- Home
- A-Z Publications
- Publications
Publications
Towards Sustainable Energy Independence: A Case Study of Green Hydrogen as Seasonal Storage Integration in a Small Island
Mar 2025
Publication
Tilos a Greek island in the Mediterranean Sea hosts a pioneering hybrid energy system combining an 800-kW wind turbine and a 160-kWp photovoltaic (PV) field. The predominance of wind power makes the energy production of the island almost constant during the year while the consumption peaks in summer in correspondence with the tourist season. If the island wants to achieve complete selfsufficiency seasonal storage becomes compulsory. This study makes use of measured production data over 1 year to understand the best combination of renewable energy generation and storage to match energy production with consumption. A stochastic optimization based on a differential evolution algorithm is carried out to showcase the configuration that minimizes the levelized cost of required energy (LCORE) in different scenarios. System performance is simulated by progressively increasing the size of the storage devices including a combination of Lithium-ion batteries and power-to-gas-topower (P2G2P) technologies and the PV field. An in-depth market review of current and forecasted prices for RES and ESS components supports the economic analysis including three time horizons (current and projections to 2030 and 2050) to account for the expected drop in component prices. Currently the hybrid storage system combining BESS and P2G2P is more cost-effective (264 €/MWh) than a BESS-only system (320 €/MWh). In the mid-term (2030) the expected price drop in batteries will shift the optimal solution towards this technology but the LCORE reached by the hybrid storage (174 €/MWh) will still be more economical than BESS-only (200 €/MWh). In the long term (2050) the expected price drop in hydrogen technologies will push again the economic convenience of P2G2P and further reduce the LCORE (132.4 €/MWh).
Large-scale Experimental Study of Open, Impinging and Confined Hydrogen Jet Fires
Mar 2025
Publication
Hydrogen tanks used in transportation are equipped with thermal pressure relief devices to prevent a tank rapture in case of fire exposure. The opening of the pressure relief valve in such a scenario would likely result in an impinging and (semi-) confined hydrogen jet fire. Therefore twelve largescale experiments of hydrogen jet fires and one large-scale propane reference experiment have been conducted with various degrees of confinement orientations of the jet and distances from the nozzle to the impinging surface. Infrared and visible light videos temperatures heat fluxes and mass flow rate of hydrogen or propane were recorded in each experiment. It was found that the hydrogen flame can be visible under certain conditions. The main difference between an open impinging jet and an enclosed impinging jet fire is the extent of the high-temperature region in the steel target. During the impinging jet fire test 51% of the exposed target area exceeded 400C while 80% of the comparable area exceeded 400C during the confined jet fire test. A comparison was also made to an enclosed propane jet fire. The temperature distribution during the propane fire was more uniform than during the hydrogen jet fire and the localized hot spot in the impact region as seen in the hydrogen jet fires was not recorded.
Current Challenges to Achieving Mass-Market Hydrogen Mobility from the Perspective of Early Adopters in South Korea
Mar 2025
Publication
Hydrogen mobility is expected to be a crucial element in decarbonizing fossil fuel-based transportation. In South Korea hydrogen mobility has successfully formed an early market led by fuel cell passenger cars under strong support policies. Nevertheless the fuel cell vehicle (FCV) market is still in its infancy and current challenges must be overcome to achieve mass-market adoption. This study aims to identify the current challenges in the diffusion of FCVs in Korea. We identified the key challenges facing FCVs from a consumer perspective with data from the latest FCV customer survey. The data were applied to estimate ordered logit models of fuel cell car satisfaction and purchase intention. Significant challenges in Korea were identified from the perspective of vehicles infrastructure and renewable energy. Vehicle-related challenges include concerns about vehicle durability such as recalls and repairs and maintenance and repair costs. Infrastructure-related challenges include the fueling accessibility and fueling failures due to hydrogen refueling station facility failures or hydrogen supply problems. Challenges related to renewable energy include the low proportion of hydrogen from renewable sources. To achieve the large-scale diffusion of FCVs it is important to maintain support policies and attract new FCV demand such as long-distance heavy-duty vehicles.
Performance and Emissions Evaluation of a Turbofan Burner with Hydrogen Fuel
Mar 2025
Publication
This paper examines the changes in the performance level and pollutant emissions of a combustion chamber for turbofan engines. Two different fuels are compared: a conventional liquid fuel of the JET-A (kerosene) class and a hydrogen-based gaseous fuel. A turbofan engine delivering a 70 kN thrust at cruise conditions and 375 kN thrust at takeoff is considered. The comparison is carried out by investigating the combustion pattern with different boundary conditions the latter assigned along a typical flight mission. The calculations rely on a combined approach with a preliminary lumped parameter estimation of the engine performance and thermodynamic properties under different flight conditions (i.e. take-off climbing and cruise) and a CFD-based combustion simulation employing as boundary conditions the outputs obtained from the 0-D computations. The results are discussed in terms of performance thermal properties distributions throughout the combustor and of pollutant concentration at the combustor outflow. The results demonstrate that replacing the JET-A fuel with hydrogen does not affect the overall engine performance significantly and stable and efficient combustion takes place inside the burner although a different temperature regime is observable causing a relevant increase in thermal NO emissions.
A Multi-Optimization Method for Capacity Configuration of Hybrid Electrolyzer in a Stand-Alone Wind-Photovoltaic-Battery System
Mar 2025
Publication
The coupling of renewable energy sources with electrolyzers under standalone conditions significantly enhances the operational efficiency and improves the costeffectiveness of electrolyzers as a technologically viable and sustainable solution for green hydrogen production. To address the configuration optimization challenge in hybrid electrolyzer systems integrating alkaline water electrolysis (AWE) and proton exchange membrane electrolysis (PEME) this study proposes an innovative methodology leveraging the morphological analysis of Pareto frontiers to determine the optimal solutions under multi-objective functions including the hydrogen production cost and efficiency. Then the complementary advantages of AWE and PEME are explored. The proposed methodology demonstrated significant performance improvements compared with the single-objective optimization function. When contrasted with the economic optimization function the hybrid system achieved a 1.00% reduction in hydrogen production costs while enhancing the utilization efficiency by 21.71%. Conversely relative to the efficiency-focused optimization function the proposed method maintained a marginal 5.22% reduction in utilization efficiency while achieving a 6.46% improvement in economic performance. These comparative results empirically validate that the proposed hybrid electrolyzer configuration through the implementation of the novel optimization framework successfully establishes an optimal balance between the economy and efficiency of hydrogen production. Additionally a discussion on the key factors affecting the rated power and mixing ratio of the hybrid electrolyzer in this research topic is provided.
Is the Promotion Policy for Hydrogen Fuel Cell Vehicles Effective? Evidence from Chinese Cities
Mar 2025
Publication
China has emerged as a global leader in promoting new energy vehicles; however the impact of these efforts on the commercial vehicle sector remains limited. Hydrogen fuel cell vehicles are crucial for improving the environmental performance of commercial vehicles in China. This study evaluates the effectiveness of China’s Hydrogen fuel cell vehicle policies. Firstly an evaluation index system for hydrogen fuel cell vehicle policies is established quantifying the policy through two key metrics: policy comprehensiveness and policy synergy. Subsequently city-level data from 84 municipalities (2018-2022) are analyzed to assess policy impacts on hydrogen fuel cell vehicles adoption. The results show that both policy comprehensiveness and synergy significantly drive hydrogen fuel cell vehicle sales growth. Early sales figures also strongly influence current trends. Therefore promoting growth in hydrogen fuel cell vehicle sales can further enhance policy efforts while also accounting for the cumulative effects of initial promotional activities.
Potential Hydrogen Storage Complexes: Short-time Microwave-assisted Synthesis, Characterization, Thermodynamic, and International Relations
Feb 2025
Publication
This work included preparing and characterizing new platinum complexes with the ligand 345 -trimethoxybenzoic acid (TMB). The reactions were carried out using a n autoclave in microwave within 3 minutes only in an alkali medium of triethylamine where two moles of TMB reacted with one mole of platinum ion and two moles of PPh 3 or with one mole of diphosphines (Bis(diphenylphosphino)x; x=methane (dppm) ethane (dppe) propane (dppp) ferrocene (dppf)). The prepared complexes were characterized by measuring melting points and by the techniques of (C.H.N) molar electrical conductivity FT -IR and 1 H -NMR. The characterization results demonstrated that the TMB ligand behaves as a bidentate ligand through the oxygen atom of the carboxylic groups and its geometric shape is a square planar around the platinum ion. The complex formed with high yield ([Pt(TMB) 2(dppf)]) was used in hydrogen storage application. The storage isotherm showed that the complex has a high storage capacity of about 4.2 wt% at 61 bar under low temperature (77 K). The study showed that the thermodynamic functions were -0.67KJ/mol and -3.6 J/mol H 2 for enthalpy and entropy indicating the occurrence of physical hydrogen storage.
Experimental Investigation of a 10 kW Photovoltaic Power System and Lithium Battery Energy Storage System for Off-grid Electro-hydrogen Coupling
Feb 2025
Publication
The burgeoning adoption of photovoltaic and wind energy has limitations of volatility and intermittency which hinder their application. Electro-hydrogen coupling energy storage systems emerge as a promising solution to address this issue. This technology combines renewable energy power generation with hydrogen production through water electrolysis and hydrogen fuel cell power generation effectively enabling the consumption and peak load management of renewable energy sources. This paper presents a power system with a 10 kW photovoltaic system and lithium battery energy storage system designed for hydrogen-electric coupled energy storage validated through the physical experiments. The results demonstrate the system's effectiveness in mitigating the impact of randomness and volatility in photovoltaic power generation. Moreover the energy management system can adjust bus power based on load demand. Testing the system in the absence of photovoltaic power generation reveals its capability to supply energy to the load for three hours with a minimum operating load power of 3 kW even under weather conditions unsuitable for photovoltaic power generation. These findings showed the potential of electro-hydrogen coupling energy storage systems in addressing the challenges associated with renewable energy integration paving the way for a reliable and sustainable energy supply.
Assessing Uninstalled Hydrogen-Fuelled Retrofitted Turbofan Engine Performance
Mar 2025
Publication
Hydrogen as fuel in civil aviation gas turbines is promising due to its no-carbon content and higher net specific energy. For an entry-level market and cost-saving strategy it is advisable to consider reusing existing engine components whenever possible and retrofitting existing engines with hydrogen. Feasible strategies of retrofitting state-of-theart Jet A-1 fuelled turbofan engines with hydrogen while applying minimum changes to hardware are considered in the present study. The findings demonstrate that hydrogen retrofitted engines can deliver advantages in terms of core temperature levels and efficiency. However the engine operability assessment showed that retrofitting with minimum changes leads to a ~5% increase in the HP spool rotational speed for the same thrust at take-off which poses an issue in terms of certification for the HP spool rotational speed overspeed margin.
Hydrogen Storage Technology, and Its Challenges: A Review
Mar 2025
Publication
This paper aims to present an overview of the current state of hydrogen storage methods and materials assess the potential benefits and challenges of various storage techniques and outline future research directions towards achieving effective economical safe and scalable storage solutions. Hydrogen is recognized as a clean secure and costeffective green energy carrier with zero emissions at the point of use offering significant contributions to reaching carbon neutrality goals by 2050. Hydrogen as an energy vector bridges the gap between fossil fuels which produce greenhouse gas emissions global climate change and negatively impact health and renewable energy sources which are often intermittent and lack sustainability. However widespread acceptance of hydrogen as a fuel source is hindered by storage challenges. Crucially the development of compact lightweight safe and cost-effective storage solutions is vital for realizing a hydrogen economy. Various storage methods including compressed gas liquefied hydrogen cryocompressed storage underground storage and solid-state storage (material-based) each present unique advantages and challenges. Literature suggests that compressed hydrogen storage holds promise for mobile applications. However further optimization is desired to resolve concerns such as low volumetric density safety worries and cost. Cryo-compressed hydrogen storage also is seen as optimal for storing hydrogen onboard and offers notable benefits for storage due to its combination of benefits from compressed gas and liquefied hydrogen storage by tackling issues related to slow refueling boil-off and high energy consumption. Material-based storage methods offer advantages in terms of energy densities safety and weight reduction but challenges remain in achieving optimal stability and capacities. Both physical and material-based storage approaches are being researched in parallel to meet diverse hydrogen application needs. Currently no single storage method is universally efficient robust and economical for every sector especially for transportation to use hydrogen as a fuel with each method having its own advantages and limitations. Moreover future research should focus on developing novel materials and engineering approaches in order to overcome existing limitations provide higher energy density than compressed hydrogen and cryo-compressed hydrogen storage at 70 MPa enhance costeffectiveness and accelerate the deployment of hydrogen as a clean energy vector.
The Role of Hydrogen in Integrated Assessment Models: A Review of Recent Developments
Mar 2025
Publication
Hydrogen is emerging as a crucial energy source in the global effort to reduce dependence on fossil fuels and meet climate goals. Integrating hydrogen into Integrated Assessment Models (IAMs) is essential for understanding its potential and guiding policy decisions. These models simulate various energy scenarios assess hydrogen’s impact on emissions and evaluate its economic viability. However uncertainties surrounding hydrogen technologies must be effectively addressed in their modeling. This review examines how different IAMs incorporate hydrogen technologies and their implications for decarbonization strategies and policy development considering underlying uncertainties. We begin by analyzing the configuration of the hydrogen supply chain focusing on production logistics distribution and utilization. The modeling characteristics of hydrogen integration in 12 IAM families are explored emphasizing hydrogen’s growing significance in stringent climate mitigation scenarios. Results from the literature and the AR6 database reveal gaps in the modeling of the hydrogen supply chain particularly in storage transportation and distribution. Model characteristics are critical in determining hydrogen’s share within the energy portfolio. Additionally this study underscores the importance of addressing both parametric and structural uncertainties in IAMs which are often underestimated leading to varied outcomes regarding hydrogen’s role in decarbonization strategies.
The Global Yet Local Nature of Energy Imaginaries: The Cases of Dutch and Spanish Hydrogen Valleys
Mar 2025
Publication
Hydrogen valleys are envisaged (imagined) integrated industrial systems where hydrogen is produced stored and utilized. Here we show how hydrogen valleys as sociotechnical imaginaries are differentiated in terms of their specific configurations but homogenous in terms of reflecting the interests of large industrial fossil fuel suppliers and consumers. This path dependence is anticipated in sociotechnical transitions theory which emphasises the power of incumbents with vested interests to maintain basic templates or regimes of production and consumption. The simultaneously heterogeneous and homogenous nature of hydrogen valley imaginaries can be thought of as a form of glocalisation for which we draw on Roudometof's theory of glocalisation as involving the local refraction of diffusing global tendencies. To illustrate this we compare two hydrogen valleys one in the north of the Netherlands and one in southern Spain. In the north Netherlands the hydrogen valley imaginary comprises use of offshore windpower to electrolyse hydrogen for transport fuel and as feedstock to heavy industry in proximate regions including northern Germany and Belgium. This is consistent with existing gas distribution networks connecting industrial consumers. In the southern Spanish case the imaginary positions Spain as a major exporter of green hydrogen to the rest of Europe via onshore renewable electrolysis with export including via ocean tankers and chemical refining in existing infrastructure in Rotterdam. Overall the study explores empirically theoretically-informed themes concerning the interrelationship of mutually supportive local and global imaginaries – hence our term glocalised imaginaries.
Unveiling Cutting-edge Innovations Toward Green Vehicle Technology
Mar 2025
Publication
Environmental concerns and the imperative to achieve net-zero carbon emissions have driven the exploration of efficient and sustainable advancements in automobile technologies. The automotive sector is undergoing a significant transformation primarily propelled by the adoption of green fuel technologies. Among the most promising innovations are green vehicle technologies and the integration of non-conventional power sources including advanced batteries (featuring high energy density) fuel cells (capable of long-range energy generation with water as the sole byproduct) and super-capacitors (characterized by rapid charge–discharge capabilities). This article examines the performance efficiency and adaptability of these power sources for electric vehicles (EVs) providing a comprehensive comparison of their functional capabilities. Additionally it analyzes the integration of super-capacitors with batteries and fuel cells emphasizing the potential of hybrid systems to enhance vehicle performance optimize energy management and extend operational range. The role of power converters in such systems is also discussed underscoring their critical importance in ensuring efficient energy transfer and effective energy management.
Hybrid CSP-PV Combination to Enhance the Green Hydrogen Production in Morocco: Solar Technologies Evaluation and Techno-Economic Analysis
Mar 2025
Publication
With the fast-growing implementation of renewable energy projects Morocco is positioned as a pioneer in green and sustainable development aiming to achieve 52% of its electricity production from renewable sources by 2030. This ambitious target faces challenges due to the intermittent nature of renewable energy which impacts grid stability. Hydrogen offers a promising solution but identifying the most cost-effective production configurations is critical due to high investment costs. Despite the growing interest in renewable energy systems the techno-economic analysis of (Concentrating Solar PowerPhotovoltaic) CSP-PV hybrid configurations remain insufficiently explored. Addressing this gap is critical for optimizing hybrid systems to ensure cost-effective and scalable hydrogen production. This study advances the field by conducting a detailed technoeconomic assessment of CSP-PV hybrid systems for hydrogen production at selected locations in Morocco leveraging high-precision meteorological data to enhance the accuracy and reliability of the analysis. Three configurations are analyzed: (i) a standalone 10 MW PV plant (ii) a standalone 10 MW Stirling dish CSP plant and (iii) a 10 MW hybrid system combining 5 MW from each technology. Results reveal that hybrid CSP-PV systems with single-axis PV tracking achieve the lowest levelized cost of hydrogen (LCOH2) reducing costs by up to 11.19% and increasing hydrogen output by approximately 10% compared to non-tracking systems. Additionally the hybrid configuration boosts annual hydrogen production by 2.5–11.2% compared to PV-only setups and reduces production costs by ~25% compared to standalone CSP systems. These findings demonstrate the potential of hybrid solar systems for cost-efficient hydrogen production in regions with abundant solar resources.
Stakeholder and Techno-Economic Assessment of Iceland’s Green Hydrogen Economy
Mar 2025
Publication
Green hydrogen is a promising energy carrier for the decarbonization of hard-toabate sectors and supporting renewable energy integration aligning with carbon neutrality goals like the European Green Deal. Iceland’s abundant renewable energy and decarbonized electricity system position it as a strong candidate for green hydrogen production. Despite early initiatives its hydrogen economy has yet to significantly expand. This study evaluated Iceland’s hydrogen development through stakeholder interviews and a techno-economic analysis of alkaline and PEM electrolyzers. Stakeholders were driven by decarbonization goals economic opportunities and energy security but faced technological economic and governance challenges. Recommendations include building stakeholder confidence financial incentives and creating hydrogen-based chemicals to boost demand. Currently alkaline electrolyzers are more cost-effective (EUR 1.5–2.8/kg) than PEMs (EUR 2.1–3.6/kg) though the future costs for both could drop below EUR 1.5/kg. Iceland’s low electricity costs and high electrolyzer capacity provide a competitive edge. However this advantage may shrink as solar and wind costs decline globally particularly in regions like Australia. This work’s findings emphasize the need for strategic planning to sustain competitiveness and offer transferable insights for other regions introducing hydrogen into ecosystems lacking infrastructure.
Sustainable Hydrogen Production from Plastic Waste: Optimizing Pyrolysis for a Circular Economy
Mar 2025
Publication
: Hydrogen is a clean non-polluting fuel and a key player in decarbonizing the energy sector. Interest in hydrogen production has grown due to climate change concerns and the need for sustainable alternatives. Despite advancements in waste-to-hydrogen technologies the efficient conversion of mixed plastic waste via an integrated thermochemical process remains insufficiently explored. This study introduces a novel multi-stage pyrolysis-reforming framework to maximize hydrogen yield from mixed plastic waste including polyethylene (HDPE) polypropylene (PP) and polystyrene (PS). Hydrogen yield optimization is achieved through the integration of two water–gas shift reactors and a pressure swing adsorption unit enabling hydrogen production rates of up to 31.85 kmol/h (64.21 kg/h) from 300 kg/h of mixed plastic wastes consisting of 100 kg/h each of HDPE PP and PS. Key process parameters were evaluated revealing that increasing reforming temperature from 500 ◦C to 1000 ◦C boosts hydrogen yield by 83.53% although gains beyond 700 ◦C are minimal. Higher reforming pressures reduce hydrogen and carbon monoxide yields while a steam-to-plastic ratio of two enhances production efficiency. This work highlights a novel scalable and thermochemically efficient strategy for valorizing mixed plastic waste into hydrogen contributing to circular economy goals and sustainable energy transition.
Comparative Techno-environmental Analysis of Grey, Blue, Green/Yellow and Pale-blue Hydrogen Production
Mar 2025
Publication
Hydrogen holds immense potential to assist in the transition from fossil fuels to sustainable energy sources but its environmental impact depends on how it is produced. This study introduces the pale-blue hydrogen production method which is a hybrid approach utilizing both carbon capture and bioenergy inputs. Comparative life cycle analysis is shown for grey blue green and pale-blue hydrogen using cumulative energy demand carbon footprint (CF) and water footprint. Additionally the integration of solar-powered production methods (ground-based photovoltaic and floating photovoltaic (FPV) systems) is examined. The results showed blue hydrogen [steam methane reforming (SMR) + 56% carbon capture storage (CCS)] was 72% less green hydrogen gas membrane (GM) 75% less blue hydrogen [SMR+90%CCS] 88% less and green hydrogen FPV have 90% less CF compared to grey hydrogen. Pale-blue hydrogen [50%B-50%G] blue hydrogen (GM + plasma reactor(PR)) PV and blue hydrogen (GM + PR) FPV offset 26 48 and 52 times the emissions of grey hydrogen.
Rethinking "BLEVE Explosion" After Liquid Hydrogen Storage Tank Rupture in a Fire
Sep 2022
Publication
The underlying physical mechanisms leading to the generation of blast waves after liquid hydrogen (LH2) storage tank rupture in a fire are not yet fully understood. This makes it difficult to develop predictive models and validate them against a very limited number of experiments. This study aims at the development of a CFD model able to predict maximum pressure in the blast wave after the LH2 storage tank rupture in a fire. The performed critical review of previous works and the thorough numerical analysis of BMW experiments (LH2 storage pressure in the range 2.0e11.3 bar abs) allowed us to conclude that the maximum pressure in the blast wave is generated by gaseous phase starting shock enhanced by combustion reaction of hydrogen at the contact surface with heated by the shock air. The boiling liquid expanding vapour explosion (BLEVE) pressure peak follows the gaseous phase blast and is smaller in amplitude. The CFD model validated recently against high-pressure hydrogen storage tank rupture in fire experiments is essentially updated in this study to account for cryogenic conditions of LH2 storage. The simulation results provided insight into the blast wave and combustion dynamics demonstrating that combustion at the contact surface contributes significantly to the generated blast wave increasing the overpressure at 3 m from the tank up to 5 times. The developed CFD model can be used as a contemporary tool for hydrogen safety engineering e.g. for assessment of hazard distances from LH2 storage.
Photocatalytic Water Splitting for Large-scale Solar-to-chemical Energy Conversion and Storage
Dec 2024
Publication
Sunlight-driven water splitting allows renewable hydrogen to be produced from abundant and environmentally benign water. Large-scale societal implementation of this green fuel production technology within energy generation systems is essential for the establishment of sustainable future societies. Among various technologies photocatalytic water splitting using particulate semiconductors has attracted increasing attention as a method to produce large amounts of green fuels at low cost. The key to making this technology practical is the development of photocatalysts capable of splitting water with high solar-to-fuel energy conversion efficiency. Furthermore advances that enable the deployment of water-splitting photocatalysts over large areas are necessary as is the ability to recover hydrogen safely and efficiently from the produced oxyhydrogen gas. This lead article describes the key discoveries and recent research trends in photosynthesis using particulate semiconductors and photocatalyst sheets for overall water splitting via one-step excitation and two-step excitation (Z-scheme reactions) as well as for direct conversion of carbon dioxide into renewable fuels using water as an electron donor. We describe the latest advances in solar watersplitting and carbon dioxide reduction systems and pathways to improve their future performance together with challenges and solutions in their practical application and scalability including the fixation of particulate photocatalysts hydrogen recovery safety design of reactor systems and approaches to separately generate hydrogen and oxygen from water.
The Green Hydrogen Ambition and Implementation Gap
Jan 2025
Publication
Green hydrogen is critical for decarbonizing hard-to-electrify sectors but it faces high costs and investment risks. Here we defne and quantify the green hydrogen ambition and implementation gap showing that meeting hydrogen expectations will remain challenging despite surging announcements of projects and subsidies. Tracking 190 projects over 3 years we identify a wide 2023 implementation gap with only 7% of global capacity announcements fnished on schedule. In contrast the 2030 ambition gap towards 1.5 °C scenarios has been gradually closing as the announced project pipeline has nearly tripled to 422 GW within 3 years. However we estimate that without carbon pricing realizing all these projects would require global subsidies of US$1.3 trillion (US$0.8–2.6 trillion range) far exceeding announced subsidies. Given past and future implementation gaps policymakers must prepare for prolonged green hydrogen scarcity. Policy support needs to secure hydrogen investments but should focus on applications where hydrogen is indispensable.
No more items...