Publications
Underground Hydrogen Storage: Transforming Subsurface Science into Sustainable Energy Solutions
Feb 2025
Publication
As the global economy moves toward net-zero carbon emissions large-scale energy storage becomes essential to tackle the seasonal nature of renewable sources. Underground hydrogen storage (UHS) offers a feasible solution by allowing surplus renewable energy to be transformed into hydrogen and stored in deep geological formations such as aquifers salt caverns or depleted reservoirs making it available for use on demand. This study thoroughly evaluates UHS concepts procedures and challenges. This paper analyzes the most recent breakthroughs in UHS technology and identifies special conditions needed for its successful application including site selection guidelines technical and geological factors and the significance of storage characteristics. The integrity of wells and caprock which is important for safe and efficient storage can be affected by the operating dynamics of the hydrogen cycle notably the fluctuations in pressure and stress within storage formations. To evaluate its potential for broader adoption we also examined economic elements such as cost-effectiveness and the technical practicality of large-scale storage. We also reviewed current UHS efforts and identified key knowledge gaps primarily in the areas of hydrogen–rock interactions geochemistry gas migration control microbial activities and geomechanical stability. Resolving these technological challenges regulatory frameworks and environmental sustainability are essential to UHS’s long-term and extensive integration into the energy industry. This article provides a roadmap for UHS research and development emphasizing the need for further research to fully realize the technology’s promise as a pillar of the hydrogen economy
How Company History and Hydrogen Type Shape Public Trust and Acceptability: A Reputation Management Perspective
Aug 2025
Publication
Hydrogen is gaining interest as a clean energy source from both governments and fossil fuel companies. For hydrogen projects to succeed securing public acceptability is crucial with trust in the implementing actors playing a central role. Drawing from reputation management and attribution theory we experimentally evaluated whether people’s perceptions of energy companies wanting to start producing hydrogen for sustainability reasons differ based on two features of hydrogen production. Specifically we examined the influence of (1) the type of hydrogen (blue versus green) and (2) the energy company’s history in energy production (fossil fuels versus renewables) on perceptions about the companies’ reputation management efforts —that is the belief that companies adopt hydrogen primarily to improve their public image— as well as on levels of trust both overall and specifically in terms of integrity and competence. We further explored whether perceived reputation management explains the effects on trust and whether these factors also shape public acceptability of hydrogen production itself. Results indicated that people perceived the company with a history of working with fossil fuels as trying to improve its reputation more than one associated with renewables and trusted it less. Furthermore perceived reputation management explained the lower (general and integrity-based) trust people had in companies with a past in fossil fuels. For public acceptability of hydrogen the company’s history was not relevant with green hydrogen being more acceptable than blue regardless of which company produced it. We discuss these findings in relation to the literature on public perceptions of hydrogen.
Techno-Economic Analysis on Implementing Hydrogen in a Combined Heat and Power Plant in Luxembourg to Reduce Carbon Emissions
Apr 2025
Publication
In 2021 the global electricity and heat sector recorded the highest increase in carbon dioxide (CO2) emissions in comparison with the previous year highlighting the ongoing challenges in reducing emissions within the sector. Therefore combined heat and power (CHP) plants running on renewable fuels can play an important role in the energy transition by decarbonising a process increasing the efficiency and capacity factor. Since 2003 Luxembourgish CHP plants have been transitioning from natural gas to biomass mainly wood pellets. However even though wood pellets are a renewable alternative the market volatility in 2022 highlighted the vulnerability of a system reliant solely on one type of fuel. This study assesses the feasibility of using hydrogen to decarbonise a cogeneration plant powered by a natural gas-fuelled internal combustion engine. Although the technology to use hydrogen as a fuel for such systems already exists a technical and economic analysis of implementing a hydrogen-ready plant is still lacking. Our results show that from a technical perspective retrofitting an existing power plant to operate with hydrogen is feasible either by adapting or replacing the engine to accommodate hydrogen blends from 0 up to 100%. The costs of making the CHP plant hydrogen-ready vary depending on the scenario ranging from a 20% increase for retrofitting to a 60% increase for engine replacement in the best-case scenarios. However these values remain highly variable due to uncertainties associated with the ongoing technology development. From an economic standpoint as of 2024 running the plant on hydrogen remains more expensive due to significant initial investments and higher fuel costs. Nevertheless projections indicate that rising climate concerns CO2 taxes geopolitical factors and the development of the hydrogen framework in the region—through projects such as MosaHYc and HY4Link— could accelerate the competitiveness of hydrogen making it a more viable alternative to fossil-based solutions in the near future.
Recent Advances in Hydrogen Production, Storage and Fuel Cell Technologies with an Emphasis on Inventions, Innovations and Commercialization
Nov 2023
Publication
The future is bright for hydrogen as a clean mobile energy source to replace petroleum products. This paper examines new and emerging technologies for hydrogen production storage and conversion and highlights recent commercialization efforts to realize its potential. Also the paper presents selected notable patents issued within the last few years. There is no shortage of inventions and innovations in hydrogen technologies in both academia and industry. While metal hydrides and functionalized carbon-based materials have improved tremendously as hydrogen storage materials over the years storing gaseous hydrogen in underground salt caverns has also become feasible in many commercial projects. Production of “blue hydrogen” is rising as a method of producing hydrogen in large quantities economically. Although electric/battery powered vehicles are dominating the green transport today innovative hydrogen fuel cell technologies are knocking at the door because of their lower refueling time compared to EV charging time. However the highest impact of hydrogen technologies in trans portation might be seen in the aviation industry. Hydrogen is expected to play a key role and provides hope in transforming aviation into a zero-carbon emission transportation over the next few decades.
Exergo-Economic Analysis of Solar-Driven Ammonia Production System for a Sustainable Energy Carrier
Apr 2025
Publication
The industrial sector’s movement toward decarbonization is regarded as essential for governments. This paper assesses a system that uses only solar energy to synthesize liquid hydrogen and ammonia as energy carriers. Photovoltaic modules deliver electrical power while parabolic dish collectors are responsible for directing thermal energy to the solid oxide electrolyzer for hydrogen production which then mixes with nitrogen to produce ammonia after a number of compression stages. To investigate the proposed system comprehensive thermodynamic and exergo-economic studies are performed using an engineering equation solver and ASPEN PLUS software.
Levelized Cost of Hydrogen from Offtakers Standpoint: An Overlooked Perspective Via Case Studies in Warrnambool, Australia
Aug 2025
Publication
Green hydrogen is a promising energy vector for replacing fossil fuels in hard-to-abate sectors but its cost hinders widespread deployment. This research develops an exact MILP model to optimize the design of integrated green energy projects minimizing the total annual cost between different power configurations. The model is applied to a case study in regional Victoria Australia which supports a fleet of nine fuel cell electric buses requiring 1160 kg of hydrogen per week. The optimal system includes a 453 kW electrolyzer 212 kg of storage in compressed hydrogen vessels 704 kW of solar PV and 635 kW of wind power firmed with grid electricity. The LCOH is 14.8 A$/kg which is higher than other estimates in the literature for Australia. This is arguably due to the idle capacities resulting from intermittent hydrogen demand. Producing additional hydrogen with surplus or low-priced electricity could reduce LCOH to 12.4 A$/kg. Sensitivity analyzes confirm the robustness of the system to variations in key parameter costs resource availability and estimated energy supply and demand.
Sustainable Hydrogen Production with Negative Carbon Emission Through Thermochemical Conversion of Biogas/Biomethane
Apr 2025
Publication
Biogas (primarily biomethane) as a carbon-neutral renewable energy source holds great potential to replace fossil fuels for sustainable hydrogen production. Conventional biogas reforming systems adopt strategies similar to industrial natural gas reforming posing challenges such as high temperatures high energy consumption and high system complexity. In this study we propose a novel multi-product sequential separation-enhanced reforming method for biogas-derived hydrogen production which achieves high H2 yield and CO2 capture under mid-temperature conditions. The effects of reaction temperature steam-to-methane ratio and CO2/CH4 molar ratio on key performance metrics including biomethane conversion and hydrogen production are investigated. At a moderate reforming temperature of 425 ◦C and pressure of 0.1 MPa the conversion rate of CH4 in biogas reaches 97.1% the high-purity hydrogen production attains 2.15 mol-H2/mol-feed and the hydrogen yield is 90.1%. Additionally the first-law energy conversion efficiency from biogas to hydrogen reaches 65.6% which is 11 percentage points higher than that of conventional biogas reforming methods. The yield of captured CO2 reaches 1.88 kg-CO2/m3 -feed effectively achieving near-complete recovery of green CO2 from biogas. The mild reaction conditions allow for a flexible integration with industrial waste heat or a wide selection of other renewable energy sources (e.g. solar heat) facilitating distributed and carbonnegative hydrogen production.
Optimization of Hydrogen Combustion in Diesel Engines: A CFD-Based Approach for Efficient Hydrogen Mixing and Emission Reduction
Apr 2025
Publication
Hydrogen internal combustion engines (ICEs) have gained significant attention as a promising solution for achieving zero-carbon emissions in the transportation sector. This study investigates the conversion of a 2 L Diesel ICE into a lean hydrogen-powered ICE focusing on key challenges such as hydrogen mixing pre-ignition combustion flame development and NOx emissions. The novelty of this research lies in the specific modifications made to optimize engine performance and reduce emissions while utilizing the existing Diesel engine infrastructure. The study identifies several important design changes for the successful conversion of a Diesel engine to hydrogen including the following: Intake port design: transitioning from a swirl to a tumble design to enhance hydrogen mixing; Injection and spark plug configuration: using a lateral injection system combined with a central spark plug to improve combustion; Piston design: employing a lenticular piston shape with adaptable depth to enhance mixing; Mitigating Coanda effect: preventing hydrogen issues at the spark plug using deflectors or caps; and Head design: maintaining a flat head design for efficient mixing while ensuring adequate cooling to avoid pre-ignition. These findings highlight the importance of specific modifications for converting Diesel engines to hydrogen providing a solid foundation for further research in hydrogen-powered ICEs which could contribute to carbon emission reduction and a more sustainable energy transition.
Optimizing a Hydrogen and Methane Blending System Through Design and Simulation
Apr 2025
Publication
Hydrogen–methane gas mixtures are increasingly recognized as a viable path toward achieving carbon neutrality leveraging existing natural gas infrastructure while reducing greenhouse gas emissions. This study investigates a novel static mixing device designed for blending hydrogen and methane employing both experimental tests and threedimensional computational fluid dynamics (CFD) simulations. Hydrogen was introduced into a methane flow via direct injection with experimental mixtures ranging from 5% to 18% hydrogen. The mixture quality was assessed using a specialized gas chromatograph and the results were compared against simulated data to evaluate the mixer’s performance and the model’s accuracy. The system demonstrated effective blending maintaining uniform hydrogen concentrations across the outlet with minimal variations. Experimental and simulated results showed strong agreement with an average accuracy error below 2% validating the reliability of the CFD model. Smaller nozzles (0.4 mm) achieved greater mixing uniformity while larger nozzles (0.6 mm) facilitated higher hydrogen throughput indicating trade-offs between mixing precision and flow capacity. The mixing device proved compatible with existing pipeline infrastructure offering a scalable solution for hydrogen integration into natural gas networks. These findings underscore the mixer’s potential as a practical component in advancing the hydrogen economy and achieving sustainable energy transitions.
Research on Energy Management Strategy Based on Adaptive Equivalent Fuel Consumption Minimum for Hydrogen Hybrid Energy Systems
Mar 2025
Publication
Hydrogen has attracted widespread attention due to its zero emissions and high energy density and hydrogen-fueled power systems are gradually emerging. This paper combines the advantages of the high conversion efficiency of fuel cells and strong engine power to propose a hydrogen hybrid energy system architecture based on a mixture of fuel cells and engines in order to improve the conversion efficiency of the energy system and reduce its fuel consumption rate. Firstly according to the topology of the hydrogen hybrid energy system and the circuit model of its core components a state-space model of the hydrogen hybrid energy system is established using the Kirchhoff node current principle laying the foundation for the control and management of hydrogen hybrid energy systems. Then based on the state-space model of the hydrogen hybrid system and Pontryagin’s minimum principle a hydrogen hybrid system management strategy based on adaptive equivalent fuel consumption minimum strategy (A-ECMS) is proposed. Finally a hydrogen hybrid power system model is established using the AVL Cruise simulation platform and a control strategy is developed using matlab 2021b/Simulink to analyze the output power and fuel economy of the hybrid energy system. The results show that compared with the equivalent fuel consumption minimum strategy (ECMS) the overall fuel economy of A-ECMS could improve by 10%. Meanwhile the fuel consumption of the hydrogen hybrid energy system is less than half of that of traditional engines.
From Policy to Practice: Upper Bound Cost Estimates of Europe's Green Hydrogen Ambitions
Jul 2025
Publication
As the European countries strive to meet their ambitious climate goals renewable hydrogen has emerged to aid in decarbonizing energy-intensive sectors and support the overall energy transition. To ensure that hydrogen production aligns with these goals the European Commission has introduced criteria for additionality temporal correlation and geographical correlation. These criteria are designed to ensure that hydrogen production from renewable sources supports the growth of renewable energy. This study assesses the impact of these criteria on green hydrogen production focusing on production costs and technology impacts. The European energy market is simulated up to 2048 using stochastic programming applying these requirements exclusively to green hydrogen production without the phased-in compliance period outlined in the EU regulations. The findings show that meeting the criteria will increase expected system costs by €82 billion from 2024 to 2048 largely due to the rapid shift from fossil fuels to renewable energy. The additionality requirement which mandates the use of new renewable energy installations for electrolysis proves to be the most expensive but also the most effective in accelerating renewable energy adoption.
Hydrogen Production from Hydrogen Sulfide via a Uniquely Designed Electrolysis Process: Experimental Investigation
Oct 2025
Publication
The present work aims to develop a uniquely designed experimental test rig for hydrogen (H2) production from hydrogen sulfide (H2S) and perform performance tests. The experimental activity focuses on the FeCl3 hybrid process for H2S cracking followed by H2S absorption sulfur purification and electrolysis for efficient H2 production. Hydrogen production is studied using KOH and FeCl3 electrolytes under varying temperatures between 20-80 ◦C. An electrochemical impedance spectroscopy (EIS) is employed to characterize the electrochemical cell under potentiostatic (0.5-2.0 V) and galvanostatic (0-0.5 mA) modes to analyze the system’s electrochemical response. The study results showed that hydrogen production increased by over 426 % from 20 ◦C to 80 ◦C. EIS analysis under potentiostatic mode showed Nyquist semicircle diameter reduced as the applied voltage increased from 0.5 V to 1.5 V and phase angle shifted from -5.59◦ to -1.27◦ confirming enhanced conductivity. Under galvanostatic mode the impedance dropped from ~25 Ω to ~21 Ω as current increased demonstrating improved kinetics for efficient H2 production.
Global Trends in Innovation Across Hydrogen Production, Supply and Demand Chains
Aug 2025
Publication
The global shift away from fossil fuels necessitates swift and transformative action underscoring the need for timely and accurate insights into emerging low-carbon technologies. This review provides a comprehensive and systematic analysis of innovation trends within the hydrogen technology ecosystem. Drawing on global patent data as a key indicator of industrial innovation the study offers a forward-looking assessment of technological developments spanning the entire hydrogen value chain like production storage distribution transformation and end-use applications across various sectors. By evaluating patent activity over time and across regions the review highlights significant innovation trends identifies leading industrial contributors and maps the evolving global competitive landscape. Particular attention is given to regional dynamics and sector-specific breakthroughs offering a nuanced perspective for policymakers investors and stakeholders engaged in energy transition planning. As hydrogen becomes increasingly central to decarbonization strategies worldwide this study serves as a critical intelligence resource illuminating current trajectories and signalling potential technological inflection points in the ongoing energy transformation.
Advanced Online Fuel Cell Stack Water Management Strategies for Fuel Cell Stacks in Vehicle Powertrain Control
Sep 2025
Publication
Effective water management is crucial for the optimal performance and durability of proton exchange membrane fuel cells (PEMFCs) in automotive applications. Conventional techniques like electrochemical impedance spectroscopy (EIS) face challenges in accurately measuring high-frequency resistance (HFR) impedance during dynamic vehicle operations. This study proposes a novel stack water management stability control and vehicle energy control method to address these limitations. Simulation and experimental results demonstrate improved system and powertrain efficiency extended stack lifespan and optimized hydrogen consumption. These findings contribute to advancing robust water management strategies supporting the transition toward sustainable zero-emission fuel cell vehicles.
Review of Offshore Superconducting Wind Power Generation for Hydrogen Production
Apr 2025
Publication
Green hydrogen plays a vital role in facilitating the transition to sustainable energy systems with stable and high-capacity offshore wind resources serving as an ideal candidate for large-scale green hydrogen production. However as the capacity of offshore wind turbines continues to grow the increasing size and weight of these systems pose significant challenges for installation and deployment. This study investigates the application of high-temperature superconducting (HTS) materials in the generator and the power conducting cables as a promising solution to these challenges. Compared to conventional wind turbines HTS wind turbines result in significant reductions in weight and size while simultaneously enhancing power generation and transmission efficiency. This paper conducts a comprehensive review of mainstream electrolysis-based hydrogen production technologies and advanced hydrogen storage methods. The main contribution of this research is the development of an innovative conceptual framework for a superconducting offshore windto-hydrogen energy system where a small amount of liquid hydrogen is used to provide a deep-cooling environment for the HTS wind turbine and the remaining liquid hydrogen is used for the synthesis of ammonia as a final product. Through functional analysis this study demonstrates its potential for enabling large-scale offshore hydrogen production and storage. Additionally this paper discusses key challenges associated with real-world implementation including optimizing the stability of superconducting equipment and ensuring component coordination. The findings offer crucial insights for advancing the offshore green hydrogen sector showing that HTS technology can significantly enhance the energy efficiency of offshore wind-to-hydrogen systems. This research provides strong technical support for achieving carbon neutrality and fostering sustainable development in the offshore renewable energy sector.
Lifecycle CO2 Analysis for Urban Emission Reduction of Hydrogen-fuelled and Battery Electric Buses in the European Union Current and Future Energetic Scenarios
Apr 2025
Publication
As the need to reduce Greenhouse Gas (GHG) emissions and dependence on fossil fuels grows new vehicle concepts are emerging as sustainable solutions for urban mobility. Beyond evaluating tailpipe emissions indirect emissions associated with energy and hydrogen production as vehicle manufacturing must be accounted offering a holistic Lifecycle Assessment (LCA) perspective. This study compares Battery Electric Vehicles (BEVs) Fuel Cell Vehicles (FCVs) Hydrogen Internal Combustion Engine Vehicles (H2ICEVs) and hybrid H2ICEVs analyzing energy efficiency and GHG emissions in urban environment across the European Union. Future scenarios (2030 2050) are examined as well with evolving energy mixes and manufacturing impacts. Findings show BEVs as the most efficient configuration with the lowest GHG emissions in 2024 while FCVs become the best option in future scenarios due to greener hydrogen production and improved manufacturing. This study emphasizes the need for tailored strategies to achieve sustainable urban mobility providing insights for policymakers and stakeholders.
Techno-Economic Optimal Operation of an On-Site Hydrogen Refueling Station
Oct 2025
Publication
An on-site hydrogen refueling station (HRS) directly supplies hydrogen to vehicles using an on-site hydrogen production method such as electrolysis. For the efficient operation of an on-site HRS it is essential to optimize the entire process from hydrogen production to supply. However most existing approaches focus on the efficiency of hydrogen production. This study proposes an optimal operation model for a renewable-energy-integrated on-site HRS which considers the degradation of electrolyzers and operation of compressors. The proposed model maximizes profit by considering the hydrogen revenue electricity costs and energy storage system degradation. It estimates hydrogen production using a voltage equation models compressor power using a shaft power equation and considers electrolyzer degradation using an empirical voltage model. The effectiveness of the proposed model is evaluated through simulation. Comparison with a conventional control strategy shows an increase of over 56% in the operating revenue.
Hydrogen Production from Biowaste: A Systematic Review of Conversion Technologies, Environmental Impacts, and Future Perspectives
Aug 2025
Publication
The escalating climate crisis and unsustainable waste management practices necessitate integrated approaches that simultaneously address energy security and environmental degradation. Hydrogen with its high energy density and zero-carbon combustion is a key vector for decarbonization; however conventional production methods are fossildependent and carbon-intensive. This systematic review explores biowaste-to-hydrogen (WtH) technologies as dual-purpose solutions converting organic waste to clean hydrogen while reducing greenhouse gas emissions and landfill reliance. A comprehensive analysis of different conversion pathways including thermochemical (gasification pyrolysis hydrothermal and partial oxidation (POX)) biochemical (dark fermentation photofermentation and sequential fermentation) and electrochemical methods (MECs) is presented assessing their hydrogen yields feedstock compatibilities environmental impacts and technological readiness. Systematic literature review methods were employed using databases such as Scopus and Web of Science with strict inclusion criteria focused on recent peerreviewed studies. This review highlights hydrothermal gasification and dark fermentation as particularly promising for wet biowaste streams like food waste. Comparative environmental analyses reveal that bio-based hydrogen pathways offer significantly lower greenhouse gas emissions energy use and pollutant outputs than conventional methods. Future research directions emphasize process integration catalyst development and lifecycle assessment. The findings aim to inform technology selection policymaking and strategic investment in circular low-carbon hydrogen production.
The Growing Demand for Hydrogen: Current Trends, Sectoral Analysis, and Future Projections
Mar 2025
Publication
Hydrogen has emerged as a pivotal energy carrier in the global transition toward sustainable energy systems. This study analyses current trends sectoral dynamics and future demand projections for hydrogen employing a multi-methodological framework that integrates Compound Annual Growth Rate (CAGR) extrapolation scenario-based modeling and regional comparative analysis. By leveraging historical growth patterns of geothermal bioenergy and wind energy sectors in the European Union (EU) three hydrogen demand scenarios—Conservative (3.25 % CAGR) Moderate (8.33 % CAGR) and Optimistic (15.42 % CAGR)—are projected to 2050. Results indicate that global hydrogen demand could range from 18.8 to 381.3 million tonnes per year by 2050 depending on technological advancements policy frameworks and infrastructure investments. The transportation and industrial sectors are identified as critical drivers while regional disparities highlight leadership from the EU the U.S. and Asia-Pacific nations. The study underscores the necessity of coordinated policy cost reduction in green hydrogen production and infrastructure scalability to realize hydrogen’s potential in decarbonizing energy systems.
Coupling High-temperature Electrolysis and Industrial Waste Heat for On-site Green Hydrogen Production: Energy, Economic and Environmental Analysis
Apr 2025
Publication
High-temperature electrolysis offers a solution for industry decarbonisation by high-efficiency hydrogen production. This study presents a system based on Solid Oxide Electrolysis Cells (SOEC) fed by photovoltaic and waste heat recovery for hydrogen blending with natural gas in industrial burners. The aim of this work is to assess techno-economic feasibility of the proposed configuration investigating hydrogen blending limits Levelized Cost of Hydrogen (LCOH) and decarbonisation cost. LCOH values below 6 €/kgH2 cannot be achieved at current SOEC costs. The system can be applied without significant burner modifications since maximum hydrogen volumetric fractions are less than 20 %. Higher efficiency and emission reduction potential in comparison to alkaline electrolysers can be achieved but they are offset by higher LCOH and carbon abatement costs. Forthcoming reduction in SOEC costs can improve the cost-effectiveness and high natural gas prices experienced during the energy crisis make the decarbonisation cost competitive with the emission trading system.
No more items...