Publications
Hydrogen Storage Potential in Underground Coal Gasification Cavities: A MD Simulation of Hydrogen Adsorption and Desorption Behavior in Coal Nanopores
May 2025
Publication
Underground hydrogen storage (UHS) in geological formations presents a viable option for long-term large-scale H2 storage. A physical coal model was constructed based on experimental tests and a MD simulation was used to investigate the potential of UHS in underground coal gasification (UCG) cavities. We investigated H2 behavior under various conditions including temperatures ranging from 278.15 to 348.15 K pressures in the range of 5–20 MPa pore sizes ranging from 1 to 20 nm and varying water content. We also examined the competitive adsorption dynamics of H2 in the presence of CH4 and CO2 . The findings indicate that the optimal UHS conditions for pure H2 involve low temperatures and high pressures. We found that coal nanopores larger than 7.5 nm optimize H2 diffusion. Additionally higher water content creates barriers to hydrogen diffusion due to water molecule clusters on coal surfaces. The preferential adsorption of CO2 and CH4 over H2 reduces H2 -coal interactions. This work provides a significant understanding of the microscopic behaviors of hydrogen in coal nanopores at UCG cavity boundaries under various environmental factors. It also confirms the feasibility of underground hydrogen storage (UHS) in UCG cavities.
Effect of Hydrogen Co-Firing with Natural Gas on Thermal Efficiency and CO2 Emissions in Gas Turbine Power Plant
Mar 2025
Publication
The Indonesian government has established an energy transition policy for decarbonization including the target of utilizing hydrogen for power generation through a co-firing scheme. Several studies indicate that hydrogen co-firing in gas-fired power plants can reduce CO2 emissions while improving efficiency. This study develops a simulation model for hydrogen co-firing in an M701F gas turbine at the Cilegon power plant using Aspen HYSYS. The impact of different hydrogen volume fractions (5–30%) on thermal efficiency and CO2 emissions is analyzed under varying operational loads (100% 75% and 50%). The simulation results show an increase in thermal efficiency with each 5% increment in the hydrogen fraction averaging 0.32% at 100% load 0.34% at 75% load and 0.37% at 50% load. The hourly CO2 emission rate decreased by an average of 2.16% across all operational load variations for every 5% increase in the hydrogen fraction. Meanwhile the average reduction in CO2 emission intensity at the 100% 75% and 50% operational loads was 0.017 0.019 and 0.023 kg CO2/kWh respectively.
Exploring Natural Hydrogen Potential in Alberta's Western Canadian Sedimentary Basin
Oct 2025
Publication
Natural hydrogen or "white hydrogen" has recently garnered attention as a viable and cost-effective energy resource due to its low-carbon footprint and high energy density positioning it as a key contributor to the transition towards a sustainable low-carbon energy system. This study represents Alberta’s first systematic effort to evaluate natural hydrogen potential in the province using publicly available geological geospatial and gas composition datasets. By mapping hydrogen occurrences against key geological features in the Western Canadian Sedimentary Basin (WCSB) we identify regions with strong geological potential for natural hydrogen generation migration and accumulation while addressing data uncertainties. Within the WCSB formations like the Montney Cardium Bearpaw Manville Belly River McMurray and Lea Park are identified as zones likely for hydrogen generation by prominent mechanisms including hydrocarbon decomposition water-rock reactions with iron-rich sediments and organic pyrolysis. Formation proximity to the underlying Canadian Shield may also suggest potential for basement-derived hydrogen migration via deep-seated faults and shear zones. Salt deposits (Elk Point Group - Prairie evaporites Cold Lake and Lotsberg) and deep shales (e.g. Kaskapau Lea Park Wapiabi) provide effective cap rock potential while reservoirs like porous sandstone (e.g. Dunvegan Spirit River Cardium) and fractured carbonate (e.g. Keg River) formations offer favorable accumulation conditions. Hydrogen occurrences in relation to geological features identify Southern Eastern and West-Central plains as prominent natural Hydrogen generation and accumulation areas. Alberta’s established energy infrastructure as well as subsurface expertise positions it as a potential leader in natural hydrogen exploration. As Alberta’s first systematic investigation this study provides a preliminary assessment of natural hydrogen potential and outlines recommended next steps to guide future exploration and research. Targeted research on specific generation and accumulation mechanisms and source identification through isotopic and geochemical fingerprinting will be crucial for exploration de-risking and viability assessment in support of net-zero emission initiatives.
Enhancing Durability of Raney-Ni-based Electrodes for Hydrogen Evolution Reaction in Alkaline Water Electrolysis: Mitigating Reverse Current and H2 Bubble Effects using a NiP Protective Layer
Oct 2025
Publication
Raney Ni (R-Ni) electrodes are used as hydrogen evolution reaction catalysts in alkaline water electrolysis (AWE). However they are not durable because of reverse current-induced oxidation and catalyst damage from H2 bubbles. Reverse current triggers Ni phase changes and mechanical stress leading to catalyst delamination while bubbles block active sites increase resistance and cause structural damage. These issues have been addressed individually but not simultaneously. In this study a P-doped Ni (NiP) protective layer is electroplated on the R-Ni electrode to overcome both challenges. The NiP protective layer inhibits oxidation reducing Ni phase changes and preventing catalyst delamination. Enhanced surface wettability minimizes nucleation and facilitates faster bubble detachment reducing bubble-related damage. Electrochemical tests reveal that NiP/R-Ni exhibits a 26 mV lower overpotential than that of R-Ni at −400 mA cm−2 indicating higher catalytic activity. Accelerated degradation tests (ADTs) demonstrate the retention of the NiP/R-Ni catalyst layer with only a 25 mV increase in overpotential after ADT which is significantly less than that of R-Ni. Real-time impedance analysis reveals the presence of small rapidly detaching bubbles on NiP/R-Ni. Overall the NiP protective layer on R-Ni simultaneously mitigates both reverse current and H2 bubble-induced degradation improving catalytic activity and durability during AWE.
A Configuration and Scheduling Optimization Method for Integrated Energy Systems Considering Massive Flexible Load Resources
Mar 2025
Publication
Introduction: With the increasing demand for energy utilization efficiency and minimization of environmental carbon emissions in industrial parks optimizing the configuration and scheduling of integrated energy systems has become crucial. This study focuses on integrated energy systems with massive flexible load resources aiming to maximize energy utilization efficiency while reducing environmental impact. Methods: To model the uncertainties in wind and solar power outputs we employed three-parameter Weibull distribution models and Beta distribution models. Flexible loads were categorized into three types to match different electricity consumption patterns. Additionally an enhanced Kepler Optimization Algorithm (EKOA) was proposed incorporating chaos mapping and adaptive learning rate strategies to improve search scope convergence speed and solution efficiency. The effectiveness of the proposed optimization scheduling and configuration methods was validated through a case study of an industrial park located in a coastal area of southeastern China. Results: The results show that using three-parameter Weibull distribution models and Beta distribution models more accurately reflects the variations in actual wind speeds and solar irradiance levels achieving peak shaving and valley filling effects and enhancing renewable energy utilization. The EKOA algorithm significantly reduced curtailment rates of wind and solar power generation while achieving substantial economic benefits. Compared with other operation modes of hydrogen the daily average cost is reduced by 12.92% and external electricity purchases are reduced by an average of 20.2 MW h/day. Discussion: Although our approach shows potential in improving energy utilization efficiency and economic gains this paper only considered hydrogen energy for single-use pathways and did not account for the economic benefits from selling hydrogen in the market. Future research will further incorporate hydrogen demand response mechanisms and optimize the output of integrated energy systems from the perspective of spot markets. These findings provide valuable references for relevant engineering applications.
Gamified Learning for Sustainability: An Innovative Approach to Enhance Hydrogen Literacy and Environmental Awareness Through Simulation-Based Education
Mar 2025
Publication
The transition to sustainable energy systems presents a critical challenge for the 21st century necessitating both technological advancements and transformative educational strategies to foster awareness and knowledge. Hydrogen technologies are pivotal for decarbonization yet public understanding and acceptance remain limited. This study introduces and evaluates a novel gamified educational framework uniquely integrating simulationbased learning collaborative problem-solving and adaptive instructional scaffolding to enhance hydrogen literacy and sustainability awareness. Unlike traditional pedagogical approaches this method actively engages learners in real-world decision-making scenarios bridging the gap between theoretical knowledge and practical applications. This study involved adolescents aged 13–15 from two distinct educational and cultural contexts one in Europe and one in the Middle East. A pre–post study design assessed knowledge acquisition gamification engagement and environmental awareness shifts. Findings reveal statistically significant improvements in technical knowledge and strong positive perceptions of gamified learning as an effective sustainability education tool across both cultural groups (Europe and the Middle East). Variations in engagement across cultural contexts suggest the need for adaptive context-sensitive educational frameworks. While the findings indicate significant short-term knowledge gains this study does not assess long-term knowledge retention which remains an important area for future research. This research contributes to sustainability education by demonstrating how strategically designed gamification can foster behavioral engagement enhance environmental literacy and support the global energy transition agenda. This study offers a pioneering perspective on integrating interactive learning methodologies to cultivate sustainability competencies among younger generations.
Integrated Energy Storage and Transmission Solutions: Evaluating hydrogen, Ammonia, and Compressed Air for Offshore Wind Power Delivery
Mar 2025
Publication
This paper introduces a novel dual-purpose transmission system that integrates power transmission and energy storage using hydrogen ammonia and compressed air—an area largely unexplored in the literature. Unlike conventional cable transmission which requires separate storage infrastructure the proposed approach leverages the transmission medium itself as an energy storage solution enhancing system efficiency and reducing costs. By incorporating a defined storage allocation factor this study examines the delivery of offshore-generated power to onshore locations calculating the necessary media flow rates and evaluating the required transportation infrastructure including tunnels and pipelines. A comparative cost-effectiveness analysis is conducted to determine optimal conditions under which storage-integrated transmission outperforms conventional cable transmission. Various transmission powers storage fractions pressures and distances are analysed to assess feasibility and economic viability. The findings indicate that for a 75 % storage allocation factor compressed air can transmit up to 450 MW over 300 km more cost-effectively than cables while hydrogen enables 230 MW transmission beyond 310 km. Ammonia proves to be the most efficient facilitating the transmission of over 2000 MW across distances exceeding 140 km at a lower cost than cables all without requiring onshore storage. Moreover for a 500-km transmission line compressed air hydrogen and ammonia can store the equivalent of 62 58 and 152 h of wind farm output respectively significantly reducing the need for additional onshore storage. This study fills a critical research gap by optimizing offshore wind power delivery through an innovative cost-effective and scalable transmission and storage approach.
Synergies Between Green Hydrogen and Renewable Energy in South Africa
Aug 2025
Publication
South Africa has excellent conditions for renewable energy generation making it well placed to produce green hydrogen for both domestic use and export. In building a green hydrogen economy around export markets it will face competition from countries with equivalent or better resources and/or that are located closer to export markets (e.g. in North Africa and the Middle East) or have lower capital costs (developed markets like Australia and Canada). South Africa however has an extensive energy system with unserved electricity demand. The ability to trade electricity with the national grid (feeding into the grid during times of peak dedicated renewable energy supply and extracting from the grid during times of low dedicated renewable energy availability) could reduce the cost of producing green hydrogen by as much as 10–25 %. This paper explores the opportunity for South African green hydrogen producers presented by the electricity supply crisis that has been ongoing since 2007. It highlights the potential for a mutually reinforcing growth cycle between renewable energy and green hydrogen to be established which will contribute not only to the mitigation of greenhouse gas emissions but to the local economy and broader society.
Progress on Research and Application of Energy and Power Systems for Inland Waterway Vessels: A Case Study of the Yangtze River in China
Aug 2025
Publication
This study focuses on the power systems of inland waterway vessels in Chinese Yangtze River systematically outlining the low-carbon technology pathways for different power system types. A comparative analysis is conducted on the technical feasibility emission reduction potential and economic viability of LNG methanol ammonia pure electric and hybrid power systems revealing the bottlenecks hindering the large-scale application of each system. Key findings indicate that: (1) LNG and methanol fuels offer significant short-term emission reductions in internal combustion engine power systems yet face constraints from methane slip and insufficient green methanol production capacity respectively; (2) ammonia enables zero-carbon operations but requires breakthroughs in combustion stability and synergistic control of NOX; (3) electric vessels show high decarbonization potential but battery energy density limits their range while PEMFC lifespan constraints and SOFC thermal management deficiencies impede commercialization; (4) hybrid/range-extended power systems with superior energy efficiency and lower retrofitting costs serve as transitional solutions for existing vessels though challenged by inadequate energy management strategies and multi-equipment communication protocol interoperability. A phased transition pathway is proposed: LNG/methanol engines and hybrid systems dominate during 2025–2030; ammonia-powered systems and solid-state batteries scale during 2030–2035; post-2035 operations achieve zero-carbon shipping via green hydrogen/ammonia.
Hydrogen Mole Fraction Distributions Inferred from Inverse-LIF Measurements on High-pressure Hydrogen Injections
Oct 2025
Publication
The mixing of fuel and ambient in a compression-igniting combustion engine is a critical process affecting ignition delay burn duration and cycle efficiency. This study aims to visualize and quantify hydrogen mole fraction distributions resulting from high-pressure (10 MPa) hydrogen injections into an inert pressurized (1 MPa) nitrogen ambient at room temperature. Using inverse planar laser-induced fluorescence in which the ambient rather than the jet is seeded with a fluorescent tracer two different injectors (nozzle hole sizes of 0.55 and 0.65 mm) and two different tracers (toluene and acetone) are compared. It is concluded that a non-intensified CCD camera for fluorescence detection is superior to the use of an intensified one due to the linear behavior on contrast. The two injectors produce similar jets in terms of jet penetration and angle. Jet penetration derived from inverse-LIF measurements agree with Schlieren data on nominally the same jets but the hydrogen mole fractions are generally 2.5-5 percent lower than those obtained by planar Rayleigh scattering. Quasi-steadiness and self-similarity were found for ensemble-averaged mole fraction distributions of both injectors which aligns with theory and highlights the importance of using RANS simulations or time-averaged experiments for future comparisons.
Multi-Fuel SOFC System Modeling for Ship Propulsion: Comparative Performance Analysis and Feasibility Assessment of Ammonia, Methanol and Hydrogen as Marine Fuels
Oct 2025
Publication
To reduce fossil fuel dependency in shipping adopting alternative fuels and innovative propulsion systems is essential. Solid Oxide Fuel Cells (SOFC) powered by hydrogen carriers represent a promising solution. This study investigates a multi-fuel SOFC system for ocean-going vessels capable of operating with ammonia methanol or hydrogen thus enhancing bunkering flexibility. A thermodynamic model is developed to simulate the performance of a 3 kW small-scale system subsequently scaling up to a 10 MW configuration to meet the power demand of a container ship used as the case study. Results show that methanol is the most efficient fueling option reaching a system efficiency of 58% while ammonia and hydrogen reach slightly lower values of about 55% and 51% respectively due to higher auxiliary power consumption. To assess technical feasibility two installation scenarios are considered for accommodating multiple fuel tanks. The first scenario seeks the optimal fuel share equivalent to the diesel tank’s chemical energy (17.6 GWh) minimizing mass increase. The second scenario optimizes the fuel share within the available tank volume (1646 m3 ) again minimizing mass penalties. In both cases feasibility results have highlighted that changes are needed in terms of cargo reduction equal to 20.3% or alternatively in terms of lower autonomy with an increase in refueling stops. These issues can be mitigated by the benefits of increased bunkering flexibility
Quantifying Natural Hydrogen Generation Rates and Volumetric Potential in Onshore Serpentinization
Mar 2025
Publication
This study explores the generation of natural hydrogen through the serpentinization of onshore ultramafic rocks highlighting its potential as a clean energy resource. By investigating critical factors such as mineral composition temperature and pressure the research develops an empirical model using multiple regression analysis to predict hydrogen generation rates under varying geological conditions. A novel five-stage volumetric calculation methodology is introduced to estimate hydrogen production from ultramafic rock bodies. The application of this framework to the Giles Complex an ultramafic-mafic intrusion in Australia suggests a hydrogen generation potential of approximately 2.24 × 1013 kg of hydrogen through partial serpentinization. This estimate is based on the assumed mineral composition depth and temperature conditions within the intrusion which influence the extent of serpentinization reactions. The findings demonstrate the significant potential of ultramafic complexes for natural hydrogen production and provide a foundation for advancing natural hydrogen exploration refining predictive models and supporting sustainable energy development.
The Link Between Microstructural Heterogeneity and Hydrogen Redistribution
Jul 2025
Publication
Green hydrogen is likely to play a major role in decarbonising the aviation industry. It is crucial to understand the effects of microstructure on hydrogen redistribution which may be implicated in the embrittlement of candidate fuel system metals. We have developed a multiscale finite element modelling framework that integrates micromechanical and hydrogen transport models such that the dominant microstructural effects can be efficiently accounted for at millimetre length scales. Our results show that microstructure has a significant effect on hydrogen localisation in elastically anisotropic materials which exhibit an interesting interplay between microstructure and millimetre-scale hydrogen redistribution at various loading rates. Considering 316L stainless steel and nickel a direct comparison of model predictions against experimental hydrogen embrittlement data reveals that the reported sensitivity to loading rate may be strongly linked with rate-dependent grain scale diffusion. These findings highlight the need to incorporate microstructural characteristics in hydrogen embrittlement models.
Modeling and Simulation of Coupled Biochemical and Two-phase Compositional Flow in Underground Hydrogen Storage
Aug 2025
Publication
Integrating microbial activity into underground hydrogen storage models is crucial for simulating longterm reservoir behavior. In this work we present a coupled framework that incorporates bio-geochemical reactions and compositional flow models within the Matlab Reservoir Simulation Toolbox (MRST). Microbial growth and decay are modeled using a double Monod formulation with populations influenced by hydrogen and carbon dioxide availability. First a refined Equation of State (EoS) is employed to accurately capture hydrogen dissolution thereby improving phase behavior and modeling of microbial activity. The model is then discretized using a cell-centered finite-volume method with implicit Euler time discretization. A fully coupled fully implicit strategy is considered. Our implementation builds upon MRST’s compositional module by incorporating the Søreide–Whitson EoS microbial reaction kinetics and specific effects such as bio-clogging and molecular diffusion. Through a series of 1D 2D and 3D simulations we analyze the effects of microbialinduced bio-geochemical transformations on underground hydrogen storage in porous media.These results highlight that accounting for bio-geochemical effects can substantially impact hydrogen loss purity and overall storage performance.
Comprehensive Review of Emerging Trends in Thermal Energy Storage Mechanisms, Materials and Applications
Aug 2025
Publication
Thermal energy storage (TES) technologies are emerging as key enablers of sustainable energy systems by providing flexibility and efficiency in managing thermal resources across diverse applications. This review comprehensively examines the latest advancements in TES mechanisms materials and structural designs including sensible heat latent heat and thermochemical storage systems. Recent innovations in nano-enhanced phase change materials (PCMs) hybrid TES configurations and intelligent system integration are highlighted. The role of advanced computational methods such as digital twins and AI-based optimization in enhancing TES performance is also explored. Applications in renewable energy systems industrial processes district heating networks and green hydrogen production are discussed along with associated challenges and future research directions. This review aims to synthesize current knowledge while identifying pathways for accelerating the development and practical deployment of next-generation TES technologies.
Feasibility of Using Rainwater for Hydrogen Production via Electrolysis: Experimental Evaluation and Ionic Analysis
Oct 2025
Publication
This study evaluates the feasibility of employing rainwater as an alternative feedstock for hydrogen production via electrolysis. While conventional systems typically rely on high-purity water—such as deionized or distilled variants—these can be cost-prohibitive and environmentally intensive. Rainwater being naturally available and minimally treated presents a potential sustainable alternative. In this work a series of comparative experiments was conducted using a proton exchange membrane electrolyzer system operating with both deionized water and rainwater collected from different Austrian locations. The chemical composition of rainwater samples was assessed through inductively coupled plasma ion chromatography and visual rapid tests to identify impurities and ionic profiles. The electrolyzer’s performance was evaluated under equivalent operating conditions. Results indicate that rainwater in some cases yielded comparable or marginally superior efficiency compared to deionized water attributed to its inherent ionic content. The study also examines the operational risks linked to trace contaminants and explores possible strategies for their mitigation.
Hydrogen-Based Solutions for Enhancing Frequency Stability in Renewable Energy-Integrated Power Systems
Mar 2025
Publication
With the increasing adoption of renewable energy sources such as solar and wind power it is essential to achieve carbon neutrality. However several shortcomings including their intermittence pose significant challenges to the stability of the electrical grid. This study explores hydrogen-based technologies such as fuel cells and water electrolysis systems as an effective solution to improve frequency stability and address the problems of power grid reliability. Using power system analysis programs modeling and simulations performed on IEEE-25 Bus and Jeju Island systems demonstrate the potential of these technologies to mitigate reductions reduce transmission constraints and stabilize frequencies. The results show that hydrogen-based systems are important factors enabling sustainable energy transition.
Market Readiness Analysis: Expected Uptake of Alternative Fuel Heavy-duty Vehicles until 2030 and their Corresponding Infrastructure Needs
Jun 2025
Publication
This report assesses the market readiness of zero-emission heavy-duty vehicles and the required infrastructure to meet the 45% emission reduction targets set by the revised CO2 standards by 2030. Achieving these goals requires the widespread adoption of zero-emission vehicles and a robust recharging and hydrogen refuelling infrastructure Three main aspects are investigated: the market readiness of the vehicles considering both the demand and supply side the corresponding infrastructure requirements and the barriers. Building on the inputs of the stakeholders a ‘study scenario’ is developed. This scenario shows a concrete picture of what the zero-emission heavy-duty vehicle fleet and its infrastructure requirement could look like by 2030. There are however key barriers that need to be overcome such as high total cost of ownership limited electricity grid capacity lengthy permitting processes and uncertainty in hydrogen availability and pricing. Stakeholders also emphasize the importance of policy drivers such as emissions trading systems and tolling and tax reforms to stimulate demand. In conclusion achieving the 2030 targets demands a coordinated approach involving manufacturers operators and policymakers to address infrastructure gaps market barriers and policy incentives ensuring the transition to a zero-emission HDV fleet.
A Study on Thermal Management Systems for Fuel-Cell Powered Regional Aircraft
Jun 2025
Publication
This work studies the feasibility of integrating a hydrogen-powered propulsion system in a regional aircraft at the conceptual design level. The developed system consists of fuel cells which will be studied at three technological levels and batteries also studied for four hybridization factors (X = 0 0.05 0.10 0.20). Hydrogen can absorb great thermal loads since it is stored in the tank at cryogenic temperatures and is used as fuel in the fuel cells at around 80 ◦C. Taking advantage of this characteristic two thermal management system (TMS) architectures were developed to ensure the proper functioning of the aircraft during the designated mission: A1 which includes a vapor compression system (VCS) and A2 which omits it for a simpler design. The models were developed in MATLAB® and consist of different components and technologies commonly used in such systems. The analysis reveals that A2 due to the exclusion of the VCS outperformed A1 in weight (10–23% reduction) energy consumption and drag. A1’s TMS required significantly more energy due to the VCS compressor. Hybridization with batteries increased system weight substantially (up to 37% in A2) and had a greater impact on energy consumption in A2 due to additional fan work. Hydrogen’s heat sink capacity remained underutilized and the hydrogen tank was deemed suitable for a non-integral fuselage design. A2 had the lowest emissions (10–20% lower than A1 for X = 0) but hybridization negated these benefits significantly increasing emissions in pessimistic scenarios.
Hydrogen Storage Potential of Unlined Granite Rock Caverns: Experimental and Numerical Investigations on Geochemical Interactions
Jun 2025
Publication
Underground Hydrogen Storage (UHS) offers a promising solution for large-scale energy storage yet suitable geological formations are often scarce. Unlined rock caverns (URCs) constructed in crystalline rocks like granite present a novel alternative particularly in regions where salt caverns or porous media are unsuitable. Despite their potential URCs remain largely unexplored for hydrogen storage. This study addresses this gap by providing one of the first comprehensive investigations into the geochemical interactions between hydrogen and granite host rock using a combined experimental and numerical approach. Granite powder samples were exposed to hydrogen and inert gas (N₂) in brine at room temperature and 5 MPa pressure for 14 weeks. Results showed minimal reactivity of silicate minerals with hydrogen indicated by negligible differences in elemental concentrations between H₂ and N₂ atmospheres. A validated geochemical model demonstrated that existing thermodynamic databases can accurately predict silicate‑hydrogen interactions. Additionally a kinetic batch model was developed to simulate long-term hydrogen storage under commercial URC conditions at Haje. The model predicts a modest 0.65 % increase in mineral volume over 100 years due to mineral precipitation which decreases net porosity and potentially enhances hydrogen containment by limiting leakage pathways. These findings support the feasibility of granite URCs for UHS providing a stable long-term storage option in regions lacking traditional geological formations. By filling a critical knowledge gap this study advances scalable hydrogen storage solutions contributing to the development of resilient renewable energy infrastructure.
No more items...