Publications
Techno-economic Comparative Study of Grid-connected PV/Reformer/FC Hybrid Systems with Distinct Solar Tracking Systems
Feb 2023
Publication
The purpose of this study is to analyze and compare the techno-economic performance of grid-connected Hybrid Energy Systems (HES) consisting of Photovoltaic (PV) and Reformer Fuel-Cell (RF-FC) using different types of solar PV tracking techniques to supply electricity to a small location in the City of Chlef Algeria. The PV tracking systems considered in this study include fixed facing south at four different angles (32◦ 34◦ 36◦ 38◦) horizontal-axis with continuous adjustment vertical-axis with continuous adjustment and a two-axis tracking system. The software tool HOMER Pro (Hybrid Optimization of Multiple Energy Resources) is used to simulate and analyze the technical feasibility and life-cycle cost of these different configurations. The meteorological data consisting of global solar radiation and air temperature used in this study was collected from the geographical area of the City of Chlef during the year 2020. This study has shown that the optimal design of a grid-connected hybrid PV/RF-FC energy system with Vertical Single Axis Tracker (VSAT) leads to the best economic perfor mance with low values of Net Present Cost (NPC) Cost of Energy (COE) with a Positive Return on Investment (ROI) and the shortest Simple Payback (SP) period. In addition from the simulation results obtained it can be concluded that the Horizontal and Vertical Single-Axis Trackers (HSAT and VSAT) as well as the Dual-Axis Tracker (DAT) are not always cost effective compared to the Fixed Tilt System (FTS). Therefore it is neces sary to carefully analyze the use of each tracker to assess whether the energy gain achieved outweighs the overall shortcomings of the tracker.
New Protocol for Hydrogen Refueling Station Operation
Aug 2025
Publication
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the hydrogen compressor power requirement and the energy consumption for refilling the vehicle tank; therefore the proposed alternative design for hydrogen refueling stations is feasible and compatible with low-intensity renewable energy sources like solar photovoltaic wind farms or micro-hydro plants. Additionally the cascade method supplies higher pressure to the dispenser throughout the day thus reducing the refueling time for specific vehicle driving ranges. The simulation shows that the energy saving using the cascade method achieves 9% to 45% depending on the vehicle attendance. The hydrogen refueling station design supports a daily vehicle attendance of 9 to 36 with a complete refueling process coverage. The carried-out simulation proves that the vehicle tank achieves the maximum attainable pressure of 700 bars with a storage system of six tanks. The data analysis shows that the daily hourly hydrogen demand follows a sinusoidal function providing a practical tool to predict the hydrogen demand for any vehicle attendance allowing the planners and station designers to resize the elements to fulfill the new requirements. The proposed system is also applicable to hydrogen ICE vehicles.
Integrated Membrane Distillation-solid Electrolyte-based Alkaline Water Electrolysis for Enhancing Green Hydrogen Production
Jan 2025
Publication
This paper investigates the circularity of green hydrogen and resource recovery from brine using an integrated approach based on alkaline water electrolysis (AWE). Traditional AWE employs highly alkaline electrolytes which can lead to electrode corrosion undesirable side reactions and gas cross-over issues. Conversely indirect brine electrolysis requires pre-treatment steps which negatively impact both techno-economics and environmental sustainability. In response this study proposes an innovative brine electrolysis process utilizing solid electrolytes (SELs). The process includes an on-site brine treatment facility leveraging a self-driven phase transition technique and incorporates a hydrophobic membrane as part of a membrane distillation (MD) system to facilitate the gas pathway. Polyvinyl alcohol (PVA) and tetraethylammonium hydroxide (TEAOH)-based electrolytes combined with potassium hydroxide (KOH) at various concentrations function as a self-wetted electrolyte (SWE). This design partially disperses water vapor while effectively preventing the intrusion of contaminated ions into the SWE and electrode-catalyst interfaces. PVA-TEAOH-KOH-30 wt% SWE demonstrated the highest ion conductivity (112.4 mScm−1) and excellent performance with a current density of 375 mAcm−2. Long-term electrolysis confirmed with a nine-fold brine in volume concentration factor (VCF) demonstrated stable performance without MD membrane wetting. The Cl−/ClO− and Br− concentrations in the SWE were reduced by five orders of magnitude compared to the original brine. This electrolyzer supports the circular use of resources with hydrogen as an energy carrier and concentrated brine and oxygen as valuable by-products aligning with the sustainable development goals (SDGs) and net-zero emissions by 2050.
Advances in Type IV Tanks for Safe Hydrogen Storage: Materials, Technologies and Challenges
Oct 2025
Publication
This paper provides a comprehensive review of Type IV hydrogen tanks with a focus on materials manufacturing technologies and structural issues related to high-pressure hydrogen storage. Recent advances in the use of advanced composite materials such as carbon fibers and polyamide liners useful for improving mechanical strength and permeability have been reviewed. The present review also discusses solutions to reduce hydrogen blistering and embrittlement as well as exploring geometric optimization methodologies and manufacturing techniques such as helical winding. Additionally emerging technologies such as integrated smart sensors for real-time monitoring of tank performance are explored. The review concludes with an assessment of future trends and potential solutions to overcome current technical limitations with the aim of fostering a wider adoption of Type IV tanks in mobility and stationary applications.
A Complete Control-Oriented Model for Hydrogen Hybrid Renewable Microgrids with High-Voltage DC Bus Stabilized by Batteries and Supercapacitors
Oct 2025
Publication
The growing penetration of renewable energy sources requires resilient microgrids capable of providing stable and continuous operation. Hybrid energy storage systems (HESS) which integrate hydrogen-based storage systems (HBSS) battery storage systems (BSS) and supercapacitor banks (SCB) are essential to ensuring the flexibility and robustness of these microgrids. Accurate modelling of these microgrids is crucial for analysis controller design and performance optimization but the complexity of HESS poses a significant challenge: simplified linear models fail to capture the inherent nonlinear dynamics while nonlinear approaches often require excessive computational effort for real-time control applications. To address this challenge this study presents a novel state space model with linear variable parameters (LPV) which effectively balances accuracy in capturing the nonlinear dynamics of the microgrid and computational efficiency. The research focuses on a high-voltage DC bus microgrid architecture in which the BSS and SCB are connected directly in parallel to provide passive DC bus stabilization a configuration that improves system resilience but has received limited attention in the existing literature. The proposed LPV framework employs recursive linearisation around variable operating points generating a time-varying linear representation that accurately captures the nonlinear behaviour of the system. By relying exclusively on directly measurable state variables the model eliminates the need for observers facilitating its practical implementation. The developed model has been compared with a reference model validated in the literature and the results have been excellent with average errors MAE RAE and RMSE values remaining below 1.2% for all critical variables including state-of-charge DC bus voltage and hydrogen level. At the same time the model maintains remarkable computational efficiency completing a 24-h simulation in just 1.49 s more than twice as fast as its benchmark counterpart. This optimal combination of precision and efficiency makes the developed LPV model particularly suitable for advanced model-based control strategies including real-time energy management systems (EMS) that use model predictive control (MPC). The developed model represents a significant advance in microgrid modelling as it provides a general control-oriented approach that enables the design and operation of more resilient efficient and scalable renewable energy microgrids.
Conceptual Design of a Process for Hydrogen Production from Waste Biomass and its Storage in form of Liquid Ammonia
Feb 2023
Publication
In this work we present the simulation of a plant for the exploitation of renewable hydrogen (e.g. from biomass gasification) with production of renewable ammonia as hydrogen vector and energy storage medium. The simulation and sizing of all unit operations were performed with Aspen Plus® as software. Vegetable waste biomass is used as raw material for hydrogen production more specifically pine sawdust.<br/>The hydrogen production process is based on a gasification reactor operating at high temperature (700–800 °C) in the presence of a gasifying agent such as air or steam. At the outlet a solid residue (ash) and a certain amount of gas which mainly contains H2 CH4 CO and some impurities (e.g. sulphur or chlorine compounds) are obtained. Subsequently this gas stream is purified and treated in a series of reactors in order to maximize the hydrogen yield. In fact after the removal of the sulphur compounds through an absorption column with MEA (to avoid poisoning of the catalytic processes) 3 reactors are arranged in series: Methane Steam Reforming (MSR) High temperature Water-Gas Shift (HT-WGS) Low temperature Water-Gas Shift (LT-WGS).<br/>In the first MSR reactor methane reacts at 1000 °C in presence of steam and a nickel-based catalyst in order to obtain mainly H2 CO and CO2. Subsequently two steps of WGS are present to convert most of the CO into H2 and CO2. Also these reactions are carried out in the presence of a catalyst and with an excess of water.<br/>All the oxygenated compounds must be carefully eliminated: the remaining traces of CO are methanated while CO2 is removed by a basic scrubbing with MEA (35 wt%) inside an absorption column. The Haber-Bosch synthesis of ammonia was carried out at 200 bar and in a temperature range between 300 and 400 °C using two catalysts: Fe (wustite) and Ru/C.<br/>As overall balance from an hourly flow rate of 1000 kg of dry biomass and 600 kg of nitrogen 550 kg of NH3 at 98.8 wt% were obtained demonstrating the proof of concept of this newly designed process for the production of hydrogen from renewable waste biomass and its transformation into a liquid hydrogen vector to be easily transported and stored.
Decarbonizing Insular Energy Systems: A Literature Review of Practical Strategies for Replacing Fossil Fuels with Renewable Energy Sources
Feb 2025
Publication
The reliance on fossil fuels for electricity production in insular regions creates critical environmental economic and logistical challenges particularly for ecologically fragile islands. Transitioning to renewable energy is essential to mitigate these impacts enhance energy security and preserve unique ecosystems. This systematic review addresses key research questions: what practical strategies have proven effective in reducing fossil fuel dependency in island contexts and what barriers hinder their widespread adoption? By applying the PRISMA methodology this study examines a decade (2014–2024) of research on renewable energy systems highlighting successful initiatives such as the integration of solar and wind systems in Hawaii energy storage advancements in La Graciosa hybrid renewable grids in the Galápagos Islands and others. Specific barriers include high upfront costs regulatory challenges and technical limitations such as grid instability due to renewable energy intermittency. This review contributes by synthesizing lessons from diverse case studies and identifying innovative approaches like hydrogen storage predictive control systems and community-driven renewable projects. The findings offer actionable insights for policymakers and researchers to accelerate the transition towards sustainable energy systems in island environments.
Analyzing the Adoption of Hybrid Electric and Hydrogen Vehicles in Indonesia: A Multi-criteria and Total Cost of Ownership Approach
Jan 2025
Publication
Indonesia faces mounting challenges from climate change and environmental degradation underscoring the need for sustainable transportation solutions. This study evaluates factors influencing the adoption of Hybrid Electric Vehicles (HEV) Battery Electric Vehicles (BEV) and Hydrogen Fuel Cell Vehicles (HFCV) using Multi-Criteria Analysis (MCA) and Total Cost of Ownership (TCO) approaches. Eight key factors were analyzed: safety operational and maintenance costs initial cost government incentives charging speed resale value and environmental impact. Findings reveal that safety concerns particularly for hydrogen vehicles rank as the highest priority for consumers followed by cost efficiency and government support. Environmental considerations while significant were lower in priority. The study highlights the importance of targeted subsidies enhanced safety features and infrastructure investments to overcome barriers to adoption. By providing actionable recommendations such as raising public awareness of the long-term benefits of environmentally friendly vehicles this research supports policymakers in driving the transition to sustainable transportation in Indonesia. These insights contribute to addressing rising vehicle emissions and fostering the adoption of HEV5 BEV2 and HFCV6 aligning with Indonesia’s broader climate goals.
Unlocking Solar and Hydrogen Potentials: A Comparative Analysis of Solar Tracking Systems for South Africa's Energy Transition
Aug 2025
Publication
This study explores the potential of solar tracking technologies to enhance South Africa’s energy transition focusing on their role in supporting green hydrogen production for domestic use and export. Using the Global Energy System Model (GENeSYS-MOD) it evaluates four solar tracking technologies — horizontal axis tilted horizontal axis vertical axis and dual-axis — across six scenarios: tracking and non-tracking versions of a Business-as-Usual (BAU) scenario a 2 ◦C scenario and a high hydrogen demand and export (HighH2) scenario. The results identify horizontal axis tracking as the most cost-effective option followed by tilted horizontal axis tracking which is particularly prominent in the HighH2 scenario. Tracking systems enhance hydrogen production by extending power output and increasing electrolyzer full-load hours. In the HighH2 scenario they reduce hydrogen production costs in 2050 from 1.47 e/kg to 1.34 e/kg and system cost by 0.66% positioning South Africa competitively in the global hydrogen market. By integrating tracking technologies South Africa can align hydrogen production ambitions with renewable energy growth while mitigating grid and financial challenges. The research underscores the need for targeted energy investments and policies to maximize renewable energy and hydrogen potential ensuring a just energy transition that supports export opportunities domestic energy security and equitable socio-economic growth.
Impact of Hydrogen Release on Accidental Consequences in Deep-Sea Floating Photovoltaic Hydrogen Production Platforms
Jul 2025
Publication
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical model of FPHP comprehensively characterizes hydrogen leakage dynamics under varied rupture diameters (25 50 100 mm) transient release duration dispersion patterns and wind intensity effects (0–20 m/s sea-level velocities) on hydrogen–air vapor clouds. FLACS-generated data establish the concentration–dispersion distance relationship with numerical validation confirming predictive accuracy for hydrogen storage tank failures. The results indicate that the wind velocity and rupture size significantly influence the explosion risk; 100 mm ruptures elevate the explosion risk producing vapor clouds that are 40–65% larger than 25 mm and 50 mm cases. Meanwhile increased wind velocities (>10 m/s) accelerate hydrogen dilution reducing the high-concentration cloud volume by 70–84%. Hydrogen jet orientation governs the spatial overpressure distribution in unconfined spaces leading to considerable shockwave consequence variability. Photovoltaic modules and inverters of FPHP demonstrate maximum vulnerability to overpressure effects; these key findings can be used in the design of offshore platform safety. This study reveals fundamental accident characteristics for FPHP reliability assessment and provides critical insights for safety reinforcement strategies in maritime hydrogen applications.
Evaluating Freshwater, Desalinated Water, and Treated Brine as Water Feed for Hydrogen Production in Arid Regions
Aug 2025
Publication
Hydrogen production is increasingly vital for global decarbonization but remains a waterand energy-intensive process especially in arid regions. Despite growing attention to its climate benefits limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment (LCA) approach to evaluate three water supply strategies for hydrogen production: (1) seawater desalination without brine treatment (BT) (2) desalination with partial BT and (3) freshwater purification. Scenarios are modeled for the United Arab Emirates (UAE) Australia and Spain representing diverse electricity mixes and water stress conditions. Both electrolysis and steam methane reforming (SMR) are evaluated as hydrogen production methods. Results show that desalination scenarios contribute substantially to human health and ecosystem impacts due to high energy use and brine discharge. Although partial BT aims to reduce direct marine discharge impacts its substantial energy demand can offset these benefits by increasing other environmental burdens such as marine eutrophication especially in regions reliant on carbon-intensive electricity grids. Freshwater scenarios offer lower environmental impact overall but raise water availability concerns. Across all regions feedwater for SMR shows nearly 50% lower impacts than for electrolysis. This study focuses solely on the environmental impacts associated with water sourcing and treatment for hydrogen production excluding the downstream impacts of the hydrogen generation process itself. This study highlights the trade-offs between water sourcing brine treatment and freshwater purification for hydrogen production offering insights for optimizing sustainable hydrogen systems in water-stressed regions.
Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes
Apr 2015
Publication
The current fossil fuel-based generation of energy has led to large-scale industrial development. However the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2) a clean energy carrier with high-energy yields; upon the combustion of H2 H2O is the only major by-product. In recent decades the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation the biological routes for H2 production are categorized into four groups: photobiological fermentation anaerobic fermentation enzymatic and microbial electrolysis and a combination of these processes. Thus this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations and we delineate the limitations. Additionally alternative options such as bioaugmentation multiple process integration and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications.
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
Aug 2025
Publication
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However to the best of the authors’ knowledge no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment including both on-grid and off-grid configurations. Subsequently the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally potential barriers to large-scale implementation are discussed along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing.
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
Aug 2025
Publication
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology which is highly successful in mitigating carbon emissions has increased. On the other hand hydrogen is an important energy carrier for storing and transporting energy and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless the integration of CCS technologies into power production processes is a significant challenge requiring the enhancement of the combined power generation–CCS process. In recent years there has been a growing interest in process intensification (PI) which aims to create smaller cleaner and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive multi-scale multi-phase dynamic computational fluid dynamics (CFD)-based process model is constructed which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57% signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR.
Numerical Investigation of Transmission and Sealing Characteristics of Salt Rock, Limestone, and Sandstone for Hydrogen Underground Energy Storage in Ontario, Canada
Feb 2025
Publication
With the accelerating global transition to clean energy underground hydrogen storage (UHS) has gained significant attention as a flexible and renewable energy storage technology. Ontario Canada as a pioneer in energy transition offers substantial underground storage potential with its geological conditions of salt limestone and sandstone providing diverse options for hydrogen storage. However the hydrogen transport characteristics of different rock media significantly affect the feasibility and safety of energy storage projects warranting in-depth research. This study simulates the hydrogen flow and transport characteristics in typical energy storage digital rock core models (salt rock limestone and sandstone) from Ontario using the improved quartet structure generation set (I-QSGS) and the lattice Boltzmann method (LBM). The study systematically investigates the distribution of flow velocity fields directional characteristics and permeability differences covering the impact of hydraulic changes on storage capacity and the mesoscopic flow behavior of hydrogen in porous media. The results show that salt rock due to its dense structure has the lowest permeability and airtightness with extremely low hydrogen transport velocity that is minimally affected by pressure differences. The microfracture structure of limestone provides uneven transport pathways exhibiting moderate permeability and fracture-dominated transport characteristics. Sandstone with its higher porosity and good connectivity has a significantly higher transport rate compared to the other two media showing local high-velocity preferential flow paths. Directional analysis reveals that salt rock and sandstone exhibit significant anisotropy while limestone’s transport characteristics are more uniform. Based on these findings salt rock with its superior sealing ability demonstrates the best hydrogen storage performance while limestone and sandstone also exhibit potential for storage under specific conditions though further optimization and validation are required. This study provides a theoretical basis for site selection and operational parameter optimization for underground hydrogen storage in Ontario and offers valuable insights for energy storage projects in similar geological settings globally.
Synergizing Water Desalination and Hydrogen Production using Solar Stills with Novel Sensible Heat Storage and an Alkaline Electrolyzer
Dec 2024
Publication
This study tested a cogeneration (desalination/hydrogen production) system with natural and black sand as sensible heat storage considering the thermal efficiencies environmental impact water quality cost aspects and hydrogen generation rate. The black sand-modified distiller attained the highest water production of 4645 mL more than the conventional distiller by 1595 mL. It also offered better energy and exergy efficiencies of 45.26% and 3.72% respectively compared to 32.10% and 2.19% for the conventional one. Both modified distillers showed impressive improvements in water quality by significant reductions in total dissolved solids (TDS) from 29300 mg/L to 60–61 mg/L. Moreover the black sand-modified still reduced chemical oxygen demand (COD) to 135 mg/L. The production cost was minimized by using black sand to 0.0111$/L higher than one-fifth in the case of the lab-based distiller. Regarding hydrogen production the highest rate was obtained using distilled water from a labbased distiller of 0.742 gH₂/hr with an energy efficiency of 11.00%; however it was not much higher than the case of black sand-modified still (0.736 gH₂/hr production rate and 10.91% efficiency). Moreover the black sand-modified still showed the highest annual exergy output of 70.4 kWh/year with a significant annual decarbonization of 1.69 ton-CO2.
Experimental Assessment of Performance and Emissions for Hydrogen-diesel Dual Fuel Operation in a Low Displacement Compression Ignition Engine
Apr 2022
Publication
The combustion of pure H2 in engines is still troublesome needing further research and development. Using H2 and diesel in a dual-fuel compression ignition engine appears as a more feasible approach. Here we report an experimental assessment of performance and emissions for a single-cylinder four-stroke air-cooled compression ignition engine operating with neat diesel and H2-diesel dual-fuel. Previous studies typically show the performance and emissions for a specific operation condition (i.e. a fixed engine speed and torque) or a limited operating range. Our experiments covered engine speeds of 3000 and 3600 rpm and torque levels of 3 and 7 Nm. An in-house designed and built alkaline cell generated the H2 used for the partial substitution of diesel. Compared with neat diesel the results indicate that adding H2 decreased the air-fuel equivalence ratio and the Brake Specific Diesel Fuel Consumption Efficiency by around 14–29 % and 4–31 %. In contrast adding H2 increased the Brake Fuel Conversion Efficiency by around 3–36 %. In addition the Brake Thermal Efficiency increased in the presence of H2 in the range of 3–37 % for the lower engine speed and 27–43 % for the higher engine speed compared with neat diesel. The dual-fuel mode resulted in lower CO and CO2 emissions for the same power output. The emissions of hydrocarbons decreased with H2 addition except for the lower engine speed and the higher torque. However the dual-fuel operation resulted in higher NOx emissions than neat diesel with 2–6 % and 19–48 % increments for the lower and higher engine speeds. H2 emerges as a versatile energy carrier with the potential to tackle current energy and emissions challenges; however the dual-fuel strategy requires careful management of NOx emissions.
Hydrogen Pipelines Safety Using System Dynamics
Oct 2025
Publication
With the global expansion of hydrogen infrastructure the safe and efficient transportation of hydrogen is becoming more important. In this study several technical factors including material degradation pressure variations and monitoring effectiveness that influence hydrogen transportation using pipelines are examined using system dynamics. The results show that hydrogen embrittlement which is the result of microstructural trapping and limited diffusion in certain steels can have a profound effect on pipeline integrity. Material incompatibility and pressure fluctuations deepen fatigue damage and leakage risk. Moreover pipeline monitoring inefficiency combined with hydrogen’s high flammability and diffusivity can raise serious safety issues. An 80% decrease in monitoring efficiency will result in a 52% reduction in the total hydrogen provided to the end users. On the other hand technical risks such as pressure fluctuations and material weakening from hydrogen embrittlement also affect overall system performance. It is essential to understand that real-time detection using hydrogen monitoring is particularly important and will lower the risk of leakage. It is crucial to know where hydrogen is lost and how it impacts transport efficiency. The model offers practical insights for developing stronger and more reliable hydrogen transport systems thereby supporting the transition to a low-carbon energy future.
Geomechanics of Geological Storage of Hydrogen: Knowledge Gaps and Future Directions
Aug 2025
Publication
Underground hydrogen storage is critical for supporting the transition to renewable energy systems addressing the intermittent nature of solar and wind power. Despite its promise as a carbon-neutral energy carrier there remains limited understanding of the geomechanical behavior of subsurface reservoirs under hydrogen storage conditions. This knowledge gap is particularly significant for fast-cycling operations which have yet to be implemented on a large scale. This review evaluates current knowledge on the geomechanics of underground hydrogen storage focusing on risks and challenges in geological formations such as salt caverns depleted hydrocarbon reservoirs saline aquifers and lined rock caverns. Laboratory experiments field studies and numerical simulations are synthesized to examine cyclic pressurization induced seismicity thermal stresses and hydrogen-rock interactions. Notable challenges include degradation of rock properties fault reactivation micro-seismic activity in porous reservoirs and mineral dissolution/precipitation caused by hydrogen exposure. While salt caverns are effective for low-frequency hydrogen storage their behavior under fast-cyclic loading requires further investigation. Similarly the mechanical evolution of porous and fractured reservoirs remains poorly understood. Key findings highlight the need for comprehensive geomechanical studies to mitigate risks and enhance hydrogen storage feasibility. Research priorities include quantifying cyclic loading effects on rock integrity understanding hydrogen-rock chemical interactions and refining operational strategies. Addressing these uncertainties is essential for enabling large-scale hydrogen integration into global energy systems and advancing sustainable energy solutions. This work systematically focuses on the geomechanical implications of hydrogen injection into subsurface formations offering a critical evaluation of current studies and proposing a unified research agenda.
Enhancing Hydrogen Production from Chlorella sp. Biomass by Pre-Hydrolysis with Simultaneous Saccharification and Fermentation (PSSF)
Mar 2019
Publication
Simultaneous saccharification and fermentation (SSF) and pre-hydrolysis with SSF (PSSF) were used to produce hydrogen from the biomass of Chlorella sp. SSF was conducted using an enzyme mixture consisting of 80 filter paper unit (FPU) g-biomass−1 of cellulase 92 U g-biomass−1 of amylase and 120 U g-biomass−1 of glucoamylase at 35 ◦C for 108 h. This yielded 170 mL-H2 g-volatile-solids−1 (VS) with a productivity of 1.6 mL-H2 g-VS−1 h −1 . Pre-hydrolyzing the biomass at 50 ◦C for 12 h resulted in the production of 1.8 g/L of reducing sugars leading to a hydrogen yield (HY) of 172 mL-H2 g-VS−1 . Using PSSF the fermentation time was shortened by 36 h in which a productivity of 2.4 mL-H2 g-VS−1 h −1 was attained. To the best of our knowledge the present study is the first report on the use of SSF and PSSF for hydrogen production from microalgal biomass and the HY obtained in the study is by far the highest yield reported. Our results indicate that PSSF is a promising process for hydrogen production from microalgal biomass.
No more items...