Publications
Sustainable Aviation Fuels: A Review of Current Techno Economic Viability and Life Cycle Impacts
Oct 2025
Publication
Australia has set a new climate target of reducing emissions by 62–70% below 2005 levels by 2035 with sustainable aviation fuel (SAF) central to achieving this goal. This review critically examines techno-economic analysis (TEA) and life cycle assessment (LCA) of Powerto-Liquid (PtL) electrofuels (e-fuels) which synthesize atmospheric CO2 and renewable hydrogen (H2) via Fischer-Tropsch (FT) synthesis. Present PtL pathways require ~0.8 kg of H2 and 3.1 kg of CO2 per kg SAF with ~75% kerosene yield. While third-generation feedstocks could cut greenhouse gas emissions by up to 93% (as low as 8 gCO2e/MJ) real world reductions have been limited (~1.5%) due to variability in technology rollout and feedstock variability. Integrated TEA–LCA studies demonstrate up to 20% energy efficiency improvements and 40% cost reductions but economic viability demands costs below $3/kg. In Australia abundant solar resources vast transport networks and supportive policy frameworks present both opportunities and challenges. This review provides the first comprehensive assessment of PtL-FT SAF for Australian conditions highlighting that large-scale development will require technological advancement feedstock development infrastructure investment and coordinated policy support.
Risk Assessment of Offshore Wind–Solar–Current Energy Coupling Hydrogen Production Project Based on Hybrid Weighting Method and Aggregation Operator
Oct 2025
Publication
Under the dual pressures of global climate change and energy structure transition the offshore wind–solar–current energy coupling hydrogen production (OCWPHP) system has emerged as a promising integrated energy solution. However its complex multi-energy structure and harsh marine environment introduce systemic risks that are challenging to assess comprehensively using traditional methods. To address this we develop a novel risk assessment framework based on hesitant fuzzy sets (HFS) establishing a multidimensional risk criteria system covering economic technical social political and environmental aspects. A hybrid weighting method integrating AHP entropy weighting and consensus adjustment is proposed to determine expert weights while minimizing risk information loss. Two aggregation operators—AHFOWA and AHFOWG—are applied to enhance uncertainty modeling. A case study of an OCWPHP project in the East China Sea is conducted with the overall risk level assessed as “Medium.” Comparative analysis with the classical Cumulative Prospect Theory (CPT) method shows that our approach yields a risk value of 0.4764 closely aligning with the CPT result of 0.4745 thereby confirming the feasibility and credibility of the proposed framework. This study provides both theoretical support and practical guidance for early-stage risk assessment of OCWPHP projects.
A Comparative Study of Alternative Polymer Binders for the Hydrogen Evolution Reaction
Aug 2025
Publication
Given the economic industrial and environmental value of green dihydrogen (H2) optimization of water electrolysis as a means of producing H2 is essential. Binders are a crucial component of electrocatalysts yet they remain largely underdeveloped with a significant lack of standardization in the field. Therefore targeted research into the development of alternative binder systems is essential for advancing performance and consistency. Binders essentially act as the key to regulating the electrode (support)–catalyst–electrolyte interfacial junctions and contribute to the overall reactivity of the electrocatalyst assembly. Therefore alternative binders were explored with a focus on cost efficiency and environmental compatibility striving to achieve desirable activity and stability. Herein the alkaline hydrogen evolution reaction (HER) was investigated and the sluggish water dissociation step was targeted. Controlled hydrophilic poly(vinyl alcohol)-based hydrogel binders were designed for this application. Three hydrogel binders were evaluated without incorporated electrocatalysts namely PVA145 PVA145-blend-bPEI1.8 and PVA145-blend-PPy. Interestingly the study revealed that the hydrophilicity of the binders exhibited an enhancing effect on the observed activity resulting in improved performance compared to the commercial binder Nafion™. Notably the PVA145 system stands out with an overpotential of 224 mV at−10 mA·cm−2 (geometric) in 1.0 M KOH compared to the 238 mV exhibited by Nafion™. Inclusion of Pt as active material in PVA145 as binder exhibited a synergistic increase in performance achieving a mass activity of 1.174 A.cm−2.mg−1 Pt in comparison to Nafion™’s 0.344 A.cm−2.mg−1 Pt measured at−150 mV vs RHE. Our research aimed to contribute to the development of cost-effective and efficient binder systems stressing the necessity to challenge the dominance of the commercially available binders.
AI-driven Advances in Composite Materials for Hydrogen Storage Vessels: A Review
Sep 2025
Publication
This review provides a comprehensive examination of artificial intelligence methods applied to the design optimization and performance prediction of composite-based hydrogen storage vessels with a focus on composite overwrapped pressure vessels. Targeted at researchers engineers and industrial stakeholders in materials science mechanical engineering and renewable energy sectors the paper aims to bridge traditional mechanical modeling with evolving AI tools while emphasizing alignment with standardization and certification requirements to enhance safety efficiency and lifecycle integration in hydrogen infrastructure. The review begins by introducing HSV types their material compositions and key design challenges including high-pressure durability weight reduction hydrogen embrittlement leakage prevention and environmental sustainability. It then analyzes conventional approaches such as finite element analysis multiscale modeling and experimental testing which effectively address aspects like failure modes fracture strength liner damage dome thickness winding angle effects crash behavior crack propagation charging/discharging dynamics burst pressure durability reliability and fatigue life. On the other hand it has been shown that to optimize and predict the characteristics of hydrogen storage vessels it is necessary to combine the conventional methods with artificial intelligence methods as conventional methods often fall short in multi-objective optimization and rapid predictive analytics due to computational intensity and limitations in handling uncertainty or complex datasets. To overcome these gaps the paper evaluates hybrid frameworks that integrate traditional techniques with AI including machine learning deep learning artificial neural networks evolutionary algorithms and fuzzy logic. Recent studies demonstrate AI’s efficacy in failure prediction design optimization to mitigate structural risks structural health monitoring material property evaluation burst pressure forecasting crack detection composite lay-up arrangement weight minimization material distribution enhancement metal foam ratio optimization and optimal material selection. By synthesizing these advancements this work underscores AI’s potential to accelerate development reduce costs and improve HSV performance while advocating for physics-informed models robust datasets and regulatory alignment to facilitate industrial adoption.
Biohydrogen Production from Industrial Waste: The Role of Pretreatment Methods
Oct 2025
Publication
This study aimed to investigate the effectiveness of dark fermentation in biohydrogen production from agro-industrial wastes including apple pomace brewer’s grains molasses and potato powder subjected to different pretreatment methods. The experiments were conducted at a laboratory scale using 1000 cm3 anaerobic reactors at a temperature of 35 ◦C and anaerobic sludge as the inoculum. The highest yield of hydrogen was obtained from pre-treated apple pomace (101 cm3/g VS). Molasses a less complex substrate compared to the other raw materials produced 25% more hydrogen yield following pretreatment. Methanogens are sensitive to high temperatures and low-pH conditions. Nevertheless methane constituted 1–6% of the total biogas under these conditions. The key factor was appropriate treatment of the inoculum to limit competition from methanogens. Increasing the inoculum dose from 150 cm3/dm3 to 250 cm3/dm3 had no further effect on biogas production. The physicochemical parameters and VFA data confirmed the stability and usefulness of activated sludge as a source of microbial cultures for H2 production via dark fermentation.
Sustainable Refining: Integrating Renewable Energy and Advanced Technologies
Aug 2025
Publication
Crude oil distillation is one of the most energy-intensive processes in petroleum refining consuming up to 20% of total refinery energy. Improving the energy efficiency of crude distillation units (CDUs) is essential for reducing costs lowering emissions and achieving sustainable refining. Current studies often examine energy savings operational flexibility or renewable energy integration separately. This review brings these aspects together focusing on heat integration advanced control systems and renewable energy options such as solar-assisted preheating and green hydrogen. Advanced column designs including dividing-wall and hybrid systems can cut energy use by 15–30% while AI-based optimization improves process stability and flexibility. Solar-assisted preheating can reduce fossil fuel demand by up to 20% and green hydrogen offers strong potential for decarbonization. Our findings highlight that integrated strategies including advanced simulation tools and machine learning significantly improve CDU performance. We recommend exploring hybrid algorithms renewable energy integration and sustainable technologies to address these challenges and achieve long-term environmental and economic benefits.
Modeling and Optimization Control of SOEC with Flexible Adjustment Capabilities
Jul 2025
Publication
Due to the random fluctuations in power experienced by high-temperature green electric hydrogen production systems further deterioration of spatial distribution characteristics such as temperature voltage/current and material concentration inside the solid oxide electrolysis cell (SOEC) stack may occur. This has a negative impact on the system’s flexibility and the corresponding control capabilities. In this paper based on the SOEC electrolytic cell model a comprehensive optimization method using an adaptive incremental Kriging surrogate model is proposed. The reliability of this method is verified by accurately analyzing the dynamic performance of the SOEC and the spatial characteristics of various physical quantities. Additionally a thermal dynamic analysis is performed on the SOEC and an adaptive time-varying LPV-MPC optimization control method is established to ensure the temperature stability of the electrolysis cell stack aiming to maintain a stable efficient and sustainable SOEC operation. The simulation analysis of SOEC hydrogen production adopting a variable load operation has demonstrated the advantages of this method over conventional PID control in stabilizing the temperature of the stack. It allows for a rapid adjustment in the electrolysis voltage and current and improves electrolysis efficiency. The results highlighted that the increase in the electrolysis load increases the current density while the water vapor electrolysis voltage and H2 flow rate significantly decrease. Finally the SOEC electrolytic hydrogen production module is introduced for optimization scheduling of energy consumption in Xinjiang China. The findings not only confirmed that the SOEC can transition to the current load operating point at each scheduling period but also demonstrated higher effectiveness in stabilizing the stack temperature and improving electrolysis efficiency.
Influence of Hydrogen-Based Direct Reduction Shaft Furnace Interior Structure on Shaft Furnace Performance
Oct 2025
Publication
Hydrogen-based direct reduction of iron ore is a promising route to reduce CO2 emissions in steelmaking where uniform particle flow inside shaft furnaces is essential for efficient operation. In this study a full-scale three-dimensional Discrete Element Method (DEM) model of a shaft furnace was developed to investigate the effects of a diverter device on granular flow. By systematically varying the radial width and top/bottom diameters of the diverter particle descent velocity residence time compressive force distribution and collision energy dissipation were analyzed. The results demonstrate that introducing a diverter effectively suppresses funnel flow prolongs residence time and improves radial flow uniformity. Among the tested configurations the smaller central diameter diverter showed the most favorable performance achieving a faster and more uniform descent reduced compressive force concentration and lower collision energy dissipation. These findings highlight the critical role of diverter design in regulating particle dynamics and provide theoretical guidance for optimizing shaft furnace structures to enhance the efficiency of hydrogen-based direct reduction processes.
Zero-emission Traction for Rail
Jul 2025
Publication
Replacing the energy density and convenience of diesel fuel for all forms of fossil fuel-powered trains presents significant challenges. Unlike the traditional evolutions of rail which has largely self-optimised to different fuels and cost structures over 150 years the challenges now present with a timeline of just a few decades. Fortunately unlike the mid-1800s simulation and modelling tools are now quite advanced and a full range of scenarios of operations and train trips can be simulated before new traction systems are designed. Full trip simulations of large heavy haul trains or high speed passenger trains are routinely completed controlled by emulations of human drivers or automated control systems providing controls of the “virtual train”. Recent developments in digital twins can be used to develop flexible and dynamic models of passenger and freight rail systems to support the new complexities of decarbonisation efforts. Interactions between many different traction components and the train multibody system can be considered as a system of systems. Adopting this multi-modelling paradigm enables the secure and integrated interfacing of diverse models. This paper demonstrates the application of the multi-modelling approach to develop digital twins for rail decarbonisation traction and it presents physics-based multi-models that include key components required for studying rail decarbonisation problems. Specifically the challenge of evaluating zero-emission options is addressed by adding further layers of modelling to the existing fully detailed multibody dynamics simulations. The additional layers detail control options energy storage the alternate traction system components and energy management systems. These traction system components may include both electrical system and inertia dynamics models to accurately represent the driveline and control systems. This paper presents case study examples of full trip scenarios of both long haul freight trains and higher speed passenger trains. These results demonstrate the many complex scenarios that are difficult to anticipate. Flowing on from this risks can be assessed and practical designs of zero-emission systems can be proposed along with the required recharging or refuelling systems.
Maximization and Efficient Production Rates of Different Zero Carbon Electrofuels using Dry Alkaline Electroyzers
Aug 2025
Publication
The present work focused on the comparison between HHO and hydrogen electrolyzers in design gas production and various parameters which affect the performance and efficiency of alkaline electrolyzers. The primary goal is to generate the highest possible hydrogen and HHO gas flow rates. Hydrogen and HHO were produced using 3 mm electrode of stainless steel 316L with 224 cm2 surface area. Hydroxy and hydrogen rates were affected by electrolyte content cell connection electric current operating time electrolyte temperature and voltage. Maximum HHO generation values were 1020 1076 1125 and 1175 mL min−1 n at 5 10 15 and 20 g L−1 of sodium hydroxide (NaOH) with supply currents of 15 15.3 15.6 and 16 A respectively. Once it stabilized after 30 min the temperature increased to 26 30 35 and 38 °C respectively and remained there. With currents of 18 18.45 18.7 19.2 19.5 and 19.8 A hydrogen output peak values after 60 min. stayed constant at 680 734 785 846 897 and 945 mL min-1. at 5 10 15 and 20 g L−1 NaOH catalyst concentrations. At 5 10 15 and 20 g L−1 catalyst ratios the temperatures were elevated to constant values of 28.5 32 37.9 40.5 41.4 and 43 °C respectively. With cell design [4C3A19N] electrolyte concentration of 5 g L−1 NaOH and current of 14 A maximum HHO productivity was 866 mL min−1. and 74.23% efficiency. In a cell design of [4C5A17N] with catalyst content of 10 g L−1 maximum productivity was 680 mL min−1 for hydrogen and highest production efficiency of 72.85% was attained at 18 A.
Optimization Using RSM of Combined Cycle of Power, NG, and Hydrogen Production by a Bi-geothermal Energy Resource and LNG Heat Sink
Aug 2025
Publication
This study presents a comprehensive optimization of a tri-generation system that integrates dual geothermal wells Liquefied Natural Gas (LNG) cold energy recovery and hydrogen production using an advanced Response Surface Methodology (RSM) approach. The system combines two geothermal wells with different temperature profiles power generation via an Organic Rankine Cycle (ORC) and hydrogen production through a Proton Exchange Membrane (PEM) electrolyzer enhanced by integrated LNG regasification for improved energy recovery. The primary novelty of this work lies in the first application of RSM for multi-objective optimization of geothermal-based tri-generation systems moving beyond the conventional single-objective approaches. A 40-run experimental design is employed to simultaneously optimize three critical performance indicators: exergy efficiency power-specific cost and hydrogen production rate considering six key operating parameters. The RSM framework enables systematic exploration of parameter interactions and delivers statistically validated predictive models offering a robust and computationally efficient optimization strategy. The optimized system achieves outstanding performance with an exergy efficiency of 44.60% a competitive power-specific cost of 19.70 $/GJ and a hydrogen production rate of 5.15 kg/hr. Comparative analysis against prior studies confirms the superiority of the RSM-based approach demonstrating a 1% improvement in exergy efficiency (44.60% vs. 44.16%) a significant 44.1% increase in hydrogen production rate (5.15 kg/hr vs. 3.575 kg/hr) and a 0.81% reduction in power-specific cost compared to genetic algorithm-based optimization.
Research on the Optimization Decision Method for Hydrogen Load Aggregators to Participate in Peak Shaving Market
Oct 2025
Publication
Zhenya Lei,
Libo Gu,
Zhen Hu and
Tao Shi
This article takes the perspective of Hydrogen Load Aggregator (HLA) to optimize the declaration strategy of peak shaving market improve the flexible regulation capability of power system and HLA economy as the research objectives and proposes an optimization strategy method for HLA to participate in peak shaving market. Firstly an improved Convolutional Neural Networks–Long Short-Term Memory (CNN-LSTM) time series prediction model is developed to address peak shaving demand uncertainty. Secondly a bidding strategy model incorporating dynamic pricing is constructed by comprehensively considering electrolyzer regulation costs market supply–demand relationships and system constraints. Thirdly a market clearing model for peak shaving markets with HLA participation is designed through analysis of capacity contribution and marginal costs among different regulation resources. Finally the capacity allocation model is designed with the goal of minimizing the total cost of peak shaving among various stakeholders within HLA and the capacity won by HLA in the peak shaving market is reasonably allocated. Simulations conducted on a Python3.12-based experimental platform demonstrate the following: the improved CNN-LSTM model exhibits strong adaptability and robustness the bidding model effectively enhances HLA market competitiveness and the clearing model reduces system operator costs by 5.64%.
Investigating Ammonia as an Alternative Marine Fuel: A SWOT Analysis Using the Best–Worst Method
Oct 2025
Publication
The shipping industry remains heavily dependent on heavy fuel oils which account for approximately 77% of fuel consumption and contribute significantly to greenhouse gas (GHG) emissions. In line with the IMO’s decarbonization targets ammonia has emerged as a promising carbon-free alternative. This study evaluates the strategic viability of ammonia especially green production as a marine fuel through a hybrid SWOT–Best–Worst Method (BWM) analysis combining literature insights with expert judgment. Data were collected from 17 maritime professionals with an average of 15.7 years of experience ensuring robust sectoral representation and methodological consistency. The results highlight that opportunities hold the greatest weight (0.352) particularly the criteria “mandatory carbonfree by 2050” (O3:0.106) and “ammonia–hydrogen climate solution” (O2:0.080). Weaknesses rank second (0.270) with “higher toxicity than other marine fuels” (W5:0.077) as the most critical concern. Strengths (0.242) underscore ammonia’s advantage as a “carbonfree and sulfur-free fuel” (S1:0.078) while threats (0.137) remain less influential though “costly green ammonia” (T3:0.035) and “uncertainty of green ammonia” (T1:0.034) present notable risks. Overall the analysis suggests that regulatory imperatives and environmental benefits outweigh safety technical and economic challenges. Ammonia demonstrates strong potential to serve as viable marine fuel in achieving the maritime sector’s long-term decarbonization goals.
Underground Hydrogen Storage in Salt Cavern: A Review of Advantages, Challenges, and Prospects
Jun 2025
Publication
The transition to a sustainable energy future hinges on the development of reliable large-scale hydrogen storage solutions to balance the intermittency of renewable energy and decarbonize hard-to-abate industries. Underground hydrogen storage (UHS) in salt caverns emerged as a technically and economically viable strategy leveraging the unique geomechanical properties of salt formations—including low permeability self-healing capabilities and chemical inertness—to ensure safe and high-purity hydrogen storage under cyclic loading conditions. This review provides a comprehensive analysis of the advantages of salt cavern hydrogen storage such as rapid injection and extraction capabilities cost-effectiveness compared to other storage methods (e.g. hydrogen storage in depleted oil and gas reservoirs aquifers and aboveground tanks) and minimal environmental impact. It also addresses critical challenges including hydrogen embrittlement microbial activity and regulatory fragmentation. Through global case studies best operational practices for risk mitigation in real-world applications are highlighted such as adaptive solution mining techniques and microbial monitoring. Focusing on China’s regional potential this study evaluates the hydrogen storage feasibility of stratified salt areas such as Jiangsu Jintan Hubei Yunying and Henan Pingdingshan. By integrating technological innovation policy coordination and cross-sector collaboration salt cavern hydrogen storage is poised to play a pivotal role in realizing a resilient hydrogen economy bridging the gap between renewable energy production and industrial decarbonization.
Evaluation of Passenger Train Safety in the Event of a Liquid Hydrogen Release from a Freight Train in a Tunnel Along an Italian High-Speed/High-Capacity Rail Line
Oct 2025
Publication
The global shift towards cleaner energy sources is driving the adoption of hydrogen as an environmentally friendly alternative to fossil fuels. Among the forms currently available Liquid Hydrogen (LH2) offers high energy density and efficient storage making it suitable for large-scale transport by rail. However the flammability of hydrogen poses serious safety concerns especially when transported through confined spaces such as railway tunnels. In case of an accidental LH2 release from a freight train the rapid accumulation and potential ignition of hydrogen could cause catastrophic consequences especially if freight and passenger trains are present simultaneously in the same tunnel tube. In this study a three-dimensional computational fluid dynamics model was developed to simulate the dispersion and explosion of LH2 following an accidental leak from a freight train’s cryo-container in a single-tube double-track railway tunnel when a passenger train queues behind it on the same track. The overpressure results were analyzed using probit functions to estimate the fatality probabilities for the passenger train’s occupants. The analysis suggests that a significant number of fatalities could be expected among the passengers. However shorter users’ evacuation times from the passenger train’s wagons and/or longer distances between the two types of trains might reduce the number of potential fatalities. The findings by providing additional insight into the risks associated with LH2 transport in railway tunnels indicate the need for risk mitigation measures and/or traffic management strategies.
Economic and Environmental Assessment of Different Energy Storage Methods for Hybrid Energy Systems
Jul 2025
Publication
Due to the environmental impact of fossil fuels renewable energy such as wind and solar energy is rapidly developed. In energy systems energy storage units are important which can regulate the safe and stable operation of the power system. However different energy storage methods have different environmental and economic impacts in renewable energy systems. This paper proposed three different energy storage methods for hybrid energy systems containing different renewable energy including wind solar bioenergy and hydropower meanwhile. Based on Homer Pro software this paper compared and analyzed the economic and environmental results of different methods in the energy system through the case of a residential community in Baotou City. The result showed that (1) the use of batteries as energy storage in communities posed the lowest energy costs whose NPC was $197396 and LCOE was $0.159 consisting of 20 batteries 19.3 kW PV 6 wind turbines a 12.6 kW converter. (2) Lower fuel cell prices mean lower NPC and the increase in the Electric Load Scaled Average implied a decrease in LCOE and the increase of the NPC. (3) The use of fuel cells also had impacts on the environment such as resulting CO2 and SO2.
Process Integration and Exergy-based Assessment of High-temperature Solid Oxide Electrolysis Configurations
Sep 2025
Publication
Solid oxide electrolysis (SOEL) is considered an efficient option for largely emission-free hydrogen production and thus for supporting the decarbonization of the process industry. The thermodynamic advantages of high-temperature operation can be utilized particularly when heat integration from subsequent processes is realized. As the produced hydrogen is usually required at a higher pressure level the operating pressure of the electrolysis is a relevant design parameter. The study compares pressurized and near-atmospheric designs of 126 MW SOEL systems with and without the integration of process heat from a downstream ammonia synthesis and the inefficiencies that occur in the processes. Furthermore process improvements by sweep-air utilization are investigated. Pinch analysis is applied to determine the potential of internal heat recovery and the minimum external heating and cooling demand. It is shown that pressurized SOEL operation does not necessarily decrease the overall power consumption for compression due to the high power requirement of the sweep-air compressor. The exergetic efficiencies of the standalone SOEL processes achieve similar values of = 81 %. Results further show that integrating the heat of reaction from ammonia synthesis can replace almost the entire electrically supplied thermal energy thereby improving the overall exergetic efficiency by up to 3.5 percentage points. However the exergetic efficiency strongly depends on the applied air ratio. The highest exergetic efficiency of 86 % can be achieved by employing sweep-air utilization with an expander. The results demonstrate that integrating downstream process heat and applying sweep-air utilization can significantly enhance overall efficiency and thus reduce external energy requirements.
Design and Assessment of an Integrated PV-based Hydrogen Production Facility
Jun 2025
Publication
This study develops a photovoltaic (PV)-based hydrogen production system specifically designed for university campuses which is expected to lead in sustainability efforts. The proposed system aims to meet the electricity demand of a Hydrogen Research Center while supplying energy to an electric charging station and a hydrogen refueling station for battery-electric and fuel-cell electric vehicles operating within the campus. In this integrated system the electricity generation capacity of PV panels installed on the research center’s roof is determined and the surplus electricity after meeting the energy demand is allocated to cover the varying proportions needed for both electric charging station and hydrogen production system. The green hydrogen produced by the system is compressed to 100 350 and 700 bar with intermediate cooling stages where the heat generated at the compressor outlet is absorbed by a cooling fluid and repurposed in a condenser for domestic hot water production. A full thermodynamic analysis of this entirely renewable energy-powered system is conducted by considering a 9-hour daily operational period from 8:00 AM to 5:00 PM. The average incoming solar radiation is determined to be 484.63 W/m2 resulting in an annual electricity generation capacity of 494.86 MWh. Based on the assumptions and data considered the energy and exergy efficiencies of the proposed system are calculated as 17.71 % and 17.01 % respectively with an annual hydrogen production capacity of 3.642 tons. Various parametric studies are performed for varying solar intensity values and PV surface areas to investigate how the overall system capacities and efficiencies are affected. The results show that an integration of hydrogen production systems with solar energy offers significant advantages including mitigating intermittency issues found in standalone renewable systems reducing carbon emissions compared to fossil-based alternatives and enhancing the flexibility of energy systems.
Grid Infrastructure and Renewables Integration for Singapore Energy Transition
Oct 2025
Publication
Considering rising environmental concerns and the energy transition towards sustainable energy Singapore’s power sector stands at a crucial juncture. This study explores the integration of grid infrastructure with both generated and imported renewable energy (RE) sources as a strategic pathway for the city-state’s energy transition to reach net-zero carbon emissions by 2050. Employing a combination of simulation modeling and data analysis for energy trading and advanced energy management technologies we examine the current and new grid infrastructure’s capacity to assimilate RE sources particularly solar photovoltaic and energy storage systems. The findings reveal that with strategic upgrades and smart grid technologies; Singapore’s grid can efficiently manage the variability and intermittency of RE sources. This integration is pivotal in achieving a higher penetration of renewables as well as contributing significantly to Singapore’s commitment to the Paris Agreement and sustainable development goals. While the Singapore’s power system has links to the Malay Peninsula the planned ASEAN regional interconnection might alter the grid operation in Singapore and possibly make Singapore a new green energy hub. The study also highlights the key challenges and opportunities associated with cross-border energy trade with ASEAN countries including the need for harmonized regulatory frameworks and incentives to foster public–private partnerships. The insights from this study could guide policymakers industry stakeholders and researchers offering a roadmap for a sustainable energy transition in Singapore towards meeting its 2050 carbon emission goals.
Techno-economic and Environmental Optimization of Hydrogen-based Hybrid Energy Systems for Remote Off-grid Australian Communities
Jun 2025
Publication
This study presents a techno-economic and environmental optimization of hydrogen-based hybrid energy systems (HESs) for Broken Hill City Council in New South Wales Australia. Two configurations are evaluated: Configuration 1 includes solar PV battery fuel cell electrolyzer and hydrogen storage while Configuration 2 includes solar PV fuel cell electrolyzer and hydrogen storage but excludes the battery. The system is optimized using advanced metaheuristic algorithms such as Harris Hawks Algorithm (HHA) Red-Tailed Hawk Algorithm and Non-Dominated Sorting Genetic Algorithm-II while ensuring real-time supply–demand balance and system stability through a robust energy management strategy. This integrated approach simultaneously determines the optimal sizes of PV arrays battery storage (where applicable) fuel cells electrolyzers and hydrogen storage units and maintains reliable energy supply. Results show that HHA Configuration 1 achieves the lowest net present cost of $338111 a levelized cost of electricity of $0.185/kWh and a levelized cost of hydrogen of $4.60/kg. Sensitivity analysis reveals that PV module and hydrogen storage costs significantly impact system economics while improving fuel cell efficiency from 40% to 60% can reduce costs by up to 40%. Beyond cost-effectiveness life cycle analysis demonstrates annual CO2 emission reductions exceeding 500000 kg compared to an equivalent diesel generator system meeting the same load demand. Socio-economic assessments further indicate that the HES can support improvements in the Human Development Index by enhancing access to healthcare education and economic opportunities while also creating local jobs in PV installation battery maintenance and hydrogen infrastructure. These findings establish hydrogen-based HES as a scalable cost-effective and environmentally sustainable solution for energy access in remote areas.
Opportunities for Emission Reduction in the Transformation of Petroleum Refining
Sep 2025
Publication
Crude oil accounts for approximately 40% of global energy consumption and the refining sector is a major contributor to greenhouse gas (GHG) emissions particularly through the production of hard-to-abate fuels such as aviation fuel and fuel oil. This study disaggregates the refinery into its key process units to identify decarbonization opportunities along the entire production chain. Units are categorized into combustion-based processes— including crude and vacuum distillation hydrogen production coking and fluid catalytic cracking—and non-combustion processes which exhibit lower emission intensities. The analysis reveals that GHG emissions can be reduced by up to 60% with currently available technologies without requiring major structural changes. Electrification residual heat recovery renewable hydrogen for desulfurization and process optimization through digital twins are identified as priority measures many of which are also economically viable in the short term. However achieving full decarbonization and alignment with net-zero targets will require the deployment of carbon capture technologies. These results highlight the significant potential for emission reduction in refineries and reinforce their strategic role in enabling the transition toward low-carbon fuels.
Optimal Configuration of Hydrogen Energy Storage Systems Considering the Operational Efficiency Characteristics of Multi-Stack Electrolyzers
Sep 2025
Publication
Enhancing the economics of microgrid systems and achieving a balance between energy supply and demand are critical challenges in capacity allocation research. Existing studies often neglect the optimization of electrolyzer efficiency and multi-stack operation leading to inaccurate assessments of system benefits. This paper proposes a capacity allocation model for wind-PV-hydrogen integrated microgrid systems that incorporates hydrogen production efficiency optimization. This paper analyzes the relationship between the operating efficiency of the electrolyzer and the output power regulates power generation-load mismatches through a renewable energy optimization model and establishes a double-layer optimal configuration framework. The inner layer optimizes electrolyzer power allocation across periods to maximize operational efficiency while the outer layer determines configuration to maximize daily system revenue. Based on the data from a demonstration project in Jiangsu Province China a case study is conducted to verify that the proposed method can improve system benefits and reduce hydrogen production costs.
Numerical Simulation of Natural Gas/Hydrogen Combustion in a Novel Laboratory Combustor
Jun 2025
Publication
Hydrogen is a promising fuel in the current transition to zero-net CO2 emissions. However most practical combustion equipment is not yet ready to burn pure hydrogen without adaptation. In the meantime blending hydrogen with natural gas is an interesting option. This work reports a computational study of the performance of swirl-stabilized natural gas/hydrogen flames in a novel combustion chamber design. The combustor employs an air-staging strategy introducing secondary air through a top-mounted plenum in a direction opposite to the fuel jet. The thermal load is fixed at 5 kW and the effects of fuel composition (hydrogen molar fraction ranging from zero to one) excess air coefficient (λ = 1.3 1.5 or 1.7) and primary air fraction (α = 50–100%) on the velocity temperature and emissions are analysed. The results show that secondary air changes the flow pattern reducing the central recirculation zone and lowering the temperature in the primary reaction zone while increasing it further downstream. Secondary air improves the performance of the combustor for pure hydrogen flames reducing NO emissions to less than 50 ppm for λ = 1.3 and 50% primary air. For natural gas/hydrogen blends a sufficiently high excess air level is required to keep CO emissions within acceptable limits.
Increasing Public Acceptance of Fuel Cell Vehicles in Germany: A Perspective on Pioneer Users
Jun 2025
Publication
Fuel cell vehicles (FCVs) represent an intriguing alternative to battery electric vehicles (BEVs). While the acceptance of BEVs has been widely discussed acceptance-based recommendations for promoting adoption of FCVs remain ambiguous. This paper aims to improve our understanding by reporting results from a pioneer study based on the standardized Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). The sample consists of n1 = 258 registered customers of H2mobility in Germany. For effect control another n2 = 294 participant sample was drawn from the baseline population. Data were analyzed using SmartPLS 4 and importance-performance mapping (IPMA). Results demonstrate that FCV acceptance primarily relies on Perceived Usefulness Perceived Conditions and Normative Influence while surprisingly hypotheses involving Perceived Risk and Green Attitude are rejected. Finally a discussion reveals ways to increase the level of public acceptance. Three practical strategies emerge. For future acceptance analyses the authors suggest incorporating the young concept of ‘societal readiness’.
A Comprehensive Review of Advances in Bioenergy including Emerging Trends and Future Directions
Aug 2025
Publication
Bioenergy is a promising alternative to fossil fuels-based energy with significant potential to transform global energy systems and promote environmental sustainability. This review provides a comprehensive overview of the evolution of bioenergy emphasizing its role in the global transition to sustainable energy. It explores a diverse range of biomass sources including forest and agricultural residues algae and industrial by-products and their conversion into energy via thermochemical biochemical and physicochemical pathways. The paper also highlights recent technological advancements and assesses the environmental sustainability of bioenergy systems. Additionally it examines key challenges hindering bioenergy development such as feedstock logistics technological limitations economic viability and policy gaps that need resolution to fully realise its potential. By synthesizing literature from 2010 to 2025 the review identifies strategic priorities for research and deployment aiming to inform efforts that align bioenergy utilization with global decarbonization goals.
Optimizing Vietnam's Hydrogen Strategy: A Life-cycle Perspective on Technology Choices, Environmental Impacts, and Cost Trade-offs
Sep 2025
Publication
Vietnam recognizes hydrogen as a key fuel for decarbonization under its National Hydrogen Strategy. Here we quantified the environmental and economic performance of Vietnam’s optimal hydrogen-production pathways by evaluating combinations of green and blue hydrogen under varying demand scenarios using life-cycle assessment and optimization modeling techniques. The environmental performance of hydrogen production proved highly sensitive to the electricity source with water electrolysis powered by renewable energy offering the most favorable outcomes. Although green hydrogen production reduced carbon emissions it shifted environmental burdens toward increased resource extraction. Producing 20 Mt of hydrogen by 2050 would require 741.56 TWh of electricity 178 Mt of water and USD 294 billion in investment and it would emit 50.48 Mt CO2. These findings highlight the importance of strategic hydrogen planning and resource strategy aligned with national priorities for energy transition to navigate trade-offs among technology selection emissions costs and resource consumption.
Investigating the Effects of Flow Regime on Hydrogen Transport in Salt Rock
Jun 2025
Publication
Underground hydrogen storage (UHS) in salt caverns is emerging as a promising solution for the transition to a sustainable energy future. However a thorough understanding of hydrogen flow mechanisms through salt rock is essential to ensure safe and efficient storage operations. In this study we conducted hydrogen flow experiments in salt rocks using the pressure pulse decay (PPD) method covering a range of hydrogen pore pressures from 0.4 MPa to 7.5 MPa within the slip and transitional flow regimes (Knudsen numbers between 0.04 and 1.5). The Knudsen numbers were determined by measuring the pore size distribution (PSD) of the salt rock samples and assigning an average pore size to each sample based on the measured PSD. Our results indicate that the intrinsic permeability of the tested salt rock samples ranges from 5 × 10− 21 m2 to 1.0 × 10− 20 m2 . However a significant enhancement in apparent permeability up to 10 times the intrinsic permeability was observed particularly at lower pressures. This permeability enhancement is attributed to the nanoscale pore structure of salt rocks where the mean free path of hydrogen becomes comparable to the pore sizes leading to a shift from slip flow to the transitional flow regime. The results further reveal that the first-order slip model underestimates the apparent permeability in the transitional flow regime despite its satisfactory accuracy in the slip region. Moreover the higher-order slip model demonstrates acceptable accuracy across both the slip and transitional flow regimes.
Alternative Fuels in Aero Engine Performance Calculations
Oct 2025
Publication
This paper presents a method for gas turbine performance calculations with alternative fuels with a particular focus on their use in aircraft engines. The effects of various alternative aviation fuels on fuel consumption CO2 emissions and contrail formation are examined in a comparative study. We use the GasTurb performance software and calculate heat release and hot section gas properties using a chemical equilibrium solver. Fuels with complex compositions are included in the calculation via surrogates of a limited number of known species that mimic the relevant properties of the real fuel. An automated method is used for the fuel surrogate formulation. We compare the results of this rigorous approach with the simplified approach of calculating the heat release using an alternative fuel’s heating value while still using the gas properties of conventional Jet A-1. The results show that the latter approach systematically overpredicts fuel consumption by up to 0.2% for aromaticsfree synthetic kerosene (e.g. “biofuels”). Overall aircraft engines running on alternative fuels tend to be more fuel efficient due to their often higher hydrogen contents and thus fuel heating values. We find reductions in fuel consumption of up to 2.8% during cruise when using aromatics-free synthetic kerosene. We further assess how alternative fuels affect contrail formation based on the Schmidt-Appleman criterion. Contrails can form 200 m lower under cruise conditions when burning aromatics-free synthetic kerosene instead of Jet A-1 with identical thrust requirements and under the same atmospheric conditions mainly due to their higher hydrogen content. In summary we present a flexible yet easy-to-use method for studying fuel effects in performance calculations that avoids small but systematic errors by rigorously calculating the heat release and hot section gas properties for each fuel.
Numerical Investigation of Hydrogen Leakage Quantification and Dispersion Characteristics in Buried Pipelines
Sep 2025
Publication
As a clean energy carrier hydrogen is essential for global low-carbon energy transitions due to its unique combination of safe transport properties and energy density. This investigation employs computational fluid dynamics (ANSYS Fluent) to systematically characterize hydrogen dispersion through soil media from buried pipelines. The research reveals three fundamental insights: First leakage orifices smaller than 2 mm demonstrate restricted hydrogen migration regardless of directional orientation. Second dispersion patterns remain stable under both low-pressure conditions (below 1 MPa) and minimal thermal gradients with pipeline temperature variations limited to 63 K and soil fluctuations under 40 K. Third dispersion intensity increases proportionally with higher leakage pressures (exceeding 1 MPa) greater soil porosity and larger particle sizes while inversely correlating with burial depth. The study develops a predictive model through Sequential Quadratic Programming (SQP) optimization demonstrating exceptional accuracy (mean absolute error below 10%) for modeling continuous hydrogen flow through moderateporosity soils under medium-to-high pressure conditions with weak inertial effects. These findings provide critical scientific foundations for designing safer hydrogen transmission infrastructure establishing robust risk quantification frameworks and developing effective early-warning systems thereby facilitating the practical implementation of hydrogen energy systems.
Efficiently Coupling Water Electrolysis with Solar PV for Green Hydrogen Production
Aug 2025
Publication
Solar-driven water electrolysis has emerged as a prominent technology for the production of green hydrogen facilitated by advancements in both water electrolyzers and solar cells. Nevertheless the majority of integrated solar-to-hydrogen systems still struggle to exceed 20% efficiency particularly in large-scale applications. This limitation arises from suboptimal coupling methodologies and system-level inefficiencies that have rarely been analyzed. To address these challenges this study investigates the fundamental principles of solar hydrogen production and examines key energy losses in photovoltaic-electrolyzer systems. Subsequently it systematically discusses optimization strategies across three dimensions: (1) enhancing photovoltaic (PV) system output under variable irradiance (2) tailoring electrocatalysts and electrolyzer architectures for high-performance operation and (3) minimizing coupling losses through voltage-matching technologies and energy storage devices. Finally we review existing large-scale solar hydrogen infrastructure and propose strategies to overcome barriers related to cost durability and scalability. By integrating material innovation with system engineering this work offers insights to advance solar-powered electrolysis toward industrial applications.
Liquid Hydrogen Application for Aero-Engine More-Electrical System: Current Status, Challenges and Future Prospects
Mar 2025
Publication
The integration of more-electric technologies into aero-engines has revolutionized their multi-power architectures substantially improving system maintainability and operational reliability. This advancement has established more-electric systems as a cornerstone of modern aerospace electrification research. Concurrently liquid hydrogen (LH2) emerges as a transformative solution for next-generation power generation systems particularly in enabling the transition from 100 kW to megawatt-class propulsion systems. Beyond its superior energy density LH2 demonstrates dual functionality in thermal management: it serves as both an efficient coolant for power electronics (e.g. controllers) and a cryogenic source for superconducting motor applications. This study systematically investigates the electrification pathway for LH2-fueled aero-engine multi-electric systems. First we delineate the technical framework elucidating its architectural characteristics and associated challenges. Subsequently we conduct a comprehensive analysis of three critical subsystems including LH2 storage and delivery systems cryogenic cooling systems for superconducting motors and Thermal management systems for high-power electronics. Finally we synthesize current research progress and propose strategic directions to accelerate the development of LH2-powered more-electric aero-engines addressing both technical bottlenecks and future implementation scenarios.
A Critical Review of China's Hydrogen Supply Chain and Equipment
Sep 2025
Publication
China’s dual-carbon goals have positioned hydrogen as a central pillar of its energy transition. This review examines the recent development of China’s hydrogen supply chain with particular focus on manufacturing technologies for alkaline electrolysers high-pressure cylinders and diaphragm compressors. In 2024 China produced 36.5 million tons of hydrogen of which 77 % was grey and only 1 % derived from electrolysis. Storage and transportation account for nearly 30 % of end-use costs while reliance on imported compressors increases refuelling station expenses by approximately 40 %. We identify key bottlenecks including limited electrolyser efficiency the high cost of carbon fibres for Type III/IV cylinders and insufficient domestic capacity for highreliability compressors. To address these challenges targeted advances are proposed: membrane materials with engineered hydrophilicity advanced surface modifications and hydrophilic inhibitors; liner design incorporating grooved-liner braided layers with double-fibre configurations; and a three-layer diaphragm compressor architecture. By consolidating fragmented studies this review provides the integrated manufacturing perspective on China’s hydrogen supply chain offering both scientific insights and practical guidance for accelerating costeffective large-scale low-carbon hydrogen deployment.
Hydrogen Storage Systems at Ports for Enhanced Safety and Sustainability: A Review
Sep 2025
Publication
With the increasing demand for clean energy and the global push toward carbon neutrality hydrogen has emerged as a promising alternative fuel. Ports are critical nodes in the hydrogen supply chain that are increasingly being utilized as long-term hydrogen storage hubs. However integrating hydrogen storage systems into port infrastructure presents unique technical environmental and safety challenges. This review systematically examines current technologies used for hydrogen storage in port environments—including compressed gas cryogenic liquid cryocompressed gas ammonia liquid organic hydrogen carriers solid-state hydrides and underground storage. Each technology is evaluated based on performance infrastructure requirements accident risks environmental impact and cost. The study also assesses port-specific infrastructure vulnerabilities under operational stress and climate change conditions and explores strategies for accident prevention emergency response and postincident recovery. A comprehensive framework is proposed to enhance the resilience and safety of hydrogen storage systems at ports. This study offers valuable insights for stakeholders and researchers by addressing technical gaps regulatory challenges and future directions for sustainable and safe hydrogen storage in port facilities
Feasibility Assessment into the Use of Hybrid Gas-hydride Tanks for Use in Improving the Flexibility of Offshore Hydrogen Production using Wind Power
Oct 2025
Publication
Offshore hydrogen production offers a promising solution for harnessing wind energy far from shore by using hydrogen as an energy carrier instead of electrical cables. Flexibility in hydrogen production systems is crucial to maximising the conversion of intermittent wind energy into hydrogen. To improve the performance of lowpressure compressed gas buffer stores hybrid gas-hydride tanks have been identified as a viable solution increasing useable storage density from 1.2 kg m− 3 to 6.3 kg m− 3 with just a 5 vol% addition of hydride. This study evaluates the reduction in tank volume reduction in cost and enhancements in useable storage density achieved by integrating different hydrides under varying temperature conditions. Using hydrogen mass flow rate profiles a storage mass target was determined for optimisation. The results demonstrate that hybrid gas-hydride tanks can reduce tank size by around 80 % lowering costs by 24 % and achieve a 5.1-fold improvement in useable storage density.
The Trans-critical Process Control of Hydrogen Based on a Flow Distribution Method for Enhancement of Heat Transfer
Aug 2025
Publication
The heat transfer performance of the thermal management system plays a crucial role in the hydrogen-powered aviation engine cycle. As an exceptional fuel the thermophysical parameters of hydrogen change drastically with temperature in the trans-critical state. While previous studies on heat transfer enhancement mainly focused on changing the geometrical structure few studies have been conducted on realizing heat transfer enhancement based on the properties of the fluid itself. Utilizing the drastic changes in thermophysical parameters of hydrogen in the trans-critical state to achieve heat transfer enhancement could greatly contribute to the thermal management system of the hydrogen-powered cycle. In this study a trans-critical process control method for heat transfer enhancement based on multidirectional impact flow distribution is proposed. The distributions and variation patterns of temperature density specific heat capacity and equivalent thermal conductivity along the flow directions were investigated the flow and heat transfer performance of the channel optimized by the proposed method was numerically simulated and the control of the trans-critical process and the mechanism of heat transfer enhancement were analyzed. The effects of the key design parameters such as flow distribution ratio number and spacing of gaps on the flow and heat transfer performance of the heat transfer unit were comparatively analyzed by taking various factors into account and finally a relatively optimal combination of key design parameters was obtained.
Green Hydrogen Viability in the Transition to a Fully-Renewable Energy Grid
Sep 2025
Publication
With the transition to a fully renewable energy grid arises the need for a green source of stability and baseload support which classical renewable generation such as wind and solar cannot offer due to their uncertain and highly-variable generation. In this paper we study whether green hydrogen can close this gap as a source of supplemental generation and storage. We design a two-stage mixed-integer stochastic optimization model that accounts for uncertainties in renewable generation. Our model considers the investment in renewable plants and hydrogen storage as well as the operational decisions for running the hydrogen storage systems. For the data considered we observe that a fully renewable network driven by green hydrogen has a greater potential to succeed when wind generation is high. In fact the main investment priorities revealed by the model are in wind generation and in liquid hydrogen storage. This long-term storage is more valuable for taking full advantage of hydrogen than shorter-term intraday hydrogen gas storage. In addition we note that the main driver for the potential and profitability of green hydrogen lies in the electricity demand and prices as opposed to those for gas. Our model and the investment solutions proposed are robust with respect to changes in the investment costs. All in all our results show that there is potential for green hydrogen as a source of baseload support in the transition to a fully renewable-powered energy grid.
A Review of Caprock Integrity in Underground Hydrogen Storage Sites: Implication of Wettability, Interfacial Tension, and Diffusion
Oct 2025
Publication
As industry moves from fossil fuels to green energy substituting hydrocarbons with hydrogen as an energy carrier seems promising. Hydrogen can be stored in salt caverns depleted hydrocarbon fields and saline aquifers. Among other criteria these storage solutions must ensure storage safety and prevent leakage. The ability of a caprock to prevent fluid from flowing out of the reservoir is thus of utmost importance. In this review the main factors influencing fluid flow are examined. These are the wettability of the caprock formation the interfacial tension (IFT) between the rock and the gas or liquid phases and the ability of gases to diffuse through it. To achieve effective sealing the caprock formation should possess low porosity a disconnected or highly complicated pore system low permeability and remain strongly water-wet regardless of pressure and temperature conditions. In addition it must exhibit low rock–liquid IFT while presenting high rock–gas and liquid–gas IFT. Finally the effective diffusion coefficient should be the lowest possible. Among all of the currently reviewed formations and minerals the evaporites low-organic-content shales mudstones muscovite clays and anhydrite have been identified as highly effective caprocks offering excellent sealing capabilities and preventing hydrogen leakages.
Decarbonising Agriculture with Green Hydrogen: A Stakeholder Guided Feasibility Study
Oct 2025
Publication
Green hydrogen offers a promising yet underexplored pathway for agricultural decarbonisation requiring technological readiness and coordinated action from policymakers industry and farmers. This paper integrates techno-economic modelling with stakeholder engagement (semi-structured interviews and an expert workshop) to assess its potential. Analyses were conducted for farms of 123 hectares and clusters of 10 farms complemented by seven interviews and a workshop with nine sector experts. Findings show both opportunities and barriers. While on-farm hydrogen production is technically feasible it remains economically uncompetitive due to high levelised costs shaped by seasonal demand variability and low utilisation of electrolysers and storage. Pooling demand across multiple users is essential to improve cost-effectiveness. Stakeholders identified three potential business models: fertiliser production via ammonia synthesis cooperative-based models and local refuelling stations. Of these cooperative hydrogen hubs emerged as the most promising enabling clusters of farms to jointly invest in renewable-powered electrolysers storage and refuelling facilities thereby reducing costs extending participation to smaller farms and mitigating risks through collective investment. By linking techno-economic feasibility with stakeholder perspectives and business model considerations the results contribute to socio-technical transition theory by showing how technological institutional and social factors interact in shaping hydrogen adoption in agriculture. With appropriate policy support cooperative hubs could lower costs ease concerns over affordability and complexity and position hydrogen as a practical driver of agricultural decarbonisation and rural resilience. Keywords: green
Development of Sustainability Assessment Framework for Preliminary Design of Chemical Process: Hydrogen Production as Case Study
Aug 2025
Publication
Sustainable process design has become increasingly important in transitioning from conventional to sustainable chemical production yet comprehensive sustainability assessment at the preliminary design stage remains a challenge. This study addresses this gap by proposing a hierarchical framework that integrates the Principles Criteria and Indicators (PC&I) method with multi-criteria decision-making (MCDM) tools including entropy weighting TOPSIS and weighted addition. The framework guides the systematic selection of sustainability indicators across economic environmental and social dimensions. To validate its applicability a case study on hydrogen production via four process routes natural gas reforming biomass-derived syngas methanol purge gas recovery and alkaline electrolysis is conducted. Results show that the methanol purge gas process exhibits the best overall sustainability followed by biomass syngas and alkaline electrolysis. The case demonstrates the framework’s capability to differentiate between alternatives under conflicting sustainability dimensions. This work provides a structured and replicable approach to support sustainable decision-making in early-stage chemical process design.
Scaling of Automotive Fuel Cells in Terms of Operating Indicators
Oct 2025
Publication
The search for alternatives to fossil fuels has led to hydrogen becoming an important factor in the powering means of transportation. Its most effective application is in fuel cells. A single fuel cell is not a sufficient source of power which is why a stack of fuel cells is the more common solution. Fuel cells are tested using single units as this allows all cell parameters (the current density flow rates and efficiency) to be evaluated. Therefore the scalability of fuel cells is an essential factor. This paper analyses the scalability of fuel cells with a power of approximately 100 kW and 1.2 kW. Road tests of the fuel cells were compared with stationary tests which allowed the load to be reproduced and scaled. This provided a representation of the scaled current and the scalable power of the fuel cell. The research provided voltage–current characteristics of fuel cell stacks and their individual equivalents. It was concluded that regardless of the power scaling or current values the characteristics obtain similar patterns. A very important element of the research is the awareness of the properties of these cells (the number of cells and active charge exchange area) in order to compare the unit characteristics of fuel cells.
Numerical Investigation on the Diffusion and Ventilation Characteristics of Hydrogen-Blended Natural Gas Leakage in Indoor Spaces
Oct 2025
Publication
The blending of hydrogen significantly impacts the diffusion and safety characteristics of natural gas within indoor environments. This study employs ANSYS Fluent 2021 R1 to numerically investigate the diffusion and ventilation characteristics of hydrogen-blended natural gas (HBNG) leakage in indoor spaces. A physical and mathematical model of gas leakage from pipelines is established to study hazardous areas flammable regions ventilation characteristics alarm response times safe ventilation rates and the concentration distribution of leaked gas. The effects of hydrogen blending ratio (HBR) ventilation conditions and space dimensions on leakage diffusion and safety are analyzed. Results indicate that HBNG leakage forms vertical concentration stratification in indoor spaces with ventilation height being negatively correlated with gas concentration and flammable regions. In the indoor space conditions of this study by improving ventilation conditions the hazardous area can be reduced by up to 92.67%. Increasing HBR substantially expands risk zones—with pure hydrogen producing risk volumes over five times greater than natural gas. Mechanical ventilation significantly enhances indoor safety. Safe ventilation rates escalate with hydrogen content providing quantitative safety criteria for HBNG implementation. The results underscore the critical influence of HBR and ventilation strategy on risk assessment providing essential insights for the safe indoor deployment of HBNG.
Thermochemical Aspects of Substituting Natural Gas by Hydrogen in Blister Copper Deoxidation
Aug 2025
Publication
This study employs computational thermodynamics to evaluate the feasibility of replacing methane with hydrogen as both burner fuel and reductant during blister copper deoxidation aiming to enhance deoxidation efficiency and reduce CO2 emissions. A comprehensive thermodynamic model was developed using FactSage 8.3 for dilute Cu–O and Cu–S–O melts containing trace impurities (Fe Ni Pb Zn) incorporating methane thermal decomposition and temperature-dependent variations in liquid copper density with oxygen and sulfur content. Model parameters were optimized against over 105 deoxidation simulation data points yielding temperature- and composition-dependent expressions for rapid density estimates. Benchmarking against existing literature models demonstrated improved accuracy. Key findings include: (1) increasing impurities contents from electronics waste recycling (Fe Ni Pb Zn) reduces oxygen activity deteriorating the deoxidation efficiency; (2) under global equilibrium methane provides greater reducing power per mole than hydrogen due to full thermal cracking but real-world mass transfer limitations render hydrogen more consistently effective up to 1200 C with methane gas needing to achieve at least 472 C to match hydrogen’s performance; (3) adiabatic flame equilibrium studies show that O2/H2 ratios of 0.5 to 1 yield liquid copper oxygen activities comparable to industrial O2/CH4 ratios of 2 to 3 supporting the direct substitution of methane with hydrogen in oxy-fuel anode furnace burners without compromising metal quality.
Analysis of the Efficiency of Hydrogen Fuel Cell Vehicle (HFCV) Applications in Manufacturing Processes Using Computer Simulation
Oct 2025
Publication
Implementing innovative solutions in the internal transport of manufacturing enterprises is becoming an important element of improving operational efficiency and reducing greenhouse gas emissions. This article assesses the potential of hydrogen fuel cell (HFCV) forklifts in a steel products manufacturing plant. The verification was carried out using a computer simulation which enabled the comparison of electric combustion and HFCV fleets under identical logistical conditions. The results showed that the HFCV fleet allowed for shorter process execution times and higher utilization compared to electric and combustion variants mainly due to the elimination of charging and refueling interruptions. Additionally when powered by green hydrogen the HFCV fleet offered clear environmental benefits and lower operating costs. The study confirms that HFCV technology can improve the efficiency of internal transport and reduce energy-related operating expenses although the costs of hydrogen refueling infrastructure were not included and should be addressed in future research.
Techno-Economic Optimization of Hybrid Renewable Energy Systems (HRESs) and Feasibility Study on Replacing Diesel and Photovoltaic Systems with Hydrogen for Electrical and Small Deferrable Loads: Case Study of Cameroon
Oct 2025
Publication
To reduce the amount of harmful gases produced by fossil fuels more environmentally friendly and sustainable alternatives are being proposed around the world. As a result technologies for manufacturing hydrogen fuel cells and producing green hydrogen are becoming more widespread with an impact on energy production and environmental protection. In many countries around the world and in Africa in particular leaders scientists and populations are considering switching from fossil fuels to so-called green energies. Hydrogen is therefore an interesting alternative that deserves to be explored especially since both rural and urban populations have shown an interest in using it in the near future which would reduce pollution and the proliferation of greenhouse gases thereby mitigating global warming. The aim of this paper is to determine the hybrid energy system best suited to addressing the energy problem in the study area and then to make successive substitutions of different energy sources starting with the most polluting in order to assess the possibilities for transitioning the energy used in the area to green hydrogen. To this end this study began with a technical and economic analysis which based on climatic parameters led to the proposal of a PV/DG-BATTery system configuration with a Net Present Cost (NPC) of USD 19267 and an average Cost Of Energy (COE) of USD 0.4 and with a high proportion of CO2 emissions compared with the PV/H2GEN-BATT and H2GEN systems. The results of replacing fossil fuel generators with hydrogen generators are beneficial in terms of environmental protection and lead to a reduction in energy-related expenses of around 2.1 times the cost of diesel and a reduction in mass of around 2.7 times the mass of diesel. The integration of H2GEN at high duty percentages increases the Cost Of Energy whether in a hybrid PV/H2GEN system or an H2GEN system. This shows the interest in the study country in using favorable duty proportions to make the use of hydrogen profitable.
Transforming Ports for a Low-carbon Future: Nexus Modeling of Hydrogen Infrastructure, Employment, and Resource Management in Contrasting Climates
Aug 2025
Publication
This research study highlights a transformative approach to port development for a lowcarbon future by integrating Climate Land Energy and Water Systems (CLEWs) and Water-Energy-Food (WEF) frameworks. The proposed nexus model integrates the hydrogen infrastructure with green employment and resource management in contrasting climates. The scenarios analyzed include Business As Usual (BAU) Balanced Reduction Approach (BRA) and Maximal Sustainability Push (MSP) which focuses mainly on energy efficiency resource utilization and workforce sustainability. By BRA it is estimated that carbon emissions will decline by 30% in cold climates and 20% in warm climates without changing renewable power plants producing 45% and 30% of the electricity supply mix. In the MSP scenario emission reductions rise to 90% in cold and 40% in warm climates with renewables providing 62% and 40% of the electricity mix. Under the whole capacity of Municipal Solid Waste (MSW) and fish waste under anaerobic digestion and fish waste rendering by 2040 across all BRA and MSP scenarios. In transport 44% replacement of marine vehicles and 87% of land vehicles with hydrogen electric and carbon capture and storage (CCS)-equipped vehicles is made under the BRA scenario. These percentages increase to 100% under the MSP scenario in cold climates while remaining at 87% in warm climates. By this integrated framework the present study demonstrates the potential of ports to be powerful engines for sustainable economic growth optimized resource efficiency and the creation of resilient green employment systems in diverse environmental contexts.
Hydrogen Safety in Energy Infrastructure: A Review
Oct 2025
Publication
For the transition to emission-free or low-emission energy hydrogen is a promising energy carrier and fuel of the future with the possibility of long-term storage. Due to its specific properties it poses certain safety risks; therefore it is necessary to have a comprehensive understanding of hydrogen. This review article contains ten main chapters and provides by synthesizing current findings primarily from standards and scientific studies (predominantly from 2023 to 2024) the theoretical basis for further research directed toward safe hydrogen infrastructure.
Study on the Thermodynamic Behavior of Large Volume Liquid Hydrogen Bottle Under the Coupling of Different Motion States and Operational Parameters
Oct 2025
Publication
To investigate the variations in the thermodynamic behavior of large-volume liquid hydrogen tanks under different influencing factors a numerical model for liquid hydrogen tanks was developed. The changes in thermodynamic behavior in vehicle-mounted liquid hydrogen bottles under different motion states different operational pressures and different insulation thicknesses and their mutual coupling scenarios were studied. The results show that the movement makes the phase state in the liquid hydrogen bottle more uniform the pressure drop rate faster and the temperature lower: the heating rate in the liquid hydrogen bottle at 0.85 MPa operational pressure is lower than that at 0.5 MPa and 1.2 MPa. When the operational pressure is coupled with the motion state the influence of the motion state on the thermodynamic behavior of the fluid is dominant: the temperature near the wall rises rapidly. The temperature near the tank wall rises rapidly; however as the thickness of the insulation layer increases both the heating rate inside the liquid hydrogen tank and the temperature difference within the tank gradually tend to stabilize and become uniform.
Exploring the Potential of Ammonia as a Fuel: Advances in Combustion Understanding and Large-scale Furnace Applications
Sep 2025
Publication
From an environmental standpoint carbon-free energy carriers such as ammonia and hydrogen are essential for future energy systems. However their hightemperature chemical behavior remains insufficiently understood posing challenges for the development and optimization of advanced combustion technologies. Ammonia in particular is globally available and cost-effective especially for energy-intensive industries. The addition of ammonia or hydrogen to methane significantly reduces the accuracy of existing predictive models. Therefore validated and detailed data are urgently needed to enable reliable design and performance predictions. This review highlights the compatibility of ammonia with existing combustion infrastructure facilitating a smoother transition to more sustainable heating methods without the need for entirely new systems. Applications in high-temperature heating processes such as metal processing ceramics and glass production and power generation are of particular interest. This review focuses on the systematic assessment of alternative fuel mixtures comprising ammonia and hydrogen as well as natural gas with particular consideration of existing safety-related parameters and combustion characteristics. Fundamental quantities such as the laminar burning velocity are discussed in the context of their relevance for fuel mixtures and their scalability toward turbulent flame propagation which is of critical importance for industrial burner and reactor design. The influence of fuel composition on ignition limits is examined as these are essential parameters for safety margin definitions and operational boundary conditions. Furthermore flame stability in mixed-fuel systems is addressed to evaluate the practical feasibility and robustness of combustion under varying process conditions. A detailed overview of current diagnostic and analysis methods follows encompassing both pollutant measurement techniques and the detection of key radical species. These diagnostics form the experimental basis for reaction kinetics modeling and mechanism validation. Given the importance of emission formation in combustion systems a dedicated subsection summarizes major emission trends even though a comprehensive treatment would exceed the scope of this review. Thermal radiation effects which are highly relevant for heat transfer and system efficiency in large-scale applications are then reviewed. In parallel current developments in numerical simulation approaches for industrial-scale combustion systems are presented including aspects of model accuracy boundary conditions and computational efficiency. The review also incorporates insights from materials engineering particularly regarding high-temperature material performance corrosion resistance and compatibility with combustion products. Based on these interdisciplinary findings operational strategies for high-temperature furnaces are outlined and selected industrial reference systems are briefly presented. This integrated approach aims to support the design optimization and safe operation of next-generation combustion technologies utilizing carbon-free or low-carbon fuels.
Catalytic Hydrogen Combustion as Heat Source for the Dehydrogenation of Liquid Organic Hydrogen Carriers using a Novel Compact Autothermal Reactor
Sep 2025
Publication
The experimental performance of an autothermal hydrogen release unit comprising a perhydro benzyltoluene (H12-BT) dehydrogenation chamber and a catalytic hydrogen combustion (CHC) chamber in thermal contact is discussed. In detail the applied set-up comprised a multi-tubular CHC heating based on seven parallel tubes with the reactor shell containing a commercial dehydrogenation catalyst. In this way the CHC heated the endothermal LOHC dehydrogenation using a part of the hydrogen generated in the dehydrogenation. The proposed heating concept for autothermal LOHC dehydrogenation offers several advantages over state-of-the-art heating concepts including minimized space consumption high efficiency and zero NOx emissions. During performance tests the process reached a minimum hydrogen combustion fraction of 37 % while the minimum heat requirement for the dehydrogenation reaction for industrial scale plants is 33 %. The reactor orientation (vertical vs horizontal) and the flow configuration (counter-current vs. co-current) showed very little influence on the performance demonstrating the robustness of the proposed reactor design.
A Comprehensive Review of Green Hydrogen Technology: Electrolysis Methods, Topologies and Control Strategies, Applications
Oct 2025
Publication
As a pivotal clean energy carrier for achieving carbon neutrality green hydrogen technology has attracted growing global attention. This review systematically examines four mainstream water electrolysis technologies—alkaline electrolysis proton exchange membrane electrolysis solid oxide electrolysis and anion exchange membrane electrolysis—analyzing their fundamental principles material challenges and development trends. It further classifies and compares power electronic converter topologies including non-isolated and isolated DC–DC converters as well as AC–DC converter architectures and summarizes advanced control strategies such as dynamic power regulation and fault-tolerant operation aimed at enhancing system efficiency and stability. A holistic “electrolyzer–power converter–control strategy” integration framework is proposed to provide tailored technological solutions for diverse application scenarios. Finally the challenges and future prospects of green hydrogen across the energy transportation and industrial sectors are discussed underscoring its potential to accelerate the global transition toward a sustainable low-carbon energy system.
No more items...