Publications
Integration of Underground Green Hydrogen Storage in Hybrid Energy Generation
May 2024
Publication
One of the major challenges in harnessing energy from renewable sources like wind and solar is their intermittent nature. Energy production from these sources can vary based on weather conditions and time of day making it essential to store surplus energy for later use when there is a shortfall. Energy storage systems play a crucial role in addressing this intermittency issue and ensuring a stable and reliable energy supply. Green hydrogen sourced from renewables emerges as a promising solution to meet the rising demand for sustainable energy addressing the depletion of fossil fuels and environmental crises. In the present study underground hydrogen storage in various geological formations (aquifers depleted hydrocarbon reservoirs salt caverns) is examined emphasizing the need for a detailed geological analysis and addressing potential hazards. The paper discusses challenges associated with underground hydrogen storage including the requirement for extensive studies to understand hydrogen interactions with microorganisms. It underscores the importance of the issue with a focus on reviewing the the various past and present hydrogen storage projects and sites as well as reviewing the modeling studies in this field. The paper also emphasizes the importance of incorporating hybrid energy systems into hydrogen storage to overcome limitations associated with standalone hydrogen storage systems. It further explores the past and future integrations of underground storage of green hydrogen within this dynamic energy landscape.
Expansion of Next-Generation Sustainable Clean Hydrogen Energy in South Korea: Domino Explosion Risk Analysis and Preventive Measures Due to Hydrogen Leakage from Hydrogen Re-Fueling Stations Using Monte Carlo Simulation
Apr 2024
Publication
Hydrogen an advanced energy source is growing quickly in its infrastructure and technological development. Urban areas are constructing convergence-type hydrogen refilling stations utilizing existing gas stations to ensure economic viability. However it is essential to conduct a risk analysis as hydrogen has a broad range for combustion and possesses significant explosive capabilities potentially leading to a domino explosion in the most severe circumstances. This study employed quantitative risk assessment to evaluate the range of damage effects of single and domino explosions. The PHAST program was utilized to generate quantitative data on the impacts of fires and explosions in the event of a single explosion with notable effects from explosions. Monte Carlo simulations were utilized to forecast a domino explosion aiming to predict uncertain events by reflecting the outcome of a single explosion. Monte Carlo simulations indicate a 69% chance of a domino explosion happening at a hydrogen refueling station if multi-layer safety devices fail resulting in damage estimated to be three times greater than a single explosion
A Systems-Level Study of Ammonia and Hydrogen for Maritime Transport
Aug 2023
Publication
An energy systems comparison of grid-electricity derived liquid hydrogen (LH2) and liquid ammonia (LNH3) is conducted to assess their relative potential in a low-carbon future. Under various voyage weather conditions their performance is analysed for use in cargo transport energy vectors for low-carbon electricity transport and fuel supply. The analysis relies on literature projections for technological development and grid decarbonisation towards 2050. Various voyages are investigated from regions such as North America (NA) Europe (E) and Latin America (LA) to regions projected to have a higher electricity and fuel grid carbon intensity (CI) (i.e. Asia Pacific Africa the Middle-East and the CIS). In terms of reducing the CI of electricity and fuel at the destination port use of LH2 is predicted to be favourable relative to LNH3 whereas LNH3 is favourable for low-carbon transport of cargo. As targeted by the International Maritime Organisation journeys of LNH3 cargo ships originating in NA E and LA achieve a reduction in volumetric energy efficiency design index (kg-CO2/m3 -km) of at least 70% relative to 2008 levels. The same targets can be met globally if LH2 is supplied to high CI regions for production of LNH3 for cargo transport. A future shipping system thus benefits from the use of both LH2 and LNH3 for different functions. However there are additional challenges associated with the use of LH2. Relative to LNH3 1.6 to 1.7 times the number of LH2 ships are required to deliver the same energy. Even when reliquefaction is employed their success is reliant on the avoidance of rough sea states (i.e. Beaufort Numbers >= 6) where fuel depletion rates during a voyage are impractical.
Techno-economic Modelling of AEM Electrolysis Systems to Identify Ideal Current Density and Aspects Requiring Further Research
Aug 2023
Publication
Hydrogen produced by water electrolysis using renewable energy is a sustainable alternative to steam reformation. As a nascent commercial technology performance and economic comparisons of anion exchange membrane water electrolyzers (AEMWE) to other electrolyzer technology benchmarks are not available. We present a techno-economic model estimating AEMWE's baseline levelized cost of hydrogen (LCOH) at $5.79/kg considering trade-offs between current density efficiency stability capital and operating costs. The optimal current density is 1.38 A cm2 balancing stability and performance for the lowest LCOH. Using low-cost electricity and larger stack sizes AEMWE could achieve $2/kg low-carbon hydrogen. Technical improvements targeting system efficiency particularly reducing overpotentials in hydrogen and oxygen evolution reactions could further reduce LCOH to $1.29/kg approaching U.S. Department of Energy cost targets. There are hopes this model could raise the profile of AEMWE's economic potential to produce green hydrogen and highlight its suitability for decarbonizing the energy sector.
Factors Driving the Decarbonisation of Industrial Clusters: A Rapid Evidence Assessment of International Experience
Sep 2023
Publication
Reducing industrial emissions to achieve net-zero targets by the middle of the century will require profound and sustained changes to how energy intensive industries operate. Preliminary activity is now underway with governments of several developed economies starting to implement policy and providing funding to support the deployment of low carbon infrastructure into high emitting industrial clusters. While clusters appear to offer the economies of scale and institutional capacity needed to kick-start the industrial transition to date there has been little systematic assessment of the factors that may influence the success of these initiatives. Drawing from academic and grey literature this paper presents a rapid evidence assessment of the approaches being used to drive the development of low carbon industrial clusters internationally. Many projects are still at the scoping stage but it is apparent that current initiatives focus on the deployment of carbon capture technologies alongside hydrogen as a future secondary revenue stream. This model of decarbonisation funnels investment into large coastal clusters with access to low carbon electricity and tends to obscure questions about the integration of these technologies with other decarbonisation interventions such as material efficiency and electrification. The technology focus also omits the importance that a favourable location and shared history and culture appears to have played in helping progress the most advanced initiatives; factors that cannot be easily replicated elsewhere. If clusters are to kick-start the low-carbon industrial transition then greater attention is needed to the social and political dimensions of this process and to a broader range of decarbonisation interventions and cluster types than represented by current projects.
A Control Strategy Study of a Renewable CCHP Energy System Integrated Hydrogen Production Unit - A Case Study of an Industrial Park in Jiangsu Province
Aug 2023
Publication
This paper describes a renewable energy system incorporating a hydrogen production unit to address the imbalance between energy supply and demand. The system utilizes renewable energy and hydrogen production energy to release energy to fill the power gap during peak demand power supply for demand peaking and valley filling. The system is optimized by analyzing marine predator behavioral logic and optimizing the system for maximum operational efficiency and best economic value. The results of the study show that after the optimized scheduling of the hydrogen production coupled renewable energy integrated energy system using the improved marine predator optimization algorithm the energy distribution of the whole energy system is good with the primary energy saving rate maintained at 24.75% the CO2 emission reduction rate maintained at 42.32% and the cost saving rate maintained at 0.78%. In addition this paper uses the Adaboost-BP prediction model to predictively analyze the system. The results show that as the price of natural gas increases the advantages of the combined hydrogen production renewable integrated energy system proposed in this paper become more obvious and the cumulative cost over three years is better than other related systems. These research results provide an important reference for the application and development of the system.
Techno-Economic Analysis of Hydrogen Production from Swine Manure Biogas via Steam Reforming in Pilot-Scale Installation
Sep 2023
Publication
The main purpose of this paper is the techno-economic analysis of hydrogen production from biogas via steam reforming in a pilot plant. Process flow modeling based on mass and energy balance is used to estimate the total equipment purchase and operating costs of hydrogen production. The pilot plant installation produced 250.67 kg/h hydrogen from 1260 kg/h biomethane obtained after purification of 4208 m3/h biogas using a heat and mass integration process. Despite the high investment cost the plant shows a great potential for biomethane reduction and conversion to hydrogen an attractive economic path with ecological possibilities. The conversion of waste into hydrogen is a possibility of increasing importance in the global energy economy. In the future such a plant will be expanded with a CO2 reduction module to increase economic efficiency and further reduce greenhouse gases in an economically viable manner.
Applying a 2 kW Polymer Membrane Fuel-Cell Stack to Building Hybrid Power Sources for Unmanned Ground Vehicles
Nov 2023
Publication
The novel constructions of hybrid energy sources using polymer electrolyte fuel cells (PEMFCs) and supercapacitors are developed. Studies on the energy demand and peak electrical power of unmanned ground vehicles (UGVs) weighing up to 100 kg were conducted under various conditions. It was found that the average electrical power required does not exceed ~2 kW under all conditions studied. However under the dynamic electrical load of the electric drive of mobile robots the short peak power exceeded 2 kW and the highest current load was in the range of 80–90 A. The electrical performance of a family of PEMFC stacks built in open-cathode mode was determined. A hydrogen-usage control strategy for power generation cleaning processes and humidification was analysed. The integration of a PEMFC stack with a bank of supercapacitors makes it possible to mitigate the voltage dips. These occur periodically at short time intervals as a result of short-circuit operation. In the second construction the recovery of electrical energy dissipated by a short-circuit unit (SCU) was also demonstrated in the integrated PEMFC stack and supercapacitor bank system. The concept of an energy-efficient mobile and environmentally friendly hydrogen charging unit has been proposed. It comprises (i) a hydrogen anion exchange membrane electrolyser (ii) a photovoltaic installation (iii) a battery storage (iv) a hydrogen buffer storage in a buffer tank (v) a hydrogen compression unit and (vi) composite tanks.
Hydrogen Station Prognostics and Health Monitoring Model
Aug 2023
Publication
Hydrogen fuel has shown promise as a clean alternative fuel aiding in the reduction of fossil fuel dependence within the transportation sector. However hydrogen refueling stations and infrastructure remains a barrier and are a prerequisite for consumer adoption of low-cost and low-emission fuel cell electric vehicles (FCEVs). The costs for FCEV fueling include both station capital costs and operation and maintenance (O&M) costs. Contributing to these O&M costs unscheduled maintenance is presently more costly and more frequent than for similar gasoline fueling infrastructure and is asserted to be a limiting factor in achieving FCEV customer acceptance and cost parity. Unscheduled maintenance leads to longer station downtime therefore causing an increase in missed fueling opportunities which forces customers to seek refueling at other operable stations that may be significantly farther away. This research proposes a framework for a hydrogen station prognostics health monitoring (H2S PHM) model that can minimize unexpected downtime by predicting the remaining useful life for primary hydrogen station components within the major station subsystems. The H2S PHM model is a data-driven statistical model based on O&M data collected from 34 retail hydrogen stations located in the U.S. The primary subcomponents studied are the dispenser compressor and chiller. The remaining useful life calculations are used to decide whether or not maintenance should be completed based on the prediction and expected future station use. This paper presents the background method and results for the H2S PHM model as for a means for improving station availability and customer confidence in FCEVs and hydrogen infrastructure
Alternatives for Transport, Storage in Port and Bunkering Systems for Offshore Energy to Green Hydrogen
Nov 2023
Publication
Offshore electricity production mainly by wind turbines and eventually floating PV is expected to increase renewable energy generation and their dispatchability. In this sense a significant part of this offshore electricity would be directly used for hydrogen generation. The integration of offshore energy production into the hydrogen economy is of paramount importance for both the techno-economic viability of offshore energy generation and the hydrogen economy. An analysis of this integration is presented. The analysis includes a discussion about the current state of the art of hydrogen pipelines and subsea cables as well as the storage and bunkering system that is needed on shore to deliver hydrogen and derivatives. This analysis extends the scope of most of the previous works that consider port-to-port transport while we report offshore to port. Such storage and bunkering will allow access to local and continental energy networks as well as to integrate offshore facilities for the delivery of decarbonized fuel for the maritime sector. The results of such state of the art suggest that the main options for the transport of offshore energy for the production of hydrogen and hydrogenated vectors are through direct electricity transport by subsea cables to produce hydrogen onshore or hydrogen transport by subsea pipeline. A parametric analysis of both alternatives focused on cost estimates of each infrastructure (cable/pipeline) and shipping has been carried out versus the total amount of energy to transport and distance to shore. For low capacity (100 GWh/y) an electric subsea cable is the best option. For high-capacity renewable offshore plants (TWh/y) pipelines start to be competitive for distances above approx. 750 km. Cost is highly dependent on the distance to land ranging from 35 to 200 USD/MWh.
Macroeconomic Analysis of a New Green Hydrogen Industry using Input-output Analysis: The Case of Switzerland
Sep 2023
Publication
Hydrogen is receiving increasing attention to decarbonize hard-to-abate sectors such as carbon intensive industries and long-distance transport with the ultimate goal of reducing greenhouse gas (GHG) emissions to net-zero. However limited knowledge exists so far on the socio-economic and environmental impacts for countries moving towards green hydrogen. Here we analyse the macroeconomic impacts both direct and indirect in terms of GDP growth employment generation and GHG emissions of green hydrogen production in Switzerland. The results are first presented in gross terms for the construction and operation of a new green hydrogen industry considering that all the produced hydrogen is allocated to passenger cars (final demand). We find that for each kg of green hydrogen produced the operational phase creates 6.0 5.9 and 9.5 times more GDP employment and GHG emissions respectively compared to the construction phase (all values in gross terms). Additionally the net impacts are calculated by assuming replacement of diesel by green hydrogen as fuel for passenger cars. We find that green hydrogen contributes to a higher GDP and employment compared to diesel while reducing GHG emissions. For instance in all the three cases namely ‘Equal Cost’ ‘Equal Energy’ and ‘Equal Service’ we find that a green hydrogen industry generates around 106% 28% and 45% higher GDP respectively; 163% 43% and 65% more full-time equivalent jobs respectively; and finally 45% 18% and 29% lower GHG emissions respectively compared to diesel and other industries. Finally the methodology developed in this study can be extended to other countries using country-specific data.
Design and Implementation of the Safety System of a Solar-driven Smart Micro-grid Comprising Hydrogen Production for Electricity & Cooling Co-generation
Sep 2023
Publication
This article presents a comprehensive description of the safety system of a real installation that comprises PV panels lithium-ion batteries an electrolyzer H2 storage a fuel cell and a barium chloride/ammonia thermochemical prototype for heat recovery and cooling production. Such a system allows for the increase of the overall efficiency of the H2 chain by exploiting the waste heat and transforming it into a cooling effect particularly useful in tropical regions like French Polynesia. The study provides a great deal of detail regarding practical aspects of the system implementation and a consistent reference to the relevant standards and regulations applicable to the subject matter. More specifically the study covers the ATEX classification of the site the safety features of each component the electrical power distribution the main safety instrumented system fire safety and the force ventilation system. The study also includes safety assessment and a section on lessons learned that could serve as guidance for future installations. In addition an extensive amount of technical data is readily available to the reader in repository (P&ID electrical diagrams etc.).
Mitigating Risks in Hydrogen-powered Transportation: A Comprehensive Risk Assessment for Hydrogen Refuelling Stations, Vehicles, and Garages
Oct 2024
Publication
Hydrogen is increasingly seen as a viable alternative to fossil fuels in transportation crucial to achieving net-zero energy goals. However the rapid expansion of hydrogen-powered transportation is outpacing safety standards posing significant risks due to limited operational experience involvement of new actors and lack of targeted guidelines. This study addresses the urgent need for a tailored comprehensive risk assessment framework. Using Structured What-If (SWIFT) and bowtie barrier analysis the research evaluates a hypothetical pilot project focusing on hydrogen refuelling stations vehicles and garages. The study identifies critical hazards and assesses the adequacy of current risk mitigation measures. Key findings reveal gaps in safety practices leading to 41 actionable steps and 5 key activities to help new actors manage hydrogen risks effectively. By introducing novel safety guidelines this research contributes to the development of safe hydrogen use and advances the understanding of hydrogen risks ensuring its sustainable integration into transportation systems.
Suitability and Energy Sustainability of Atmospheric Water Generation Technology for Green Hydrogen Production
Sep 2023
Publication
This research investigated the suitability of air-to-water generator (AWG) technology to address one of the main concerns in green hydrogen production namely water supply. This study specifically addresses water quality and energy sustainability issues which are crucial research questions when AWG technology is intended for electrolysis. To this scope a reasoned summary of the main findings related to atmospheric water quality has been provided. Moreover several experimental chemical analyses specifically focused on meeting electrolysis process requirements on water produced using a real integrated AWG system equipped with certified materials for food contact were discussed. To assess the energy sustainability of AWGs in green hydrogen production a case study was presented regarding an electrolyzer plant intended to serve as energy storage for a 2 MW photovoltaic field on Iriomote Island. The integrated AWG used for the water quality analyses was studied in order to determine its performance in the specific island climate conditions. The production exceeded the needs of the electrolyzer; thus the overproduction was considered for the panels cleaning due to the high purity of the water. Due to such an operation the efficiency recovery was more than enough to cover the AWG energy consumption. This paper on the basis of the quantity results provides the first answers to the said research questions concerning water quality and energy consumption establishing the potential of AWG as a viable solution for addressing water scarcity and enhancing the sustainability of electrolysis processes in green hydrogen production.
Carbon Footprint of Hydrogen-powered Inland Shipping: Impacts and Hotspots
Aug 2023
Publication
The shipping sector is facing increasing pressure to implement clean fuels and drivetrains. Especially hydrogen fuel cell drivetrains seem attractive. Although several studies have been conducted to assess the carbon footprint of hydrogen and its application in ships their results remain hard to interpret and compare. Namely it is necessary to include a variety of drivetrain solutions and different studies are based on various assumptions and are expressed in other units. This paper addresses this problem by offering a three-step meta-review of life cycle assessment studies. First a literature review was conducted. Second results from the literature were harmonized to make the different analyses comparable serving cross-examination. The entire life cycle of both the fuels and drivetrains were included. The results showed that the dominant impact was fuel use and related fuel production. And finally life-cycle hot spots have been identified by looking at the effect of specific configurations in more detail. Hydrogen production by electrolysis powered by wind has the most negligible impact. For this ultra-low carbon pathway the modes of hydrogen transport and the use of specific materials and components become relevant.
Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges
Feb 2024
Publication
The overuse of fossil fuels has caused a serious energy crisis and environmental pollution. Due to these challenges the search for alternative energy sources that can replace fossil fuels is necessary. Hydrogen is a widely acknowledged future energy carrier because of its nonpolluting properties and high energy density. To realize a hydrogen economy in the future it is essential to construct a comprehensive hydrogen supply chain that can make hydrogen a key energy carrier. This paper reviews the various technologies involved in the hydrogen supply chain encompassing hydrogen production storage transportation and utilization technologies. Then the challenges of constructing a hydrogen supply chain are discussed from techno-economic social and policy perspectives and prospects for the future development of a hydrogen supply chain are presented in light of these challenges.
The Impact of Water Injection and Hydrogen Fuel on Performance and Emissions in a Hydrogen/Diesel Dual-Fuel Engine
Nov 2024
Publication
As the need for alternative energy sources and reduced emissions grows proven technologies are often sidelined in favour of emerging solutions that lack the infrastructure for mass adoption. This study explores a transitional approach by modifying existing compression ignition engines to run on a hydrogen/diesel mixture for performance improvement utilising water injection to mitigate the drawbacks associated with hydrogen combustion. This approach can yield favourable results with current technology. In this modelling study ten hydrogen energy ratios (0–90%) and nine water injection rates (0–700 mg/cycle) were tested in a turbocharged Cummins ISBe 220 31 six-cylinder diesel engine. An engine experiment was conducted to validate the model. Key performance indicators such as power mechanical efficiency thermal efficiency indicated mean effective pressure (IMEP) and brake-specific fuel consumption (BSFC) were measured. Both water injection and hydrogen injection led to slight improvements in all performance metrics except BSFC due to hydrogen’s lower energy density. In terms of emissions CO and CO2 levels significantly decreased as hydrogen content increased with reductions of 94% and 96% respectively at 90% hydrogen compared to the baseline diesel. Water injection at peak rates further reduced CO emissions by approximately 40% though it had minimal effect on CO2 . As expected NOx (which is a typical challenge with hydrogen combustion and also with diesel engines in general) increased with hydrogen fuelling resulting in an approximately 70% increase in total NOx emissions over the range of 0–90% hydrogen energy. Similar increases were observed in NO and NO2 e.g. 90% and 57% increases with 90% hydrogen respectively. However water injection reduced NO and NO2 levels by up to 16% and 83% respectively resulting in a net decrease in NOX emissions in many combined cases not only with hydrogen injection but also when compared to baseline diesel.
Potential-risk and No-regret Options for Urban Energy System Design - A Sensitivity Analysis
Jan 2024
Publication
This study identifies supply options for sustainable urban energy systems which are robust to external system changes. A multi-criteria optimization model is used to minimize greenhouse gas (GHG) emissions and financial costs of a reference system. Sensitivity analyses examine the impact of changing boundary conditions related to GHG emissions energy prices energy demands and population density. Options that align with both financial and emission reduction and are robust to system changes are called “no-regret” options. Options sensitive to system changes are labeled as “potential-risk” options.<br/>There is a conflict between minimizing GHG emissions and financial costs. In the reference case the emission-optimized scenario enables a reduction of GHG emissions (-93%) but involves higher costs (+160%) compared to the financially-optimized scenario.<br/>No-regret options include photovoltaic systems decentralized heat pumps thermal storages electricity exchange between sub-systems and with higher-level systems and reducing energy demands through building insulation behavioral changes or the decrease of living space per inhabitant. Potential-risk options include solar thermal systems natural gas technologies high-capacity battery storages and hydrogen for buildiing energy supply.<br/>When energy prices rise financially-optimized systems approach the least-emission system design. The maximum profitability of natural gas technologies was already reached before the 2022 European energy crisis.
Numerical Simulations of the Critical Diameter and Flame Stability for the Hydrogen Jet Flames
Sep 2023
Publication
This study focuses on development of a CFD model able to simulate the experimentally observed critical nozzle diameter for hydrogen non-premixed flames. The critical diameter represents the minimum nozzle size through which a free jet flame will remain stable at all driving pressures. Hydrogen non-premixed flames will not blow-out at diameters equal to or greater than the critical diameter. Accurate simulation of this parameter is important for assessment of thermally activated pressure relief device (TPRD) performance during hydrogen blowdown from a storage tank. At TPRD diameters below the critical value there is potential for a hydrogen jet flame to blow-out as the storage tank vents potentially leading to hydrogen accumulation in an indoor release scenario. Previous experimental studies have indicated that the critical diameter for hydrogen is approximately 1 mm. In this study flame stability is considered across a range of diameters and overpressures from 0.1 mm to 2 mm and from 0.2 MPa to 20 MPa respectively. The impact of turbulent Schmidt number Sct which is the ratio of momentum diffusivity (kinematic viscosity) and mass diffusivity on the hydrogen concentration profile in the region near the nozzle exit and subsequent influence on critical diameter was investigated and discussed. For lower Sct values the enhanced mass mixing resulted in smaller predicted critical diameters. The use of value Sct=0.61 in the model demonstrated the best agreement with experimental values of the critical diameter. The model reproduced the critical diameter of 1 mm and then was applied to predict flame stability for under-expanded hydrogen jets.
Hopes and Fears for a Sustainable Energy Future: Enter the Hydrogen Acceptance Matrix
Feb 2024
Publication
Hydrogen-fuelled technologies for home heating and cooking may provide a low-carbon solution for decarbonising parts of the global housing stock. For the transition to transpire the attitudes and perceptions of consumers must be factored into policy making efforts. However empirical studies are yet to explore potential levels of consumer heterogeneity regarding domestic hydrogen acceptance. In response this study explores a wide spectrum of consumer responses towards the prospect of hydrogen homes. The proposed spectrum is conceptualised in terms of the ‘domestic hydrogen acceptance matrix’ which is examined through a nationally representative online survey conducted in the United Kingdom. The results draw attention to the importance of interest and engagement in environmental issues knowledge and awareness of renewable energy technologies and early adoption potential as key drivers of domestic hydrogen acceptance. Critically strategic measures should be taken to convert hydrogen scepticism and pessimism into hope and optimism by recognising the multidimensional nature of consumer acceptance. To this end resources should be dedicated towards increasing the observability and trialability of hydrogen homes in proximity to industrial clusters and hubs where the stakes for consumer acceptance are highest. Progress towards realising a net-zero society can be supported by early stakeholder engagement with the domestic hydrogen acceptance matrix.
No more items...