Publications
Green Hydrogen Cost-potentials for Global Trade
May 2023
Publication
Green hydrogen is expected to be traded globally in future greenhouse gas neutral energy systems. However there is still a lack of temporally- and spatially-explicit cost-potentials for green hydrogen considering the full process chain which are necessary for creating effective global strategies. Therefore this study provides such detailed cost-potentialcurves for 28 selected countries worldwide until 2050 using an optimizing energy systems approach based on open-field photovoltaics (PV) and onshore wind. The results reveal huge hydrogen potentials (>1500 PWhLHV/a) and 79 PWhLHV/a at costs below 2.30 EUR/kg in 2050 dominated by solar-rich countries in Africa and the Middle East. Decentralized PVbased hydrogen production even in wind-rich countries is always preferred. Supplying sustainable water for hydrogen production is needed while having minor impact on hydrogen cost. Additional costs for imports from democratic regions are only total 7% higher. Hence such regions could boost the geostrategic security of supply for greenhouse gas neutral energy systems.
Underground Hydrogen Storage (UHS) in Natural Storage Sites: A Perspective of Subsurface Characterization and Monitoring
Jan 2024
Publication
With the long-standing efforts of green transition in our society underground hydrogen storage (UHS) has emerged as a viable solution to buffering seasonal fluctuations of renewable energy supplies and demands. Like operations in hydrocarbon production and geological CO2 storage a successful UHS project requires a good understanding of subsurface formations while having different operational objectives and practical challenges. Similar to the situations in hydrocarbon production and geological CO2 storage in UHS problems the information of subsurface formations at the field level cannot be obtained through direct measurements due to the resulting high costs. As such there is a need for subsurface characterization and monitoring at the field scale which uses a certain history matching algorithm to calibrate a numerical subsurface model based on available field data. Whereas subsurface characterization and monitoring have been widely used in hydrocarbon production activities for a better understanding of hydrocarbon reservoirs to the best of our knowledge at present it appears to be a relatively less touched area in UHS problems. This work aims to narrow this noticed gap and investigates the use of an ensemble-based workflow for subsurface characterization and monitoring in a 3D UHS case study. Numerical results in this case study indicate that the ensemble-based workflow works reasonably well while also identifying some particular challenges that would be relevant to real-world problems.
Life-Cycle and Applicational Analysis of Hydrogen Production and Powered Inland Marine Vessels
Aug 2023
Publication
Green energy is at the forefront of current policy research and engineering but some of the potential fuels require either a lot of deeper research or a lot of infrastructure before they can be implemented. In the case of hydrogen both are true. This report aims to analyse the potential of hydrogen as a future fuel source by performing a life-cycle assessment. Through this the well-to-tank phase of fuel production and the usage phase of the system have been analysed. Models have also been created for traditional fuel systems to best compare results. The results show that hydrogen has great potential to convert marine transport to operating off green fuels when powered through low-carbon energy sources which could reduce a huge percentage of the international community’s greenhouse gas emissions. Hydrogen produced through wind powered alkaline electrolysis produced emission data 5.25 g of CO2 equivalent per MJ compared to the 210 g per MJ produced by a medium efficiency diesel equivalent system a result 40 times larger. However with current infrastructure in most countries not utilising a great amount of green energy production the effects of hydrogen usage could be more dangerous than current fuel sources owing to the incredible energy requirements of hydrogen production with even grid (UK) powered electrolysis producing an emission level of 284 g per MJ which is an increase against standard diesel systems. From this the research concludes that without global infrastructure change hydrogen will remain as a potential fuel rather than a common one.
The Role of Hydrogen Storage in an Electricity System with Large Hydropower Resources
Feb 2024
Publication
Hydrogen is considered one of the key pillars of an effective decarbonization strategy of the energy sector; however the potential of hydrogen as an electricity storage medium is debated. This paper investigates the role of hydrogen as an electricity storage medium in an electricity system with large hydropower resources focusing on the Swiss electricity sector. Several techno-economic and climate scenarios are considered. Findings suggest that hydrogen storage plays no major role under most conditions because of the large hydropower resources. More specifically no hydrogen storage is installed in Switzerland if today’s values of net-transfer capacities and low load-shedding costs are assumed. This applies even to hydrogen-favorable climate scenarios (dry years with low precipitation and dam inflows) and economic assumptions (high learning rates for hydrogen technologies). In contrast hydrogen storage is installed when net-transfer capacities between countries are reduced below 30% of current values and load-shedding costs are above 1000 EUR/MWh. When installed hydrogen is deployed in a few large-scale installations near the national borders.
The Effects of Hydrogen Research and Innovation on International Hydrogen Trade
Feb 2024
Publication
Climate change and the pressure to decarbonize as well as energy security concerns have drawn the attention of policymakers and the industry to hydrogen energy. To advance the hydrogen economy at a global scale research and innovation progress is of significant importance among others. However previous studies have provided only limited quantitative evidence of the effects of research and innovation on the formation of a global hydrogen market. Instead they postulate rather than empirically support this relationship. Therefore this study analyzes the effects of research and innovation measured by scientific publications patents and standards on bilateral hydrogen trade flows for 32 countries between 1995 and 2019 in a gravity model of trade using regression analyses and Poisson Pseudo Maximum Likelihood (PPML) estimation. The main results of the PPML estimation show that research and innovation progress is indeed associated with increased trade especially with patenting and (international) standardization enhancing hydrogen export volumes. As policy implications we derive that increased public R&D funding can help increase the competitiveness of hydrogen energy and boost market growth along with infrastructure support and harmonized standards and regulations.
A Technology Review of Decarbonization: Efficient Techniques for Producing Hydrogen as Fuel
Aug 2023
Publication
Climate change is obvious in many ways. The weather changes rapidly from day to day reaching high temperatures such as 28 ◦C one day and heavy rain the next with temperatures below 18 ◦C. There are also very strong storms caused by this phenomenon. The way the environment acts is different than the current epoch would predict indicating a long-term shift in weather and temperature patterns. The mean temperature of earth is rising due to the greenhouse effect that is caused by human activity and mostly by the burning of fossil fuel emitting CO2 and other pollutant gasses. Nowadays every country is trying to lower CO2 emissions from everyday human activities a movement called “decarbonization”. Since the 18th century there has been a great deal of research carried out on possible alternatives to fossil fuels. Some of the work was just to discover ways to power heaters or automotive vehicle but there is a great deal of work remaining to complete regarding this issue after discovering the greenhouse effect and its impact on the planet’s climate in order to eliminate it by using fuel whose combustion emissions are more environmentally friendly. In the present work many discoveries will be presented that use hydrogen (H2 ) or hydroxy (H-OH) as fuel. The main reason for this is the emission of pure water after combustion but the most interesting part is the approach every scientist uses to create the fuel gas from water.
A Zero CO2 Emissions Large Ship Fuelled by an Ammonia-hydrogen Blend: Reaching the Decarbonisation Goals
Aug 2023
Publication
To reach the decarbonisation goals a zero CO2 emissions large ship propulsion system is proposed in this work. The ship selected is a large ferry propelled by an internal combustion engine fuelled by an ammonia-hydrogen blend. The only fuel loaded in the vessel will be ammonia. The hydrogen required for the combustion in the engine will be produced onboard employing ammonia decomposition. The heat required for this decomposition section will be supplied by using the hot flue gases of the combustion engine. To address the issues regarding NOx emissions a selective catalytic reduction (SCR) reactor was designed. The main operating variables for all the equipment were computed for engine load values of 25% 50% 75% and 100%. Considering the lowest SCR removal rate (91% at an engine load of 100%) the NOx emissions of the vessel were less than 0.5 g/kWh lower than the IMO requirements. An energy analysis of the system proposed to transform ammonia into energy for shipping was conducted. The global energy and exergy efficiencies were 42.4% and 48.1%. In addition an economic analysis of the system was performed. The total capital cost (CAPEX) for the system can be estimated at 8.66 M€ (784 €/kW) while the operating cost (OPEX) ranges between 210 €/MWh (engine load 100%) and 243 €/MWh (engine load of 25%). Finally a sensitivity analysis for the price of ammonia was performed resulting in the feasibility of reducing the operating cost to below 150 €/MWh in the near horizon.
Hydrogen and the Global Energy Transition—Path to Sustainability and Adoption across All Economic Sectors
Feb 2024
Publication
This perspective article delves into the critical role of hydrogen as a sustainable energy carrier in the context of the ongoing global energy transition. Hydrogen with its potential to decarbonize various sectors has emerged as a key player in achieving decarbonization and energy sustainability goals. This article provides an overview of the current state of hydrogen technology its production methods and its applications across diverse industries. By exploring the challenges and opportunities associated with hydrogen integration we aim to shed light on the pathways toward achieving a sustainable hydrogen economy. Additionally the article underscores the need for collaborative efforts among policymakers industries and researchers to overcome existing hurdles and unlock the full potential of hydrogen in the transition to a low-carbon future. Through a balanced analysis of the present landscape and future prospects this perspective article aims to contribute valuable insights to the discourse surrounding hydrogen’s role in the global energy transition.
Hydrogen Gas Compression for Efficient Storage: Balancing Energy and Increasing Density
May 2024
Publication
This article analyzes the processes of compressing hydrogen in the gaseous state an aspect considered important due to its contribution to the greater diffusion of hydrogen in both the civil and industrial sectors. This article begins by providing a concise overview and comparison of diverse hydrogen-storage methodologies laying the groundwork with an in-depth analysis of hydrogen’s thermophysical properties. It scrutinizes plausible configurations for hydrogen compression aiming to strike a delicate balance between energy consumption derived from the fuel itself and the requisite number of compression stages. Notably to render hydrogen storage competitive in terms of volume pressures of at least 350 bar are deemed essential albeit at an energy cost amounting to approximately 10% of the fuel’s calorific value. Multi-stage compression emerges as a crucial strategy not solely for energy efficiency but also to curtail temperature rises with an upper limit set at 200 ◦C. This nuanced approach is underlined by the exploration of compression levels commonly cited in the literature particularly 350 bar and 700 bar. The study advocates for a three-stage compression system as a pragmatic compromise capable of achieving high-pressure solutions while keeping compression work below 10 MJ/kg a threshold indicative of sustainable energy utilization.
Hydrogen Combustion in Micromix Burners: Present Stages, Opportunities, and Challenges
Nov 2024
Publication
Due to its low NOx emission index the micromix burner technology is a promising alternative for using hydrogen in combustion. Various universities and research centers in Germany England and Spain have documented and studied this technology. However the number of studies on micromix burners is limited which hinders their implementation on an industrial scale. The present study aims to review developed works focused on micromix combustion technologies to identify the main gaps and research needs. A sample of 76 articles from 2008 was selected using the PRISMA methodology which was categorized based on the study methodology simulation software and fuels used. An experimental gap has been identified in the combustion of hydrogen and methane in the selected article sample. This gap is a critical research need due to the opportunity to implement this tech nology in existing natural gas networks facilitating the transition from fossil fuels to cleaner combustion processes.
Underground Hydrogen Storage in Salt Caverns: Laboratory Experiments to Determine Integrity of Rock Salt and Wellbore Through Effective Permeability Measurements
Dec 2024
Publication
Underground hydrogen storage in salt caverns is a promising solution for short-term storage allowing multiple cycles per year. This study experimentally investigates the integrity of such caverns and their wellbores under operating conditions typical of German salt caverns. Specifically we measure the permeability of rock salt cement (API Class G and High Magnesium Resistant (HMR+)) rock salt-anhydrite composites cement-salt composites and casing-cement composites. Rock salt demonstrates extremely low permeability (10− 23 m2 ) while casing-cement composites (HMR+) exhibit permeabilities similar to pure cement (10− 20 m2 or lower). Both salt-cement (HMR+) and casing-cement (HMR+) composites meet the strict tightness requirements for hydrogen storage (10− 19 m2 or less). While thin anhydrite layers in rock salt can increase permeability compaction can reduce it to levels comparable to rock salt. This study’s novelty lies in evaluating the feasibility of a real German cavern for hydrogen storage using a custom-built transient permeability setup capable of testing casing-cement composites at a 1:1 wellbore scale.
China and Italy’s Energy Development Trajectories: Current Landscapes and Future Cooperation Potential
Feb 2024
Publication
In order to achieve the ambitious goal of “carbon neutrality” countries around the world are striving to develop clean energy. Against this background this paper takes China and Italy as representatives of developing and developed countries to summarize the energy structure composition and development overview of the two countries. The paper analyzes the serious challenges facing the future energy development of both countries and investigates the possibilities of energy cooperation between the two countries taking into account their respective advantages in energy development. By comparing the policies issued by the two governments to encourage clean energy development this paper analyzes the severe challenges faced by the two countries’ energy development in the future and combines their respective energy development advantages to look forward to the possibility of energy cooperation between the two countries in the future. This lays the foundation for China and Italy to build an “Energy Road” after the “Silk Road”.
Energy Transition Technology Comes With New Process Safety Challenges and Risks
Jul 2023
Publication
This paper intends to give an impression of new technologies and processes that are in development for application to achieve decarbonization and about which less or no experience on associated hazards exists in the process industry. More or less an exception is hydrogen technology because its hazards are relatively known and there is industry experience in handling it safely but problems will arise when it is produced stored and distributed on a large scale. So when its use spreads to communities and it becomes as common as natural gas now measures to control the risks will be needed. And even with hydrogen surprise findings have been shown lately e.g. its BLEVE behavior when in a liquified form stored in a vessel heated externally. Substitutes for hydrogen are not without hazard concern either. The paper will further consider the hazards of energy storage in batteries and the problems to get those hazards under control. Relatively much attention will be paid to the electrification of the process industry. Many new processes are being researched which given green energy will be beneficial to reduce greenhouse gases and enhance sustainability but of which hazards are rather unknown. Therefore as last chapter the developments with respect to the concept of hazard identification and scenario definition will be considered in quite detail. Improvements in that respect are also being possible due to the digitization of the industry and the availability of data and considering the entire life cycle all facilitated by the data model standard ISO 15926 with the scope of integration of life-cycle data for process plants including oil and gas production facilities. Conclusion is that the new technologies and processes entail new process and personal hazards and that much effort is going into renewal but safety analyses are scarce. Right in a period of process renewal attention should be focused on possibilities to implement inherently safer design.
An Exploration of Safety Measures in Hydrogen Refueling Stations: Delving into Hydrogen Equipment and Technical Performance
Feb 2024
Publication
The present paper offers a thorough examination of the safety measures enforced at hydrogen filling stations emphasizing their crucial significance in the wider endeavor to advocate for hydrogen as a sustainable and reliable substitute for conventional fuels. The analysis reveals a wide range of crucial safety aspects in hydrogen refueling stations including regulated hydrogen dispensing leak detection accurate hydrogen flow measurement emergency shutdown systems fire-suppression mechanisms hydrogen distribution and pressure management and appropriate hydrogen storage and cooling for secure refueling operations. The paper therefore explores several aspects including the sophisticated architecture of hydrogen dispensers reliable leak-detection systems emergency shut-off mechanisms and the implementation of fire-suppression tactics. Furthermore it emphasizes that the safety and effectiveness of hydrogen filling stations are closely connected to the accuracy in the creation and upkeep of hydrogen dispensers. It highlights the need for materials and systems that can endure severe circumstances of elevated pressure and temperature while maintaining safety. The use of sophisticated leak-detection technology is crucial for rapidly detecting and reducing possible threats therefore improving the overall safety of these facilities. Moreover the research elucidates the complexities of emergency shut-off systems and fire-suppression tactics. These components are crucial not just for promptly managing hazards but also for maintaining the station’s structural soundness in unanticipated circumstances. In addition the study provides observations about recent technical progress in the industry. These advances effectively tackle current safety obstacles and provide the foundation for future breakthroughs in hydrogen fueling infrastructure. The integration of cutting-edge technology and materials together with the development of upgraded safety measures suggests a positive trajectory towards improved efficiency dependability and safety in hydrogen refueling stations.
Enhancing Wind Energy Efficiency: A Study on the Power Output of Shrouded Wind Turbines for a Hydrogen Storage System
Mar 2025
Publication
This study presents a simulation and analysis of a shrouded wind turbine system integrated with a proton exchange membrane electrolyzer (PEME) for hydrogen production. The novel aspect of this research lies in the use of an aerodynamic blade shroud to enhance the wind turbine's performance particularly at low wind speeds. The addition of the aerodynamic shroud increases the power output by up to 68% at a wind speed of 2.5 m/s compared to a conventional wind turbine. Additionally the effect of radial clearance between the shroud and turbine blades is explored showing that a smaller clearance significantly improves power generation. The study also investigates the impact of blade shape (NACA 2408 and NACA 4418) on performance with results indicating a 53% increase in power output for the NACA 4418 design compared to the unshrouded turbine. The influence of the aerodynamic blade shroud on PEME energy density and hydrogen production efficiency is discussed demonstrating how increasing wind turbine power output leads to higher current density in the electrolyzer which while increasing hydrogen production slightly reduces thermal and exergy efficiencies. To counteract this the study suggests using multiple PEME stacks in parallel to enhance both efficiency and hydrogen output.
Thermodynamic Modelling, Testing and Sensitive Analysis of a Directly Pressurized Hydrogen Refuelling Process with a Compressor
Mar 2024
Publication
This paper presents the development of a thermodynamic model for the hydrogen refuelling station (HRS) to simulate the process of refuelling which involves the transfer of hydrogen gas from a high-pressure storage tank to the onboard tank of a fuel cell electric vehicle (FCEV). This model encompasses the fundamental elements of an HRS which consists of a storage tank compressor piping system heat exchanger and an on-board vehicle tank. The model is implemented and validated using experimental data from SAE J2601. Various simulations are conducted to assess the impact of the Joule-Thomson effect and compression on the temperature of hydrogen flow specifically focusing on an average pressure rate of 18 MPa/min. Furthermore a comprehensive analysis is conducted to examine the impact of pressure variations in the storage tank (10–90 MPa) and the initial pressure within the vehicle tank (5–35 MPa) as well as variations in ambient temperature (0–40 °C). The study revealed that the energy consumption in the cooling system surpasses the average power consumption in the more advantageous scenario of 60 MPa by a range of 36% to over 220% when the pressure in the storage system drops below 30 MPa. Furthermore it was noted that the impact of ambient temperature is comparatively less significant when compared to the initial pressure of the vehicle's tank. The impact of an ambient temperature change of 10 °C on the final temperature of a hydrogen vehicle is found to be approximately 2 °C. Similarly a variation in the initial vehicle pressure of 10 MPa results in a modification of the final hydrogen vehicle temperature by approximately 8.5 °C.
Feasibility of Scaling Up the Cost-Competitive and Clean Electrolytic Hydrogen Supply in China
May 2024
Publication
Scaling up clean hydrogen supply in the near future is critical to achieving China’s hydrogen development target. This study established an electrolytic hydrogen development mechanism considering the generation mix and operation optimization of power systems with access to hydrogen. Based on the incremental cost principle we quantified the provincial and national clean hydrogen production cost performance levels in 2030. The results indicated that this mechanism could effectively reduce the production cost of clean hydrogen in most provinces with a national average value of less than 2 USD·kg−1 at the 40-megaton hydrogen supply scale. Provincial cooperation via power transmission lines could further reduce the production cost to 1.72 USD·kg−1. However performance is affected by the potential distribution of hydrogen demand. From the supply side competitiveness of the mechanism is limited to clean hydrogen production while from the demand side it could help electrolytic hydrogen fulfil a more significant role. This study could provide a solution for the ambitious development of renewables and the hydrogen economy in China.
Inspection of Hydrogen Transport Equipment: A Data-driven Approach to Predict Fatigue Degradation
Jul 2024
Publication
Hydrogen is an environmentally friendly fuel that can facilitate the upcoming energy transition. The development of an extensive infrastructure for hydrogen transport and storage is crucial. However the mechanical properties of structural materials are significantly degraded in H2 environments leading to early component failures. Pipelines are designed following defect-tolerant principles and are subjected to periodic pressure fluctuations. Hence these systems are potentially prone to fatigue degradation often accelerated in pressurized hydrogen gas. Inspection and maintenance activities are crucial to guarantee the integrity and fitness for service of this infrastructure. This study predicts the severity of hydrogen-enhanced fatigue in low-alloy steels commonly employed for H2 transport and storage equipment. Three machine-learning algorithms i.e. Linear Model Deep Neural Network and Random Forest are used to categorize the severity of the fatigue degradation. The models are critically compared and the best-performing algorithm are trained to predict the Fatigue Acceleration Factor. This approach shows good prediction capability and can estimate the fatigue crack propagation in lowalloy steels. These results allow for estimating the probability of failure of hydrogen pipelines thus facilitating the inspection and maintenance planning.
A Review on Application of Hydrogen in Gas Turbines with Intercooler Adjustments
Mar 2024
Publication
In recent years traditional fossil fuels such as coal oil and natural gas have historically dominated various applications but there has been a growing shift towards cleaner alternatives. Among these alternatives hydrogen (H2) stands out as a highly promising substitute for all other conventional fuels. Today hydrogen (H2) is actively taking on a significant role in displacing traditional fuel sources. The utilization of hydrogen in gas turbine (GT) power generation offers a significant advantage in terms of lower greenhouse gas emissions. The performance of hydrogen-based gas turbines is influenced by a range of variables including ambient conditions (temperature and pressure) component efficiency operational parameters and other factors. Additionally incorporating an intercooler into the gas turbine system yields several advantages such as reducing compression work and maintaining power and efficiency. Many scholars and researchers have conducted comprehensive investigations into the components mentioned above within context of gas turbines (GTs). This study provides an extensive examination of the research conducted on hydrogen-powered gas turbine and intercooler with employed different methods and techniques with a specific emphasis on the different case studies of a hydrogen gas turbine and intercooler. Moreover this study not only examined the current state of research on hydrogen-powered gas turbine and intercooler but also covered its influence by offering the effective recommendations and insightful for guiding for future research in this field.
Integration of Microgrids in Chemical Industries with Hydrogen as a Byproduct: Styrene Production Case Study
Feb 2024
Publication
The chemical industry serves as a global economic backbone and it is an intensive consumer of conventional energy. Due to the depletion of fossil fuels and the emission of greenhouse gases it is necessary to analyze energy supply solutions based on renewable energy sources in this industrial sector. Unlike other sectors such as residential or service industries which have been thoroughly analyzed by the scientific community the use of renewable energies in the chemical industry remains comparatively less examined by the scientific community. This article studies the use of an energy supply system based on photovoltaic technology or a PEM fuel cell for a styrene production industry analyzing the integration of energy storage systems such as batteries as well as different uses for the surplus hydrogen produced by the facility. The most interesting conclusions of the article are: (1) the renewable microgrid considered is viable both technically and economically with a discounted payback period between 5.4 and 6.5 years using batteries as an energy storage system; and (2) the use of hydrogen as energy storage system for a styrene industry is not yet a viable option from an economic point of view.
Strategic Deployment of Hydrogen Fuel Cell Buses and Fueling Stations: Insights from Fleet Transition Models
Oct 2024
Publication
Establishing new hydrogen value chains is challenging requiring economies of scale and balanced supplydemand dynamics. Municipalities can mitigate this risk through government support and deployment strategies. This study analyzes Edmonton’s transition to zero-emission buses (ZEBs) focusing on hydrogen fuel cell electric vehicles (HFCEVs) and hydrogen fueling stations (HFSs). Using scenario-based modeling and S-curve models for technology diffusion we project the adoption of battery electric vehicles (BEVs) and HFCEVs. Deploying over 1000 ZEBs by 2040 is necessary to meet Net-Zero targets with 310–760 HFCEVs required for the municipal bus inventory. This results in an estimated hydrogen demand of 6.2–14.5 t-H2/day and a reduction of 0.4–1.0 Mt-CO2 in tailpipe emissions by 2050. We use these scenario projections to develop a phased deployment strategy optimizing fleet operations to reduce HFS costs by 50–60% from 8 to 9 C$/kg-H2 to 3–4 C$/kg-H2. The study underscores the importance of strategic planning and infrastructure investment in realizing net-zero goals providing a model applicable globally.
Cost Trajectory of Hydrogen Fuel Cell Technology in China
Apr 2025
Publication
Reducing the cost of hydrogen fuel cell technology is crucial in propelling the hydrogen economy and achieving decarbonized energy systems. This study identifies the hydrogen fuel cell cost trajectory through a multi-stage learning curve model highlighting technology learning mechanisms across different stages. Findings show that innovation and production contribute to cost reduction and the learning by researching holds a more significant role presently while the learning by doing takes precedence in the long term achieving a 14% learning rate. The cost predictions imply that the system cost of hydrogen fuel cell is expected to fall below 1000 yuan/kW after 2031. Moreover the scenario analyses highlight the conducive role of various hydrogen production technologies and the evolution of cost influencing factors on cost reduction. Our research provides critical insights into the evolving dynamics of technological learning and cost trajectory in the hydrogen fuel cell industry with significant implications for policy-making.
Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler
Feb 2024
Publication
With the adjustment of energy structure the utilization of hydrogen energy has been widely attended. China’s carbon neutrality targets make it urgent to change traditional coal-fired power generation. The paper investigates the combustion of pulverized coal blended with hydrogen to reduce carbon emissions. In terms of calorific value the pulverized coal combustion with hydrogen at 1% 5% and 10% blending ratios is investigated. The results show that there is a significant reduction in CO2 concentration after hydrogen blending. The CO2 concentration (mole fraction) decreased from 15.6% to 13.6% for the 10% hydrogen blending condition compared to the non-hydrogen blending condition. The rapid combustion of hydrogen produces large amounts of heat in a short period which helps the ignition of pulverized coal. However as the proportion of hydrogen blending increases the production of large amounts of H2O gives an overall lower temperature. On the other hand the temperature distribution is more uniform. The concentrations of O2 and CO in the upper part of the furnace increased. The current air distribution pattern cannot satisfy the adequate combustion of the fuel after hydrogen blending.
The Influence of Gas Fuel Enrichment with Hydrogen on the Combustion Characteristics of Combustors: A Review
Oct 2024
Publication
Hydrogen is a promising fuel because it has good capabilities to operate gas turbines. Due to its ignition speed which exceeds the ignition of traditional fuel it achieves a higher thermal efficiency while the resulting emissions are low. So it was used as a clean and sustainable energy source. This paper reviews the most important research that was concerned with studying the characteristics of hydrogen combustion within incinerators and power generation equipment where hydrogen was used as a fuel mixed with traditional fuel in the combustion chambers of gas turbines. It also includes an evaluation of the combustion processes and flame formation resulting from the enrichment of gaseous fuels with hydrogen and partial oxidation. A large amount of theoretical and experimental work in this field has been reviewed. This review summarizes the predictive and experimental results of various research interests in the field of hydrogen combustion and also production.
Pressure Decline and Gas Expansion in Underground Hydrogen Storage: A Pore-scale Percolation Study
Aug 2024
Publication
Using high-resolution micro-CT imaging at 2.98 μm/voxel we compared the percolation of hydrogen in gas injection with gas expansion for a hydrogen-brine system in Bentheimer sandstone at 1 MPa and 20 ◦C representing hydrogen storage in an aquifer. We introduced dimensionless numbers to quantify the contribution of advection and expansion to displacement. We analysed the 3D spatial distribution of gas and its displacement in both cases and demonstrated that in gas injection hydrogen can only advance from a connected cluster in an invasion-percolation type process while in gas expansion hydrogen can access more of the pore space even from disconnected clusters. The average gas saturation in the sample increased from 30% to 50% by gas expansion and we estimated that 10% of the expanded volume is attributed to hydrogen exsolution from the brine. This work emphasises the importance of studying the combined effects of pressure decline and gas withdrawal in hydrogen storage to assess the influence of gas expansion on remobilising trapped gases.
Helping the Climate by Replacing Liquefied Natural Gas with Liquefied Hydrogen or Ammonia?
Apr 2024
Publication
The war in Ukraine caused Europe to more than double its imports of liquefied natural gas (LNG) in only one year. In addition imported LNG remains a crucial source of energy for resource-poor countries such as Japan where LNG imports satisfy about a quarter of the country’s primary energy demand. However an increasing number of countries are formulating stringent decarbonization plans. Liquefied hydrogen and liquefied ammonia coupled with carbon capture and storage (LH2-CCS LNH3-CCS) are emerging as the front runners in the search for low-carbon alternatives to LNG. Yet little is currently known about the full environmental profile of LH2-CCS and LNH3-CCS because several characteristics of the two alternatives have only been analyzed in isolation in previous work. Here we show that the potential of these fuels to reduce greenhouse gas (GHG) emissions throughout the supply chain is highly uncertain. Our best estimate is that LH2-CCS and LNH3-CCS can reduce GHG emissions by 25%–61% relative to LNG assuming a 100 year global warming potential. However directly coupling LNG with CCS would lead to substantial GHG reductions on the order of 74%. Further under certain conditions emissions from LH2-CCS and LNH3-CCS could exceed those of LNG by up to 44%. These results question the suitability of LH2-CCS and LNH3-CCS for stringent decarbonization purposes.
Generalized Thermodynamic Modelling of Hydrogen Storage Tankes for Truck Application
Mar 2024
Publication
Hydrogen-driven heavy-duty trucks are a promising technology for reducing CO2 emissions in the transportation sector. Thus storing hydrogen efficiently onboard is vital. The three available or currently developed physical hydrogen storage technologies (compressed gaseous subcooled liquid and cryo-compressed hydrogen) are promising solutions. For a profound thermodynamic comparison of these storage systems a universally applicable model is required. Thus this article introduces a generalized thermodynamic model and conducts thermodynamic comparisons in terms of typical drive cycle scenarios. Therefore a model introduced by Hamacher et al. [1] for cryo-compressed hydrogen tanks is generalized by means of an explicit model formulation using the property ��2� from REFPROP [2] which is understood as a generic specific isochoric two-phase heat capacity. Due to an implemented decision logic minor changes to the equation system are automatically made whenever the operation mode or phase of the tank changes. The resulting model can simulate all three storage tank systems in all operating scenarios and conditions in the single- and two-phase region. Additionally the explicit model formulation provides deeper insights into the thermodynamic processes in the tank. The model is applied to the three physical hydrogen storage technologies to compare drive cycles heat requirement dormancy behavior and optimal usable density. The highest driving ranges were achieved with cryo-compressed hydrogen however it also comes with higher heating requirements compared to subcooled liquid hydrogen.
Net-zero Energy Management through Multi-criteria Optimizations of a Hybrid Solar-Hydrogen Energy Production System for an Outdoor Laboratory in Toronto
Apr 2024
Publication
Hydrogen production and storage in hybrid systems is a promising solution for sustainable energy transition decoupling the energy generation from its end use and boosting the deployment of renewable energy. Nonetheless the optimal and cost-effective design of hybrid hydrogen-based systems is crucial to tackle existing limitations in diffusion of these systems. The present study explores net-zero energy management via a multi-objective optimization algorithm for an outdoor test facility equipped with a hydrogen-based hybrid energy production system. Aimed at enabling efficient integration of hydrogen fuel cell system the proposed solution attempts to maximize the renewable factor (RF) and carbon mitigation in the hybrid system as well as to minimize the grid dependency and the life cycle cost (LCC) of the system. In this context the techno-enviroeconomic optimization of the hybrid system is conducted by employing a statistical approach to identify optimal design variables and conflictive objective functions. To examine interactions in components of the hybrid system a series of dynamic simulations are carried out by developing a TRNSYS code coupled with the OpenStudio/EnergyPlus plugin. The obtained results indicate a striking disparity in the monthly RF values as well as the hydrogen production rate and therefore in the level of grid dependency. It is shown that the difference in LCC between optimization scenarios suggested by design of experiments could reach $15780 corresponding to 57% of the mean initial cost. The LCOE value yielded for optimum scenarios varies between 0.389 and 0.537 $/kWh. The scenario with net-zero target demonstrates the lowest LCOE value and the highest carbon mitigation i.e. 828 kg CO2/yr with respect to the grid supply case. However the LCC in this scenario exceeds $57370 which is the highest among all optimum scenarios. Furthermore it was revealed that the lowest RF in optimal scenarios is equal to 66.2% and belongs to the most economical solution.
Optimizing Post-production Alternate Hydrogen Supply Chain Pathways - An Integrated TEA and LCA Approach
Dec 2024
Publication
This study presents a comprehensive techno-economic assessment (TEA) of alternative hydrogen supply chain (HSC) pathways with a focus on the conditioning transportation and reconditioning stages. The pathways assessed include compressed hydrogen liquefied hydrogen and ammonia as a hydrogen carrier. A distinctive feature of this study is its consideration of a broad range of operational capacities and transportation distances facility economies of scale and multiple vessel capacities. The TEA is complemented by a life cycle assessment (LCA) to incorporate environmental impacts ensuring a holistic analysis of economic and environmental tradeoffs. The results reveal that the compressed hydrogen pathway is optimal for short distances and low-demand scenarios with levelized costs of hydrogen (LCOH) ranging from $1.11/kg to $6.91/kg. Liquefied hydrogen shows economic competitiveness for medium distances with LCOH between $1.43/kg and $3.84/kg. Ammonia emerges as the most cost-effective for longer distances and higher demand levels with LCOH between $1.61/kg and $3.80/kg. However the LCA analysis revealed that the ammonia pathway incurs higher emissions particularly during the ammonia synthesis and cracking processes making it less promising from an integrated perspective. This integration of LCA results into the TEA framework provides a comprehensive view of each pathway accounting for both economic and environmental factors. This study provides a robust framework for guiding decision-makers in the development of an effective hydrogen supply chain integrating both economic and environmental considerations.
A Complete Assessment of the Emission Performance of an SI Engine Fueled with Methanol, Methane and Hydrogen
Feb 2024
Publication
This study explores the potentiality of low/zero carbon fuels such as methanol methane and hydrogen for motor applications to pursue the goal of energy security and environmental sustainability. An experimental investigation was performed on a spark ignition engine equipped with both a port fuel and a direct injection system. Liquid fuels were injected into the intake manifold to benefit from a homogeneous charge formation. Gaseous fuels were injected in direct mode to enhance the efficiency and prevent abnormal combustion. Tests were realized at a fixed indicated mean effective pressure and at three different engine speeds. The experimental results highlighted the reduction of CO and CO2 emissions for the alternative fuels to an extent depending on their properties. Methanol exhibited high THC and low NOx emissions compared to gasoline. Methane and even more so hydrogen allowed for a reduction in THC emissions. With regard to the impact of gaseous fuels on the NOx emissions this was strongly related to the operating conditions. A surprising result concerns the particle emissions that were affected not only by the fuel characteristics and the engine test point but also by the lubricating oil. The oil contribution was particularly evident for hydrogen fuel which showed high particle emissions although they did not contain carbon atoms.
Design of Long-Life Wireless Near-Field Hydrogen Gas Sensor
Feb 2024
Publication
A compact wireless near-field hydrogen gas sensor is proposed which detects leaking hydrogen near its source to achieve fast responses and high reliability. A semiconductor-type sensing element is implemented in the sensor which can provide a significant response in 100 ms when stimulated by pure hydrogen. The overall response time is shortened by orders of magnitude compared to conventional sensors according to simulation results which will be within 200 ms compared with over 25 s for spatial concentration sensors under the worst conditions. Over 1 year maintenance intervals are enabled by wireless design based on the Bluetooth low energy protocol. The average energy consumption during a single alarm process is 153 µJ/s. The whole sensor is integrated on a 20 × 26 mm circuit board for compact use.
Life Cycle Assessment of a 5 MW Polymer Exchange Membrane Water Electrolysis Plant
Jan 2024
Publication
This study performs a cradle-to-grave life cycle assessment of a 5 MW protonexchange membrane water electrolysis plant. The analysis follows a thoroughengineering-based bottom-up design based on the electrochemical model of thesystem. Three scenarios are analyzed comprising a state-of-the-art (SoA) plantoperated with the German electricity grid-mix a SoA plant operated with acompletely decarbonized energy system and a future development plantelectrolyzer with reduced energy and material demand operated in a completelydecarbonized energy system. The results display a global warming potential of34 kg CO2-eq. kg-H 21 and indicate a reduction potential of 89% when the plantis operated in a decarbonized energy system. A further reduction of 9% can beachieved by the technological development of the plant. Due to the reducedimpacts of operation in a completely decarbonized energy system the operationat locations with large offshore wind electricity capacity is recommended. In theconstruction phase the stacks especially the anode catalyst iridium bipolarplates and porous transport layers are identified as dominant sources of theenvironmental impact. A sensitivity analysis shows that the environmentalimpact of the construction phase increases with a decreasing amount ofoperational full load hours of the plant.RESEARCH ARTICLEwww.advenergysustres.comAdv. Energy Sustainability Res. 2024 5 2300135 2300135 (1 of 19) © 2023 The Authors. Advanced Energy and Sustainability Researchpublished by Wiley-VCH GmbH
Effect of Methane Addition on Transition to Detonation in Hydrogen-Air Mixtures Due to Shock Wave Focussing in a 90 - Degree Corner
Sep 2023
Publication
The main purpose of this work is to investigate the influence of methane addition in methane-hydrogen-air mixture (φ = 0.8 – 1.6) on the critical conditions for transition to detonation in a 90-deg wedge corner. Similar to hydrogen-air mixtures investigated previously [1] methane-hydrogen-air mixtures results showed three ignition modes weak ignition followed by deflagration with ignition delay time higher than 1 μs strong ignition with instantaneous transition to detonation and third with deflagrative ignition and delayed transition to detonation. Methane addition caused an increase in the range of 3.25 – 5.03% in the critical shock wave velocity necessary for transition to detonation for all mixtures considered. For example in stoichiometric mixture with 5% methane in fuel (95% hydrogen in fuel) in air the transition to detonation velocity was approx. 752 m/s (an increase of 37 m/s from hydrogen-air) corresponding to M = 1.89 (an increase of 0.14 from hydrogen-air) and 75.7% (an increase of 4.7% from hydrogen-air) of speed of sound in products. Also similar to hydrogen-air mixture the transition to detonation velocity increased for leaner and richer mixture. Moreover it was observed that methane addition in general increased the pressure limit at the corner necessary for transition to detonation.
Hydrogen Refueling Stations Powered by Hybrid PV/Wind Renewable Energy Systems: Techno-socio-economic Assessment
Mar 2024
Publication
Hydrogen is considered as an attractive alternative to fossil fuels in the transportation sector. However the penetration of Fuel Cell Electric Vehicles (FCEV) is hindered by the lack of hydrogen refueling station infrastructures. In this study the feasibility of a hybrid PV/wind system for hydrogen refueling station is investigated. Refueling events data is collected in different locations including industrial residential highway and tourist areas. Station Occupancy Fractions (SOF) and Social-to-Solar Fraction (STSF) indicators are developed to assess the level of synchronization between the hydrogen demand and solar potential. Then a validated computer code is used to optimize the renewable system components for off/on-grid cases based on minimizing the Net Present Cost (NPC) and the Loss of Hydrogen Supply Probability (LHSP). For off grid cases the results show that STSF attains maximum value in the industrial area where 0.62 fraction of refueling events occur during the sunshine hours and minimum NPC is achieved. It is observed that when STSF attains lower values of 0.52 0.41 and 0.38 for residential highway and tourist areas NPC increases by 8 16 and 31% respectively. This is associated with lower level of coordination between the hydrogen demand and solar potential. The same conclusion can be stated for the on-grid cases. Therefore for green hydrogen production via solar energy utilization it is recommended that a tariff should be applied to encourage refueling hydrogen vehicles during the availability of solar radiation while reducing the environmental impact storage requirements and eventually the cost of hydrogen production.
Experiments and Simulations of Large Scale Hydrogen-Nitrogen-Air Gas Explosions for Nuclear and Hydrogen Safety Applications
Sep 2023
Publication
Hydrogen safety is a general concern because of the high reactivity compared to hydrocarbon-based fuels. The strength of knowledge in risk assessments related to the physical phenomena and the ability of models to predict the consequence of accidental releases is a key aspect for the safe implementation of new technologies. Nuclear safety considers the possibility of accidental leakages of hydrogen gas and subsequent explosion events in risk analysis. In many configurations the considered gaseous streams involve a large fraction of nitrogen gas mixed with hydrogen. This work presents the results of a large scale explosion experimental campaign for hydrogen-nitrogen-air mixtures. The experiments were performed in a 50 m3 vessel at Gexcon’s test site in Bergen Norway. The nitrogen fraction the equivalence ratio and the congestion level were investigated. The experiments are simulated in the FLACS-CFD software to inform about the current level of conservatism of the predictions for engineering application purposes. The study shows the reduced overpressure with nitrogen added to hydrogen mixtures and supports the use of FLACS-CFD-based risk analysis for hydrogen-nitrogen scenarios.
Energy Efficiency of Hydrogen for Vehicle Propulsion: On- or Off-board H2 to Electricity Conversion?
Nov 2024
Publication
If hydrogen fuel is available to support the transportation sector decarbonization its usage can be placed either directly onboard in a fuel cell vehicle or indirectly off-board by using a fuel cell power station to produce electricity to charge a battery electric vehicle. Therefore in this work the direct and indirect conversion scenarios of hydrogen to vehicle propulsion were investigated regarding energy efficiency. Thus in the first scenario hydrogen is the fuel for the onboard electricity production to propel a fuel cell vehicle while in the second hydrogen is the electricity source to charge the battery electric vehicle. When simulated for a drive cycle results have shown that the scenario with the onboard fuel cell consumed about 20% less hydrogen demonstrating higher energy efficiency in terms of driving range. However energy efficiency depends on the outside temperature when heat loss utilization is considered. For outside temperatures of − 5 ◦C or higher the system composed of the battery electric vehicle fueled with electricity from the off-board fuel cell was shown to be more energyefficient. For lower temperatures the system composed of the onboard fuel cell again presented higher total (heat + electricity) efficiency. Therefore the results provide valuable insights into how hydrogen fuel can be used for vehicle propulsion supporting the hydrogen economy development.
Data Hub for Life Cycle Assessment of Climate Change Solutions—Hydrogen Case Study
Nov 2024
Publication
Life cycle assessment which evaluates the complete life cycle of a product is considered the standard methodological framework to evaluate the environmental performance of climate change solutions. However significant challenges exist related to datasets used to quantify these environmental indicators. Although extensive research and commercial data on climate change technologies pathways and facilities exist they are not readily available to practitioners of life cycle assessment in the right format and structure using an open platform. In this study we propose a new open data hub platform for life cycle assessment considering a hierarchical data flow starting with raw data collected on climate change technologies at laboratory pilot demonstration or commercial scales to provide the information required for policy and decision-making. This platform makes data accessible at multiple levels for practitioners of life cycle assessment while making data interoperable across platforms. The proposed data hub platform and workflow are explained through the polymer electrolyte membrane electrolysis hydrogen production as a case study. The climate change environment impact of 1.17 ± 0.03 kg CO2 eq./kg H2 was calculated for the case study. The current data hub platform is limited to evaluating environmental impacts; however future additions of economic and social aspects are envisaged.
Municipal Wastewater Reclamation: Reclaimed Water for Hydrogen Production by Electrolysis - A Case Study
Apr 2023
Publication
This paper presents an analysis of a treatment system selection for municipal wastewater stream based on the DuPont Water Solutions WAVE software. The results obtained based on an analysis of 7 different processing cases studies (ultrafiltration and reverse osmosis) confirmed that the application of 2-pass membrane systems enables the reclamation of water from municipal wastewater that fulfills the requirements concerning the quality of water intended as electrolyzer feedstock as the obtained water exhibited a conductivity of < 5 µS/cm. Depending on the analyzed case study the attainable level of water reclamation ranged from 68.8 to 84.1 % at an energy consumption of 606.1 – 2 694 kWh/d. The results of this work not only confirm that the selected pro cessing solutions make it possible to reclaim water from municipal wastewater but also confirm the necessity of using software to simulate the membrane system operation to select the most economic and cost-effective solution.
Analysis of Hydrogen Embrittlement on Aluminum Alloys for Vehicle-Mounted Hydrogen Storage Tanks: A Review
Aug 2021
Publication
High-pressure hydrogen tanks which are composed of an aluminum alloy liner and a carbon fiber wound layer are currently the most popular means to store hydrogen on vehicles. Nevertheless the aluminum alloy is easily affected by high-pressure hydrogen which leads to the appearance of hydrogen embrittlement (HE). Serious HE of hydrogen tank represents a huge dangers to the safety of vehicles and passengers. It is critical and timely to outline the mainstream approach and point out potential avenues for further investigation of HE. An analysis including the mechanism (including hydrogen-enhanced local plasticity model hydrogen-enhanced decohesion mechanism and hydrogen pressure theory) the detection (including slow strain rate test linearly increasing stress test and so on) and methods for the prevention of HE on aluminum alloys of hydrogen vehicles (such as coating) are systematically presented in this work. Moreover the entire experimental detection procedures for HE are expounded. Ultimately the prevention measures are discussed in detail. It is believed that further prevention measures will rely on the integration of multiple prevention methods. Successfully solving this problem is of great significance to reduce the risk of failure of hydrogen storage tanks and improve the reliability of aluminum alloys for engineering applications in various industries including automotive and aerospace.
Towards Safer Hydrogen Refuelling Stations: Insights from Computational Fluid Dynamics LH2 Leakage
May 2024
Publication
The transition to a sustainable future with hydrogen as a key energy carrier necessitates a comprehensive understanding of the safety aspects of hydrogen including liquid hydrogen (LH₂). Hence this study presents a detailed computational fluid mechanics analysis to explore accidental LH₂ leakage and dispersion in a hydrogen refuelling station under varied conditions which is essential to prevent fire and explosion. The correlated impact of influential parameters including wind direction wind velocity leak direction and leak rate were analysed. The study shows that hydrogen dispersion is significantly impacted by the combined effect of wind direction and surrounding structures. Additionally the leak rate and leak direction have a significant effect on the development of the flammable cloud volume (FCV) which is critical for estimating the explosion hazards. Increasing wind velocity from 2 to 4 m/s at a constant leak rate of 0.06 kg/s results in an 82% reduction in FCV. The minimum FCV occurs when leak and wind directions oppose at 4 m/s. The most critical situation concerning FCV arises when the leak and wind directions are perpendicular with a leak rate of 0.06 kg/s and a wind velocity of 2 m/s. These findings can aid in the development of optimised sensing and monitoring systems and operational strategies to reduce the risk of catastrophic fire and explosion consequences.
Hydrogen's Potential and Policy Pathways for Indonesia's Energy Transition: The Actor-network Analysis
Mar 2025
Publication
This research examines potential uses of hydrogen as an alternative energy source in Indonesia. Hydrogen presents a more environmentally friendly energy alternative with markedly reduced greenhouse gas emissions leading the Indonesian government to align its interests with the worldwide excitement for hydrogen-based energy transitions within the sustainable development context. Nevertheless despite its intriguing potential as an alternative fuel for transportation industry and power generation pilot programs have demonstrated that hydrogen energy remains expensive and demands substantial advancements in technology. This study used a qualitative methodology incorporating documentary analysis semi-structured interviews and focus group discussions within the actor-network theory framework aimed to investigate the current positioning of hydrogen energy in Indonesia’s policy pathways and to examine its potential and challenge. The findings indicate two primary insights: firstly Indonesia’s energy transformation is presently centered on formulating action plans and regulatory frameworks with hydrogen seen as one of the proposed alternatives. The investigation of hydrogen’s current progress through the actor-network theory framework has yielded two separate actor networks: the proponent network consisting of the national government and the national oil company and the opposing network which encompasses academics businesses and industries.
Techno-economic Analysis of the Effect of a Novel Price-based Control System on the Hydrogen Production of an Offshore 1.5 GW Wind-hydrogen System
Feb 2024
Publication
The cost of green hydrogen production is very dependent on the price of electricity. A control system that can schedule hydrogen production based on forecast wind speed and electricity price should therefore be advantageous for large-scale wind-hydrogen systems. This work presents a novel price-based control system integrated in a techno-economic analysis of hydrogen production from offshore wind. A polynomial regression model that predicts wind power production from wind speed input was developed and tested with real-world datasets from a 2.3 MW floating offshore wind turbine. This was combined with a mathematical model of a PEM electrolyzer and used to simulate hydrogen production. A novel price-based control system was developed to decide when the system should produce hydrogen and when it should sell electricity to the grid. The model and control system can be used in real-world wind-hydrogen systems and require only the forecast wind speed electricity price and selling price of hydrogen as inputs. 11 test scenarios based on 10 years of real-world wind speed and electricity price data are proposed and used to evaluate the effect the price-based control system has on the levelized cost of hydrogen (LCOH). Both current and future (2050) costs and technologies are used and the results show that the novel control system lowered the LCOH in all scenarios by 10–46%. The lowest LCOH achieved with current technology and costs was 6.04 $/kg H2. Using the most optimistic forecasts for technology improvements and cost reductions in 2050 the model estimated a LCOH of 0.96 $/kg H2 for a grid-connected offshore wind farm and onshore hydrogen production 0.82 $/kg H2 using grid electricity (onshore) and 4.96 $/kg H2 with an offgrid offshore wind-hydrogen system. When the electricity price from the period 2013–2022 was used on the 2050 scenarios the resulting LCOH was approximately twice as high.
The Role of Hydrogen in the Energy Transition of the Oil and Gas Industry
May 2024
Publication
Hydrogen primarily produced from steam methane reforming plays a crucial role in oil refining and provides a solution for the oil and gas industry's long-term energy transition by reducing CO2 emissions. This paper examines hydrogen’s role in this transition. Firstly experiences from oil and gas exploration including in-situ gasification can be leveraged for hydrogen production from subsurface natural hydrogen reservoirs. The produced hydrogen can serve as fuel for generating steam and heat for thermal oil recovery. Secondly hydrogen can be blended into gas for pipeline transportation and used as an alternative fuel for oil and gas hauling trucks. Additionally hydrogen can be stored underground in depleted gas fields. Lastly oilfield water can be utilized for hydrogen production using geothermal energy from subsurface oil and gas fields. Scaling up hydrogen production faces challenges such as shared use of oil and gas infrastructures increased carbon tax for promoting blue hydrogen and the introduction of financial incentives for hydrogen production and consumption hydrogen leakage prevention and detection.
Exergy Analysis in Intensification of Sorption-enhanced Steam Methane Reforming for Clean Hydrogen Production: Comparative Study and Efficiency Optimisation
Feb 2024
Publication
Hydrogen has a key role to play in decarbonising industry and other sectors of society. It is important to develop low-carbon hydrogen production technologies that are cost-effective and energy-efficient. Sorption-enhanced steam methane reforming (SE-SMR) is a developing low-carbon (blue) hydrogen production process which enables combined hydrogen production and carbon capture. Despite a number of key benefits the process is yet to be fully realised in terms of efficiency. In this work a sorption-enhanced steam methane reforming process has been intensified via exergy analysis. Assessing the exergy efficiency of these processes is key to ensuring the effective deployment of low-carbon hydrogen production technologies. An exergy analysis was performed on an SE-SMR process and was then subsequently used to incorporate process improvements developing a process that has theoretically an extremely high CO2 capture rate of nearly 100 % whilst simultaneously demonstrating a high exergy efficiency (77.58 %) showcasing the potential of blue hydrogen as an effective tool to ensure decarbonisation in an energy-efficient manner.
Towards Low-carbon Power Networks: Optimal Location and Sizing of Renewable Energy Sources and Hydrogen Storage
Apr 2024
Publication
This paper proposes a systematic optimization framework to jointly determine the optimal location and sizing decisions of renewables and hydrogen storage in a power network to achieve the transition to low-carbon networks efficiently. We obtain these strategic decisions based on the multi-period alternating current optimal power flow (AC MOPF) problem that jointly analyzes power network renewable and hydrogen storage interactions at the operational level by considering the uncertainty of renewable output seasonality of electricity demand and electricity prices. We develop a tailored solution approach based on second-order cone programming within a Benders decomposition framework to provide globally optimal solutions. In a test case we show that the joint integration of renewable sources and hydrogen storage and consideration of the AC MOPF model significantly reduces the operational cost of the power network. In turn our findings can provide quantitative insights to decision-makers on how to integrate renewable sources and hydrogen storage under different settings of the hydrogen selling price renewable curtailment cost emission tax price and conversion efficiency.
Oxygen-rich Microporous Carbons with Exceptional Hydrogen Storage Capacity
Oct 2021
Publication
Porous carbons have been extensively investigated for hydrogen storage but to date appear to have an upper limit to their storage capacity. Here in an effort to circumvent this upper limit we explore the potential of oxygen-rich activated carbons. We describe cellulose acetate-derived carbons that combine high surface area (3800 m2 g−1 ) and pore volume (1.8 cm3 g−1 ) that arise almost entirely (>90%) from micropores with an oxygen-rich nature. The carbons exhibit enhanced gravimetric hydrogen uptake (8.1 wt% total and 7.0 wt% excess) at −196 °C and 20 bar rising to a total uptake of 8.9 wt% at 30 bar and exceptional volumetric uptake of 44 g l −1 at 20 bar and 48 g l −1 at 30 bar. At room temperature they store up to 0.8 wt% (excess) and 1.2 wt% (total) hydrogen at only 30 bar and their isosteric heat of hydrogen adsorption is above 10 kJ mol−1 .
Leakage Rates of Hydrogen-methane Gas Blends under Varying Pressure Conditions
Nov 2024
Publication
Integration of hydrogen into the existing natural gas infrastructure is considered a potential pathway that can accelerate the incorporation of hydrogen into the energy sector. While blending renewable hydrogen with natural gas offers advantages such as reduced carbon intensity and the ability to utilize existing infrastructure for hydrogen storage and transportation there are several concerns including leakage and associated issues. Un derstanding the behavior of hydrogen blended with natural gas in the existing infrastructure is crucial to ensure safe and efficient integration. In this study the leakage rates of mixtures of hydrogen and methane at different molar concentrations (5% 10% 20% and 50% hydrogen) through both precision machined orifices and com mon pipe fitting threads were investigated. The experiments showed that the leakage rates of these mixtures increased as the hydrogen content increased; however gas chromatography (GC) analysis showed that hydrogen did not leak preferentially at a greater rate than methane. The results indicate that mixing hydrogen with methane can increase the volume of gas leakage under the same pressure conditions. These findings suggest that mixing hydrogen with natural gas may result in increased volumetric flow rate of gas leaks but hydrogen alone does not leak preferentially to methane.
Exploiting the Ocean Thermal Energy Conversion (OTEC) Technology for Green Hydrogen Production and Storage: Exergo-economic Analysis
Nov 2024
Publication
This study presents and analyses three plant configurations of the Ocean Thermal Energy Conversion (OTEC) technology. All the solutions are based on using the OTEC system to obtain hydrogen through an electrolyzer. The hydrogen is then compressed and stored. In the first and second layouts a Rankine cycle with ammonia and a mixture of water and ethanol is utilised respectively; in the third layout a Kalina cycle is considered. In each configuration the OTEC cycle is coupled with a polymer electrolyte membrane (PEM) electrolyzer and the compression and storage system. The water entering the electrolyzer is pre-heated to 80 ◦C by a solar collector. Energy exergy and exergo-economic studies were conducted to evaluate the cost of producing compressing and storing hydrogen. A parametric analysis examining the main design constraints was performed based on the temperature range of the condenser the mass flow ratio of hot and cold resource flows and the mass fraction. The maximum value of the overall exergy efficiency calculated is equal to 93.5% for the Kalina cycle and 0.524 €/kWh is the minimum cost of hydrogen production achieved. The results were compared with typical data from other hydrogen production systems.
Hydrogen Impact: A Review on Diffusibility, Embrittlement Mechanisms, and Characterization
Feb 2024
Publication
Hydrogen embrittlement (HE) is a broadly recognized phenomenon in metallic materials. If not well understood and managed HE may lead to catastrophic environmental failures in vessels containing hydrogen such as pipelines and storage tanks. HE can affect the mechanical properties of materials such as ductility toughness and strength mainly through the interaction between metal defects and hydrogen. Various phenomena such as hydrogen adsorption hydrogen diffusion and hydrogen interactions with intrinsic trapping sites like dislocations voids grain boundaries and oxide/matrix interfaces are involved in this process. It is important to understand HE mechanisms to develop effective hydrogen resistant strategies. Tensile double cantilever beam bent beam and fatigue tests are among the most common techniques employed to study HE. This article reviews hydrogen diffusion behavior mechanisms and characterization techniques.
Knowledge Production in Technological Innovation System: A Comprehensive Evaluation using a Multi-criteria Framework based on Patent Data - A Case Study on Hydrogen Storage
Jan 2025
Publication
Knowledge production activity is central within a technological innovation system. The number of patent ap plications is commonly used to evaluate this activity. However it is subject to bias and inaccurate evaluations can occur. This article proposes a multi-criteria framework based on seven complementary patent indicators taking into account the persistence commitment and coherence of knowledge production activities for a more comprehensive evaluation. We demonstrate the value of our proposal through a case study on hydrogen storage comparing patent data since 2000 about three technological solutions: physical chemical and adsorption technologies. Our framework clearly shows that physical hydrogen storage is the most advanced in terms of knowledge production despite not having the highest number of patent applications.
No more items...