrains. This study also reviews and analyses the performance energy management strategies lifecycle cost and emissions of fuel cell vehicles. Previous literature suggested that the fuel consumption and well-to-wheel greenhouse gas emissions of hydrogen fuel cell-powered vehicles are significantly lower than that of conventional internal combustion vehicles. Hydrogen fuel cell vehicles consume about 29–66 % less energy and cause approximately 31–80 % less greenhouse gas emissions than conventional vehicles. Despite this the lifecycle cost of hydrogen fuel cell vehicles has been estimated to be 1.2–12.1 times higher than conventional vehicles. Even though there has been recent progress in energy management in hydrogen fuel cell electric vehicles there are a number of technical and economic challenges to the commercialisation of hydrogen fuel cell vehicles. This study presents current knowledge gaps and details future research directions in relation to the research advancement of hydrogen fuel cell vehicles.
Hydrogen-fuelled Internal Combustion Engines: Direct Injection Versus Port-fuel Injection
Jul 2024
Publication
The road-transport is one of the major contributors to greenhouse global gas (GHG) emissions where hydrogen (H2) combustion engines can play a crucial role in the path towards the sector’s decarbonization goal. This study focuses on comparing the performance and emissions of port-fuel injection (PFI) and direct injection (DI) in a spark ignited combustion engine when is fuelled by hydrogen and other noteworthy fuels like methane and coke oven gas (COG). Computational fluid dynamic simulations are performed at optimal spark advance and air-fuel ratio (λ) for engine speeds between 2000 and 5000 rpm. Analysis reveals that brake power increases by 40% for DI attributed to 30.6% enhanced volumetric efficiency while the sNOx are reduced by 36% compared to PFI at optimal λ = 1.5 for hydrogen. Additionally H2 results in 71.8% and 67.2% reduction in fuel consumption compared to methane and COG respectively since the H2 lower heating value per unit of mass is higher.
Green Hydrogen Blending into the Tunisian Natural Gas Distributing System
Dec 2024
Publication
It is likely that blending hydrogen into natural gas grids could contribute to economy-wide decarbonization while retaining some of the benefits that natural gas networks offer energy systems. Hydrogen injection into existing natural gas infrastructure is recognised as a key solution for energy storage during periods of low electricity demand or high variable renewable energy penetration. In this scenario natural gas networks provide an energy vector parallel to the electricity grid offering additional energy transmission capacity and inherent storage capabilities. By incorporating green hydrogen into the NG network it becomes feasible to (i) address the current energy crisis (ii) reduce the carbon intensity of the gas grid and (iii) promote sector coupling through the utilisation of various renewable energy sources. This study gives an overview of various interchangeability indicators and investigates the permissible ratios for hydrogen blending with two types of natural gas distributed in Tunisia (ANG and MNG). Additionally it examines the impact of hydrogen injection on energy content variation and various combustion parameters. It is confirmed by the data that ANG and MNG can withstand a maximum hydrogen blend of up to 20%. The article’s conclusion emphasises the significance of evaluating infrastructure and safety standards related to Tunisia’s natural gas network and suggests more experimental testing of the findings. This research marks a critical step towards unlocking the potential of green hydrogen in Tunisia.
Biohydrogen Production from Biomass Sources: Metabolic Pathways and Economic Analysis
Sep 2021
Publication
The commercialization of hydrogen as a fuel faces severe technological economic and environmental challenges. As a method to overcome these challenges microalgal biohydrogen production has become the subject of growing research interest. Microalgal biohydrogen can be produced through different metabolic routes the economic considerations of which are largely missing from recent reviews. Thus this review briefly explains the techniques and economics associated with enhancing microalgae-based biohydrogen production. The cost of producing biohydrogen has been estimated to be between $10 GJ-1 and $20 GJ−1 which is not competitive with gasoline ($0.33 GJ−1 ). Even though direct biophotolysis has a sunlight conversion efficiency of over 80% its productivity is sensitive to oxygen and sunlight availability. While the electrochemical processes produce the highest biohydrogen (>90%) fermentation and photobiological processes are more environmentally sustainable. Studies have revealed that the cost of producing biohydrogen is quite high ranging between $2.13 kg−1 and 7.24 kg−1 via direct biophotolysis $1.42kg−1 through indirect biophotolysis and between $7.54 kg−1 and 7.61 kg−1 via fermentation. Therefore low-cost hydrogen production technologies need to be developed to ensure long-term sustainability which requires the optimization of critical experimental parameters microalgal metabolic engineering and genetic modification.
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
Hydrogen Addition to a Commercial Self-aspirating Burner and Assessment of a Practical Burner Modification Strategy to Improve Performance
Jul 2023
Publication
The ability for existing burners to operate safely and efficiently on hydrogen-blended fuels is a primary concern for the many industries looking to adopt hydrogen as an alternative fuel. This study investigates the efficacy of increasing fuel injector diameter as a simple modification strategy to extend the hydrogen-blending limits before flashback. The collateral effects of this modification are quantified with respect to a set of key performance criteria. The results show that the unmodified burner can sustain up to 50 vol% hydrogen addition before flashback. Increasing the fuel injector diameter reduces primary aeration allowing for stable operation on up to 100% hydrogen. The flame length visibility and radiant heat transfer properties are all increased as a result of the reduced air entrainment with a trade-off reported for NOx emissions where in addition to the effects of hydrogen reducing air entrainment further increases NOx emissions.
Green Hydrogen Transitions Deepen Socioecological Risks and Extractivist Patterns: Evidence from 28 Perspective Exporting Countries in the Global South
Sep 2024
Publication
The global green hydrogen rush is prone to repeat extractivist patterns at the expense of economies ecologies and communities in the production zones in the Global South. With a socio-ecological risk analysis grounded in energy water and environmental justice scholarship we systematically assess the risks of the ‘green’ hydrogen transition and related injustices arising in 28 countries in the Global South with regard to energy water land and global justice dimensions. Our findings show that risks materialize through the exclusion of affected communities and civil society the enclosure of land and resources for extractivist purposes and through the externalization of socio-ecological costs and conflicts. We further demonstrate that socio-ecological risks are enhanced through country-specific conditions such as water scarcity historical continuities such as post-colonial land tenure systems as well as repercussions of a persistently uneven global politico-economic order. Contributing to debates on power inequality and justice in the global green hydrogen transition we argue that addressing hydrogen risks requires a framework of environmental justice and a transformative perspective that encompasses structural shifts in the global economy including degrowth and a decentering of industrial hegemonies in the Global North.
Toward Sustainability: An Overview of the Use of Green Hydrogen in the Agriculture and Livestock Sector
Aug 2023
Publication
The agro-livestock sector produces about one third of global greenhouse gas (GHG) emissions. Since more energy is needed to meet the growing demand for food and the industrial revolution in agriculture renewable energy sources could improve access to energy resources and energy security reduce dependence on fossil fuels and reduce GHG emissions. Hydrogen production is a promising energy technology but its deployment in the global energy system is lagging. Here we analyzed the theoretical and practical application of green hydrogen generated by electrolysis of water powered by renewable energy sources in the agro-livestock sector. Green hydrogen is at an early stage of development in most applications and barriers to its large-scale deployment remain. Appropriate policies and financial incentives could make it a profitable technology for the future.
Harnessing Unconventional Resources for Large-Scale Green Hydrogen Production: An Economic and Technological Analysis in Indonesia
Mar 2025
Publication
This study evaluates the potential for large-scale green hydrogen production in Indonesia by utilizing renewable energy sources connected on-grid namely 50 MWp of solar panels and 35 MW of wind turbines as well as a hybrid system combining both with a capacity of 45 MW at a grid cost of $100/kWh in five strategic cities: Banyuwangi Kupang BauBau Banjarmasin and Ambon. Using HOMER Pro software various integrated energy system scenarios involving ion exchange membrane electrolysis and alkaline water electrolysis. Additionally the study assumes a project lifespan of 15 years a discount rate of 6.6% and an inflation rate of 2.54%. The results showed that Bau-Bau recorded the highest hydrogen production reaching more than 1.9 million kilograms per year with the lowest levelized cost of hydrogen of $0.65/kg in Scheme 2. On the other hand Kupang shows high costs for most schemes with the levelized cost reaching $1.10/kg. In addition to hydrogen the study also evaluated oxygen production as a by-product of electrolysis. Bau-Bau and Kupang recorded the highest oxygen production with Scheme 6 achieving more than 15 million kilograms per year. The cost of electricity production varies between cities with Banyuwangi having the lowest cost of electricity for wind energy at $80.9/MWh. The net present cost for renewable energy systems in Banyuwangi was $35.4 million for wind turbines while the photovoltaic+wind combination showed the highest cost at $116 million. These findings emphasize the importance of hybrid systems in improving hydrogen production efficiency and supporting sustainable energy transition in Indonesia.
Inspection of Coated Hydrogen Transportation Pipelines
Sep 2023
Publication
The growing need for hydrogen indicates that there is likely to be a demand for transporting hydrogen. Hydrogen pipelines are an economical option but the issue of hydrogen damage to pipeline steels needs to be studied and investigated. So far limited research has been dedicated to determining how the choice of inspection method for pipeline integrity management changes depending on the presence of a coating. Thus this review aims to evaluate the effectiveness of inspection methods specifically for detecting the defects formed uniquely in coated hydrogen pipelines. The discussion will begin with a background of hydrogen pipelines and the common defects seen in these pipelines. This will also include topics such as blended hydrogen-natural gas pipelines. After which the focus will shift to pipeline integrity management methods and the effectiveness of current inspection methods in the context of standards such as ASME B31.12 and BS 7910. The discussion will conclude with a summary of newly available inspection methods and future research directions.
No more items...