Publications
Everything About Hydrogen Podcast: Rethinking Hydrogen Storage with H2GOPOWER
Sep 2019
Publication
For this episode we speak to Enass Abo-Hamed the CEO of H2GOPower about their cutting edge hydrogen storage technology. Below we have attached a few links to the content discussed on the show and some further background reading.
The podcast can be found on their website
The podcast can be found on their website
Thermodynamic and Ecological Preselection of Synthetic Fuel Intermediates from Biogas at Farm Sites
Jan 2020
Publication
Background: Synthetic fuels based on renewable hydrogen and CO2 are a currently highly discussed piece of the puzzle to defossilize the transport sector. In this regard CO2 can play a positive role in shaping a sustainable future. Large potentials are available as a product of biogas production however occurring in small scales and in thin spatial distributions. This work aims to evaluate suitable synthetic fuel products to be produced at farm sites.<br/>Methods: A thermodynamic analysis to assess the energetic efficiency of synthesis pathways and a qualitative assessment of product handling issues is carried out.<br/>Results: Regarding the technical and safety-related advantages in storage liquid products are the superior option for fuel production at decentralized sites. Due to the economy of scale multi-stage synthesis processes lose economic performance with rising complexity. A method was shown which covers a principle sketch of all necessary reaction separation steps and all compression and heat exchanger units. The figures showed that methanol and butanol are the most suitable candidates in contrast to OME3-5 for implementation in existing transportation and fuel systems. These results were underpin by a Gibbs energy analysis.<br/>Conclusions: As long as safety regulations are met and the farm can guarantee safe storage and transport farm-site production for all intermediates can be realized technically. Ultimately this work points out that the process must be kept as simple as possible favoring methanol production at farm site and its further processing to more complicated fuels in large units for several fuel pathways.
Potential Role of Natural Gas Infrastructure in China to Supply Low-carbon Gases During 2020–2050
Oct 2021
Publication
As natural gas (NG) demand increases in China the question arises how the NG infrastructure fit into a low greenhouse gas (GHG) emissions future towards 2050. Herein the potential role of the NG infrastructure in supplying low-carbon gases during 2020–2050 for China at a provincial resolution was analyzed for different scenarios. In total four low-carbon gases were considered in this study: biomethane bio-synthetic methane hydrogen and low-carbon synthetic methane. The results show that the total potential of low-carbon gas production can increase from 1.21 EJ to 5.25 EJ during 2020–2050 which can replace 20%–67% of the imported gas. In particular Yunnan and Inner Mongolia contribute 17% of China’s low-carbon gas production. As the deployment of NG infrastructure can be very different three scenarios replacing imported pipeline NG were found to reduce the expansion of gas infrastructure by 35%–42% while the three scenarios replacing LNG imports were found to increase infrastructure expansion by 31%–53% as compared to the base case. The cumulative avoided GHG emissions for the 6 analyzed scenarios were 6.0–8.3 Gt CO2. The GHG avoidance costs were highly influenced by the NG price. This study shows that the NG infrastructure has the potential to supply low-carbon gases in China thereby significantly reducing GHG emissions and increasing both China’s short- and long-term gas supply independence.
Building Efficiency- Reducing Energy Demand in the Commercial Sector
Dec 2013
Publication
The report was formally launched on 2nd December in Parliament at a panel debate chaired by Lord Whitty and Oliver Colvile and featured representatives from Government and Industry. The report outlines the case for investment by businesses in the energy efficiency of their buildings and operations and highlights how this could help neutralise the threat to profitability posed by increasing energy bills energy price volatility and an increasing reliance on electricity in the commercial sector. The report highlights that business in the UK have the opportunity to not only reduce energy bills but increase their competitiveness and improve worker productivity through better designed buildings.
Is Hydrogen the Future of Nuclear Energy?
Jan 2008
Publication
The traditionally held belief is that the future of nuclear energy is electricity production. However another possible future exists: nuclear energy used primarily for the production of hydrogen. The hydrogen in turn would be used to meet our demands for transport fuels (including liquid fuels) materials such as steel and fertilizer and peak-load electricity production. Hydrogen would become the replacement for fossil fuels in these applications that consume more than half the world’s energy. Such a future would follow from several factors: (a) concerns about climatic change that limit the use of fossil fuels (b) the fundamental technological differences between hydrogen and electricity that may preferentially couple different primary energy sources with either hydrogen or electricity and (c) the potential for other technologies to competitively produce electricity but not hydrogen. Electricity (movement of electrons) is not fundamentally a large-scale centralized technology that requires centralized methods of production distribution or use. In contrast hydrogen (movement of atoms) is intrinsically a large-scale centralized technology. The large-scale centralized characteristics of nuclear energy as a primary energy source hydrogen production systems and hydrogen storage systems naturally couple these technologies. This connection suggests that serious consideration be given to hydrogen as the ultimate product of nuclear energy and that nuclear systems be designed explicitly for hydrogen production.
Synergies between Renewable Energy and Flexibility Investments: A Case of a Medium-Sized Industry
Nov 2021
Publication
Climate and energy policies are tools used to steer the development of a sustainable economy supplied by equally sustainable energy systems. End-users should plan their investments accounting for future policies such as incentives for system-oriented consumption emission prices and hydrogen economy to ensure long-term competitiveness. In this work the utilization of variable renewable energy and flexibility potentials in a case study of an an aggregate industry is investigated. An energy concept considering PV and battery expansion flexible production fuel cell electric trucks (FCEV) and hydrogen production is proposed and analysed under expected techno-economic conditions and policies of 2030 using an energy system optimization model. Under this concept total costs and emissions are reduced by 14% and 70% respectively compared to the business-as-usual system. The main benefit of PV investment is the lowered electricity procurement. Flexibility from schedule manufacturing and hydrogen production increases not only the self-consumption of PV generation from 51% to 80% but also the optimal PV capacity by 41%. Despite the expected cost reduction and efficiency improvement FCEV is still not competitive to diesel trucks due to higher investment and fuel prices i.e. its adoption increases the costs by 8%. However this is resolved when hydrogen can be produced from own surplus electricity generation. Our findings reveal synergistic effects between different potentials and the importance of enabling local business models e.g. regional hydrogen production and storage services. The SWOT analysis of the proposed concept shows that the pursuit of sustainability via new technologies entails new opportunities and risks. Lastly end-users and policymakers are advised to plan their investments and supports towards integration of multiple application consumption sectors and infrastructure.
Everything About Hydrogen Podcast: Building Hydrogen Infrastructure with Black & Veatch
Feb 2020
Publication
On this weeks episode the team are talking all things hydrogen with Maryline Daviaud Lewett Director of Business Development for Transformative Technologies at Black & Veatch (B&V). On the show we discuss the role that Engineering Procurement and Construction (EPC) firms are playing in developing hydrogen and fuel cell infrastructure as well as discussing the unique aspects of developing projects in North America. As the leading EPC for hydrogen refuelling stations in North America and a wealth of experience across electric vehicle charging and hydrogen Maryline brings a uniquely well rounded perspective to the discussion and shares a wealth of insights for how the market may evolve. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: The Other Hydrogen Vehicle?
Oct 2019
Publication
For this episode we speak to Amanda Lyne the Managing Director of ULEMCo and the Chair of the UK Hydrogen and Fuel Cell Association (UKHFCA). Below are a few links to some of the content discussed on the show and some further background reading.
The podcast can be found on their website
The podcast can be found on their website
The Czech Republic's Hydrogen Strategy
Jul 2021
Publication
The Czech Republic’s Hydrogen Strategy is being developed in the context of the Hydrogen Strategy for a climate neutral Europe which reflects the European Green Deal objective of climate neutrality by 2050. The objective of the Strategy is thus to reduce greenhouse gas emissions in such a way that the economy shifts smoothly to low-carbon technologies.
This is associated with two strategic goals:
This is associated with two strategic goals:
- Reduce greenhouse gas emissions
- Stimulate the economic growth
- Volume of low-carbon hydrogen production
- Volume of low-carbon hydrogen consumption
- Infrastructure readiness for hydrogen transport and storage
- Progress in R&D and production of hydrogen technologies
- Low-carbon hydrogen production
- Low-carbon hydrogen use
- Hydrogen transport and storage
- Hydrogen technologies
Energy-Efficient Distributed Carbon Capture in Hydrogen Production from Natural Gas
Apr 2011
Publication
Lowering the energy penalty associated with CO2 capture is one of the key issues of Carbon Capture and Storage (CCS) technologies. The efficiency of carbon capture must be improved to reduce the energy penalty because capture stage is the most energy-consuming stage in the entire process of CCS. Energy-efficient distributed carbon capture in hydrogen production has been demonstrated with an advanced membrane reformer system. We have already developed and operated an advanced 40 Nm3 /h-class membrane reformer system and demonstrated its high hydrogen production efficiency of 81.4% (HHV) which is the world highest efficiency in terms of hydrogen production from natural gas. The system has another significant feature that the CO2 concentration in the reactor off-gas is as high as 70~90% and CO2 can be liquefied and separated easily with little energy loss. An apparatus for CO2 capture was combined to the membrane reformer system and over 90% of CO2 in the reactor off-gas was captured by cryogenic separation. The total energy efficiency of hydrogen production even with CO2 capture was still as high as 78.6% (HHV) which is 510% higher than the conventional reforming technologies. The total CO2 emission from hydrogen production was decreased by 50% with only a 3% energy loss. A sensitivity analysis was also carried out to evaluate the effects of the operating conditions of the system on hydrogen production efficiency and CO2 reduction rate.
Renewable Hydrogen Production from Butanol Steam Reforming over Nickel Catalysts Promoted by Lanthanides
Oct 2021
Publication
Hydrogen is mainly produced by steam reforming of natural gas a non-renewable resource. Alternative and renewable routes for hydrogen production play an important role in reducing dependence on oil and minimizing the emission of greenhouse gases. In this work butanol a model compound of bio-oil was employed for hydrogen production by steam reforming. The reaction was evaluated for 30 h in a tubular quartz reactor at 500 ◦C atmospheric pressure GHSV of 500000 h−1 and an aqueous solution feed of 10% v/v butanol. For this reaction catalysts with 20 wt.% NiO were prepared by wet impregnation using three supports: γ-alumina and alumina modified with 10 wt.% of cerium and lanthanum oxides. Both promoters increased the reduction degree of the catalysts and decreased catalyst acidity which is closely related to coke formation and deactivation. Ni/La2O3– Al2O3 presented a higher nickel dispersion (14.6%) which combined with other properties led to a higher stability higher mean hydrogen yield (71%) and lower coke formation per mass (56%). On the other hand the nonpromoted catalyst suffered a significant deactivation associated with coke formation favored by its highest acidity (3.1 µmol m−2 ).
Climate Change Impacts of E-fuels for Aviation in Europe Under Present-day Conditions and Future Policy Scenarios
Jan 2023
Publication
‘E-fuels’ or ‘synthetic fuels’ are hydrocarbon fuels synthesized from hydrogen (H2) and carbon dioxide (CO2) where H2 can be produced via electrolysis of water or steam reforming of natural gas and CO2 is captured from the combustion of a fossil or biogenic source or directly from the atmosphere. E-fuels are drop-in substitutes for fossil fuels but their climate change mitigation benefits are largely unclear. This study evaluates the climate change impacts of e-fuels for aviation by combining different sources of CO2 and H2 up to 2050 under two contrasting policy scenarios. The analysis includes different climate metrics and the effects of near-term climate forcers which are particularly relevant for the aviation sector. Results are produced for European average conditions and for Poland and Norway two countries with high and low emission intensity from their electricity production mix. E-fuels can either have higher or lower climate change impacts than fossil fuels depending on multiple factors such as in order of importance the electricity mix the origin of CO2 the technology for H2 production and the electrolyzer efficiency. The climate benefits are generally higher for e-fuels produced from CO2 of biogenic origin while e-fuels produced from CO2 from direct air capture or fossil fuel combustion require countries with clean electricity to outperform fossil fuels. Synthetic fuels produced from H2 derived from natural gas have higher impacts than fossil fuels even when coupled with carbon capture and storage if CO2 is sourced from fossil fuels or the atmosphere. Climate change impacts of e-fuels improve in the future and they can all achieve considerable climate change mitigation in 2050 relative to fossil jet fuel provided that strict climate policy measures are implemented to decarbonize the electricity sector. Under reduced policy efforts future climate impacts in 2050 of e-fuels from atmospheric or fossil CO2 are still higher than those of fossil jet fuels with an average European electricity mix. This study shows the conditions to maximize the climate change mitigation benefits of e-fuels which essentially depend on progressive decarbonization of the electricity sector and on reduced use of CO2 sourced from fossil fuels.
Everything About Hydrogen Podcast: Greening the Maritime Transport Sector
Nov 2021
Publication
We have been talking about the difficulties of decarbonizing the maritime sector since the beginning of the Everything About Hydrogen podcast. For this episode we finally bring on the experts who are looking to make the changes in maritime and marine operations a reality for a zero-carbon shipping future. The EAH Team sits down with Tomas Tronstad Head of Shipping and Technology for the New Energy Division at Wilhelmsen Group. Founded in Norway in 1861 Wilhelmsen is now a comprehensive global maritime group providing essential products and services to the merchant fleet along with supplying crew and technical management to the largest and most complex vessels ever to sail. Committed to shaping the maritime industry the company also seeks to develop new opportunities and collaborations in renewables zero-emission shipping and marine digitalization. Tomas is helping Wilhelmsen achieve its decarbonization ambitions and we are delighted to share our conversation with him with our listerners!
The podcast can be found on their website
The podcast can be found on their website
Controlled Autoignition of Hydrogen in a Direct-injection Optical Engine
Mar 2021
Publication
Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio typically in the range / = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate.
Everything About Hydrogen Podcast: Venturing into Hydrogen
Apr 2021
Publication
Since 2014 when the firm was founded within Anglo-American AP Ventures has been at the forefront of investment in hydrogen sector technologies. At the time the firm started the concerns around climate change and investment in renewable energy tech was gearing up but interest in hydrogen as part of the path to a decarbonized future was limited. The founders of AP Ventures felt differently and saw significant potential for hydrogen to offer a means for cleaning up highly carbon intensive sectors such as heavy transport industrial manufacturing and mining operations. Today that vision for hydrogen appears rather prescient. We are delighted to have two members from the team at AP Ventures with us on the show today. The team is joined by Kevin Eggers - a founding partner at AP - and Michell Robson - associate on the firm's investment team.
The podcast can be found on their website
The podcast can be found on their website
Future Heat Series Part 2 - Policy for Heat
Oct 2015
Publication
Policy for Heat: Transforming the System urges Government to implement an ambitious long-term decarbonisation strategy for the heat sector before it’s too late in new inquiry report. The report builds on the work of Part 1 in the Future Heat Series which compared recent decarbonisation pathways and analyses to identify and highlight key policy mechanisms and transitions that are needed in order to decarbonise heat for buildings by 2050. Chaired by Shadow Energy Minister Jonathan Reynolds MP and Conservative MP Rebecca Pow (and also previous MP and member of the Energy and Climate Change Select Committee Dan Byles MP until he stood down at the General Election) the report is written by cross-party think tank group Carbon Connect. The report was published in Parliament at a cross-party debate on Wednesday 14th October. Sponsored by Energy & Utilities Alliance (EUA) and the Institution of Gas Engineers and Managers (IGEM) the report is the second in a cross-party and independent inquiry series.
Everything About Hydrogen Podcast: Hydrogen: The Next Generation
May 2021
Publication
This is the inaugural episode of the EAH: Deep Dive podcast mini-series! Our first episode features the co-founders of Enapter Vaitea Cowan and Jan Justus-Schmidt. Enapter is a young company that has made a big splash in the hydrogen space with their modular scalable AEM electrolyzer technology. Last year they made headlines with their successful public offering on the DAX and the company is expected to be a the forefront of the hydrogen sector again in 2021 as they begin construction of their mass production facility in Germany and announce the upcoming Generation Hydrogen event on May 19 2021.
The podcast can be found on their website
The podcast can be found on their website
Prospects of Integrated Photovoltaic‐Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review
Oct 2021
Publication
Integrated photovoltaic‐fuel cell (IPVFC) systems amongst other integrated energy generation methodologies are renewable and clean energy technologies that have received diverse re‐ search and development attentions over the last few decades due to their potential applications in a hydrogen economy. This article systematically updates the state‐of‐the‐art of IPVFC systems and provides critical insights into the research and development gaps needed to be filled/addressed to advance these systems towards full commercialization. Design methodologies renewable energy‐ based microgrid and off‐grid applications energy management strategies optimizations and the prospects as self‐sustaining power sources were covered. IPVFC systems could play an important role in the upcoming hydrogen economy since they depend on solar hydrogen which has almost zero emissions during operation. Highlighted herein are the advances as well as the technical challenges to be surmounted to realize numerous potential applications of IPVFC systems in unmanned aerial vehicles hybrid electric vehicles agricultural applications telecommunications desalination synthesis of ammonia boats buildings and distributed microgrid applications.
Review of the Liquid Hydrogen Storage Tank and Insulation System for the High-Power Locomotive
Jun 2022
Publication
Hydrogen has been attracting attention as a fuel in the transportation sector to achieve carbon neutrality. Hydrogen storage in liquid form is preferred in locomotives ships drones and aircraft because these require high power but have limited space. However liquid hydrogen must be in a cryogenic state wherein thermal insulation is a core problem. Inner materials including glass bubbles multi-layer insulation (MLI) high vacuum and vapor-cooled shields are used for thermal insulation. An analytic study is preferred and proceeds liquid hydrogen tanks due to safety regulations in each country. This study reviewed the relevant literature for thermodynamic modeling. The literature was divided into static dynamic and systematic studies. In summary the authors summarized the following future research needs: The optimal design of the structure including suspension baffle and insulation system can be studied to minimize the boil-off gas (BOG). A dynamic study of the pressure mass flow and vaporizer can be completed. The change of the components arrangement from the conventional diesel–electric locomotive is necessary.
Implementation of Transition Metal Phosphides as Pt-Free Catalysts for PEM Water Electrolysis
Mar 2022
Publication
Proton Exchange Membrane (PEM) water electrolysis (WE) produces H2 with a high degree of purity requiring only water and energy. If the energy is provided from renewable energy sources it releases “Green H2” a CO2 -free H2 . PEMWE uses expensive and rare noble metal catalysts which hinder their use at a large industrial scale. In this work the electrocatalytic properties of Transition Metal Phosphides (TMP) catalysts supported on Carbon Black (CB) for Hydrogen Evolution Reaction (HER) were investigated as an alternative to Platinum Group Metals. The physico-chemical properties and catalytic performance of the synthesized catalysts were characterized. In the ex situ experiments the 25% FeP/CB 50% FeP/CB and 50% CoP/CB with overpotentials of −156.0 −165.9 and −158.5 mV for a current density of 100 mA cm−2 showed the best catalytic properties thereby progressing to the PEMWE tests. In those tests the 50% FeP/CB required an overpotential of 252 mV for a current density of 10 mA cm−2 quite close to the 220 mV of the Pt catalyst. This work provides a proper approach to the synthesis and characterization of TMP supported on carbon materials for the HER paving the way for further research in order to replace the currently used PGM in PEMWE.
No more items...