Publications
Risk Assessment for Hydrogen Codes and Standards
Sep 2005
Publication
The development and promulgation of codes and standards are essential to establish a market-receptive environment for commercial hydrogen-based products and systems. The focus of the U.S. Department of Energy (DOE) is to conduct the research and development (R&D) needed to strengthen the scientific basis for technical requirements incorporated in national and international standards codes and regulations. In the U.S. the DOE and its industry partners have formed a Codes and Standards Tech Team (CSTT) to help guide the R&D. The CSTT has adopted an R&D Roadmap to achieve a substantial and verified database of the properties and behaviour of hydrogen and the performance characteristics of emerging hydrogen technology applications sufficient to enable the development of effective codes and standards for these applications. However to develop a more structured approach to the R&D described above the CSTT conducted a workshop on Risk Assessment for Hydrogen Codes and Standards in March 2005. The purpose of the workshop was to attain a consensus among invited experts on the protocols and data needed to address the development of risk-informed standards codes and regulations for hydrogen used as an energy carrier by consumers. Participants at the workshop identified and assessed requirements methodologies and applicability of risk assessment (RA) tools to develop a framework to conduct RA activities to address for example hydrogen fuel distribution delivery on-site storage and dispensing and hydrogen vehicle servicing and parking. The CSTT was particularly interested in obtaining the advice of RA experts and representatives of standards and model code developing organizations and industry on how data generated by R&D can be turned into information that is suitable for hydrogen codes and standards development. The paper reports on the results of the workshop and the RA activities that the DOE’s program on hydrogen safety codes and standards will undertake. These RA activities will help structure a comprehensive R&D effort that the DOE and its industry partners are undertaking to obtain the data and conduct the analysis and testing needed to establish a scientific and technical basis for hydrogen standards codes and regulations.
Effect of Carbon Dioxide, Argon and Hydrocarbon Fuels on the Stability of Hydrogen Jet Flames
Sep 2005
Publication
Experimental studies were carried out to examine the lift-off and blow-out stability of H2/CO2 H2/Ar H2/C3H8 and H2/CH4 jet flames. The experiments were carried out using a burner with a 2mm inner diameter. The flame structures were recorded by direct filming and also by a schlieren apparatus. The experiments showed that the four gases affected the lift-off and blow-out stability of the hydrogen differently. The experiments showed that propane addition to an initially attached flame always produced lifted flame and the flame was blown out at higher jet velocity. The blow-out velocity decreased as the increasing in propane concentration. Direct blow-off of hydrogen/propane was never observed. Methane addition resulted in a relatively stable flame comparing with the carbon dioxide and propane addition. Comparisons of the stability of H2/C3H8 H2/CH4 and H2/CO2 flames showed that H2/C3H8 produced the highest lift-off height. Propane is much more effective in lift-off and blow out hydrogen flames. The study carried out a chemical kinetic analysis of H2/CO2 H2/Ar H2/C3H8 and H2/CH4 flames for a comparison of effect of chemical kinetics on flame stability.
Testing of Hydrogen Safety Sensors in Service Simulated Conditions
Sep 2005
Publication
Reliable and effective sensors for the accurate detection of hydrogen concentrations in air are essential for the safe operation of fuel cells hydrogen fuelled systems (e.g. vehicles) and hydrogen production distribution and storage facilities. The present paper describes the activity on-going at JRC for the establishment of a facility that can be used for testing and validating the performance of hydrogen sensors under a range of conditions representative of those to be encountered in service. Potential aspects to be investigated in relation to the sensors performances are the influence of temperature humidity and pressure (simulating variations in altitude) the sensitivity to target gas and the cross sensitivity to other gases/vapours the reaction and recovery time and the sensors’ lifetime. The facility set up at JRC for the execution of these tests is described including the program for its commissioning. The results of a preliminary test are presented and discussed as an example.
A Safety Assessment of Hydrogen Supply Piping System by Use of FDS
Sep 2017
Publication
At least once air filling a piping from main hydrogen pipe line to an individual home end should be replaced with hydrogen gas to use the gas in the home. Special attention is required to complete the replacing operation safely because air and supplied hydrogen may generate flammable/explosive gas mixture in the piping. The most probable method to fulfill the task is that at first an inert gas is used to purge air from the piping and then hydrogen will be supplied into the piping. It is easily understood that the amount of the inert gas consumed by this method is much to purge whole air especially in long piping system. Hence to achieve more economical efficiency an alternative method was considered. In this method previously injected nitrogen between air and hydrogen prevents them from mixing. The key point is that how much nitrogen is required to prevent the dangerous mixing and keep the condition in the piping safe. The authors investigated to find the minimum amount of nitrogen required to keep the replacing operation safe. The main objective of this study is to assess the effect of nitrogen and estimate a pipe length that the safety is maintained under various conditions by using computational fluid dynamic (CFD). The effects of the amount of injected nitrogen hydrogen-supply conditions and the structure of piping system are discussed.
Defining Hazardous Zones – Electrical Classification Distances
Sep 2005
Publication
This paper presents an analysis of computational fluid dynamic models of compressed hydrogen gas leaks into the air under different conditions to determine the volume of the hydrogen/air mixture and the extents of the lower flammable limit. The necessary hole size was calculated to determine a reasonably expected hydrogen leak rate from a valve or a fitting of 5 and 20 cfm under 400 bars resulting in a 0.1 and 0.2 mm effective diameter hole respectively. The results were compared to calculated hypothetical volumes from IEC 60079-10 for the same mass flowrate and in most cases the CFD results produced significantly smaller hydrogen/air volumes than the IEC standard. Prescriptive electrical classification distances in existing standards for hydrogen and compressed natural gas were examined but they do not consider storage pressure and there appears to be no scientific basis for the distance determination. A proposed table of electrical classification distances incorporating hydrogen storage volume and pressure was produced based on the hydrogen LFL extents from a 0.2 mm diameter hole and the requirements of existing standards. The PHOENICS CFD software package was used to solve the continuity momentum and concentration equations with the appropriate boundary conditions buoyancy model and turbulence models. Numerical results on hydrogen concentration predictions were obtained in the real industrial environment typical for a hydrogen refuelling or energy station.<br/><br/>
Innovative Passive Protection Systems For Hydrogen Production Plants
Sep 2005
Publication
As a part of a broader project on hydrogen production by reforming of methane in a membrane catalytic reactor this paper outlines the research activity performed at the University of Pisa Department of Chemical Engineering aimed at developing and testing composite panels that can operate as thermal protective shields against hydrogen jet fires. The shield design criterion that appears to give a more practical and convenient solution for the type of installation to be protected is the one that suggest to realize composite panels. Composite material are made of two elements fiber and matrix. In this study composite panels will be realized with basalt fabric as fiber and epoxy-phenolic resins as matrix. Therefore following the indications given by norms as UNI 9174 and ASTM E 1321-93 a test method has been studied to obtain temperature data from a specimen impinged by an hydrogen flame. Thanks to thermocouples applied on backside of the sample and an infrared video camera to realize thermal images of specimen surface impinged by flame this type of test try to characterize the behaviour of composite materials under the action of hydrogen flame simulating in a simple way the action of hydrogen jet fires.
Evaluation of Metal Materials for Hydrogen Fuel Stations
Sep 2005
Publication
Under government funded project: "Development for Safe Utilization and Infrastructure of Hydrogen" entrusted by New Energy and Industrial Technology Development Organization (NEDO) special material testing equipment with heavy walled pressure vessel under 45MPa gaseous hydrogen is facilitated. Tensile properties strain controlled low-cycle and high-cycle fatigue and fatigue crack growth tests on CrMo steel (SCM435 (JIS G 4105)) which will be applied for the storage gas cylinders in Japanese hydrogen fuel stations are investigated. The results of the tensile tests under 45MPa ultra high purity hydrogen gas (O2<1ppm) at room temperature shows that there are no difference in yield and maximum tensile strength with those tested in air. However the reduced ductilities with brittle fracture surface were observed which indicates the occurrence of hydrogen environment embrittlement. It was also found by tensile tests that the embrittling origin is not only caused by machined traces on surface but also by the non-metallic inclusions dispersed on surface. Further discussions on surface treatment effects will be presented. In low cycle fatigue tests considerable reductions in cycles to failure in 45MPa ultra high purity hydrogen gas were observed. However there are tendencies that the effect of hydrogen environment embrittlement becomes not so significant as the plastic strain range decreases. It was demonstrated that there was no effect of hydrogen on fatigue limit and this implies that CrMo gas cylinders can be operated in limited fatigue safe condition. Another series of hydrogen test results temperature effect fatigue crack growth rate delayed fracture test using wedge opening loaded specimens and fatigue test of CrMo gas cylinders under repeated internal pressure with artificial crack will be presented.
On Numerical Simulation of Liquefied and Gaseous Hydrogen Releases at Large Scales
Sep 2005
Publication
The large eddy simulation (LES) model developed at the University of Ulster has been applied to simulate releases of 5.11 m3 liquefied hydrogen (LH2) in open atmosphere and gaseous hydrogen (GH2) in 20-m3 closed vessel. The simulations of a spill of liquefied hydrogen confirmed the advantage of LES application to reproduce experimentally observed eddy structure of hydrogen-air cloud. The inclination angle of simulated cloud is close to experimentally reported 300. The processes of two phase hydrogen release and heat transfer were simplified by inflow of gaseous hydrogen with temperature 20 K equal to boiling point. It is shown that difference in inflow conditions geometry and grid resolution affects simulation results. It is suggested that phenomenon of air condensationevaporation in the cloud in temperature range 20-90 K should be accounted for in future. The simulations reproduced well experimental data on GH2 release and transport in 20-m3 vessel during 250 min including a phenomenon of hydrogen concentration growth at the bottom of the vessel. Higher experimental hydrogen concentration at the bottom is assumed to be due to non-uniformity of temperature of vessel walls generating additional convection. The comparison of convective and diffusion terms in Navie-Stokes equations has revealed that a value of convective term is more than order of magnitude prevail over a value of turbulent diffusion term. It is assumed that the hydrogen transport to the bottom of the vessel is driven by the remaining chaotic flow velocities superimposed on stratified hydrogen concentration field. Further experiments and simulations with higher accuracy have to be performed to confirm this phenomenon. It has been demonstrated that hydrogen-air mixture became stratified in about 1 min after release was completed. However one-dimensional models are seen not capable to reproduce slow transport of hydrogen during long period of time characteristic for scenarios such as leakage in a garage.
Medium-Energy Synthesis Gases from Waste as an Energy Source for an Internal Combustion Engine
Dec 2021
Publication
The aim of the presented article is to analyse the influence of synthesis gas composition on the power economic and internal parameters of an atmospheric two-cylinder spark-ignition internal combustion engine (displacement of 686 cm3 ) designed for a micro-cogeneration unit. Synthesis gases produced mainly from waste contain combustible components as their basic material (methane hydrogen and carbon monoxide) as well as inert gases (carbon dioxide and nitrogen). A total of twelve synthesis gases were analysed that fall into the category of medium-energy gases with lower heating value in the range from 8 to 12 MJ/kg. All of the resulting parameters from the operation of the combustion engine powered by synthesis gases were compared with the reference fuel methane. The results show a decrease in the performance parameters for all operating loads and an increase in hourly fuel consumption. Specifically for the operating speed of the micro-cogeneration unit (1500 L/min) the decrease in power parameters was in the range of 7.1–23.5%; however the increase in hourly fuel consumption was higher by 270% to 420%. The decrease in effective efficiency ranged from 0.4 to 4.6% which in percentage terms represented a decrease from 1.3% to 14.5%. The process of fuel combustion was most strongly influenced by the proportion of hydrogen and inert gases in the mixture. It can be concluded that setting up the synthesis gas production in the waste gasification process in order to achieve optimum performance and economic parameters of the combustion engine for a micro cogeneration unit has an influential role and is of crucial importance.
Gaseous Hydrogen Refueling Stations: Selection Of Materials For High Pressure Hydrogen Fueling Connectors
Sep 2005
Publication
Design of hydrogen fueling components is critical for safety and reliability. Intensive usage of such components in urban public environment is expected in the near future. Any leakage of gas or failure of equipment will create potential hazards. Materials for such category of equipment must have specific mechanical characteristics including hardness (influence on the durability of the equipment and on the resistance to hydrogen) and be easy to machine. Air Liquide has developed a test program for qualifying equipment representing the present state of the art. Studies on the susceptibility of various steels to hydrogen embrittlement have been done. Test specimens were exposed to static and cyclic loads with hydrogen and an inert gas the inert gas representing a reference. Various tests are described here. As a result the importance of further development in the design and selection of appropriate materials for critical hydrogen components is required. Various options are presented and discussed.
Validation of Flacs-Hydrogen CFD Consequence Prediction Model Against Large Scale H2 Explosion Experiments in the Flame Facility
Sep 2005
Publication
The FLACS CFD-tool for consequence prediction has been developed continuously since 1980. The initial focus was explosion safety on offshore oil platforms in recent years the tool is also applied to study dispersion hydrogen safety dust explosions and more. A development project sponsored by Norsk Hydro Statoil and Ishikawajima Heavy Industries (IHI) was carried out to improve the modelling and validation of hydrogen dispersion and explosions. In this project GexCon carried out 200 small-scale experiments on dispersion and explosion with H2 and mixtures with H2 and CO or N2. Experiments with varying confinement congestion concentration and ignition location were performed. Since the main purpose of the tests was to produce good validation data all tests were simulated with the FLACS-HYDROGEN tool. The simulations confirmed the ability to predict explosions effects for the wide range of scenarios studied. A few examples of comparisons will be shown. To build confidence in a consequence prediction model it is important that the scales used for validation are as close as possible to reality. Since the hazard to people and facilities and the risk will generally increase with scale validation against large-scale experiments is important. In the 1980s a series of large-scale explosion experiments with H2 was carried out in the Sandia FLAME facility and sponsored by the US Nuclear Regulatory Commission. The FLAME facility is a 30.5m x 1.83m x 2.44m channel tests were performed with H2 concentrations from 7% to 30% with varying degree of top venting (0% 13% and 50%) and congestion (with or without baffles blocking 33% of the channel cross-section). A wide range of flame speeds and overpressures were observed. Comparisons are made between FLACS simulations and FLAME tests. The main conclusion from this validation study is that the precision when predicting H2 explosion consequences with FLACS has been improved to a very acceptable level
Novel Safe Method Of Manufacturing Hydrogen Metallic Hydrides
Sep 2005
Publication
The present work proposes a novel safe method for obtaining metallic hydrides. The method is called SHS (Self-Propagating High temperature synthesis). A novel high pressure gas reactor governed by an electromechanical control device has been designed and built up in order to synthesise metallic hydrides. This system is provided with a control system that allows calculating the amount of gas coming into the reaction vessel at every stage of the process. The main feature of this method is that metallic hydrides can be safely synthesised using low gas reaction pressures. In order to validate the assessing system the main kinetic regularities of SHS in Ti-H2 system were studied. In addition phase analysis (by means of X ray diffraction) as well as chemical analysis have been performed.
Potential Models For Stand-Alone And Multi-Fuel Gaseous Hydrogen Refuelling Stations- Assessment Of Associated Risk
Sep 2005
Publication
Air pollution and traffic congestion are two of the major issues affecting public authorities policy makers and citizens not only in Italy and European Union but worldwide; this is nowadays witnessed by always more frequent limitations to the traffic in most of Italian cities for instance. Hydrogen use in automotive appears to offer a viable solution in medium-long term; this new perspective involves the need to carry out adequate infrastructures for distribution and refuelling and consequently the need to improve knowledge on hydrogen technologies from a safety point of view. In the present work possible different configurations for gaseous hydrogen refuelling station has been compared: “stand-alone” and “multi-fuel”. These two alternative scenarios has been taken into consideration each of one with specific hypotheses: “stand-alone” configuration based on the hypothesis of a potential model consisting of a hydrogen refuelling station composed by on-site hydrogen production via electrolysis a trailer of compressed gas for back-up compressor unit intermediate storage unit and dispenser. In this model it is assumed that no other refuelling equipment and/or dispenser of traditional fuel is present in the same site. “multi-fuel” configuration where it is assumed that the same components for hydrogen refuelling station are placed in the same site beside one or more refuelling equipment and/or dispenser of traditional fuel. Comparisons have been carried out from the point of view of specific risk assessment which have been conducted on both the two alternative scenarios.
Quantitative Risk Analysis Of Gaseous Hydrogen Storage Unit
Sep 2005
Publication
A quantitative risk analysis to a central pressurized storage tank for gaseous hydrogen has been performed to attend requirements of licensing procedures established by the State Environment Agency of São Paulo State Brazil. Gaseous hydrogen is used to feed the reactor to promote hydrogenation at the surfactant unit. HAZOP was the hazard identification technique selected. System components failures were defined by event and fault tree analysis. Quantitative risk analysis was complied to define the acceptability concepts on societal and individual risks required by the State Environmental Agency to approve the installation operation license. Acceptable levels to public society from the analysis were reached. Safety recommendations to the gaseous hydrogen central were proposed to assure minimization of risk to the near-by community operators environment and property.
Experimental Study of Jet-formed Hydrogen-air Mixtures and Pressure Loads from their Deflagrations in Low Confined Surroundings
Sep 2007
Publication
To provide more practical data for safety assessments a systematic study of explosion and combustion processes which can take place in mixtures produced by jet releases in realistic environmental conditions is required. The presented work is aimed to make step forward in this direction binding three inter-connected tasks: (i) study of horizontal and vertical jets (ii) study of the burnable clouds formed by jets in different geometry configurations and (iii) examination of combustion and explosion processes initiated in such mixtures. Test matrix for the jet experiments included variation of the release pressure and nozzle diameter with the aim to study details of the resulting hydrogen concentration and velocity profiles depending on the release conditions. In this study the following parameters were varied: mass flow rate jet nozzle diameter (to alter gas speed) and geometry of the hood located on top of the jet. The carried out experiments provided data on detailed structure for under-expanded horizontal and buoyant vertical jets and data on pressure loads resulted from deflagration of various mixtures formed by jet releases. The data on pressures waves generated in the conditions under consideration provides conservative estimation of pressure loads for realistic leaks.
Analysis of Buoyancy-driven Ventilation of Hydrogen from Buildings
Sep 2007
Publication
When hydrogen gas is used or stored within a building as with a hydrogen-powered vehicle parked in a residential garage any leakage of unignited H2 will mix with indoor air and may form a flammable mixture. One approach to safety engineering relies on buoyancy-driven passive ventilation of H2 from the building through vents to the outside. To discover relationships between design variables we combine two types of analysis: (1) a simplified 1-D steady-state analysis of buoyancy-driven ventilation and (2) CFD modelling using FLUENT 6.3. The simplified model yields a closed-form expression relating the H2 concentration to vent area height and discharge coefficient; leakage rate; and a stratification factor. The CFD modelling includes 3-D geometry; H2 cloud formation; diffusion momentum convection and thermal effects; and transient response. We modelled a typical residential two-car garage with 5 kg of H2 stored in a fuel tank; leakage rates of 5.9 to 82 L/min (tank discharge times of 12 hours to 1 week); a variety of vent sizes and heights; and both isothermal and nonisothermal conditions. This modelling indicates a range of the stratification factor needed to apply the simplified model for vent sizing as well as a more complete understanding of the dynamics of H2 movement within the building. A significant thermal effect occurs when outdoor temperature is higher than indoor temperature so that thermocirculation opposes the buoyancy-driven ventilation of H2. This circumstance leads to higher concentrations of H2 in the building relative to an isothermal case. In an unconditioned space such as a residential garage this effect depends on the thermal coupling of indoor air to outdoor air the ground (under a concrete slab floor) and an adjacent conditioned space in addition to temperatures. We use CFD modelling to explore the magnitude of this effect under rather extreme conditions.
Design of Catalytic Recombiners for Safe Removal of Hydrogen from Flammable Gas Mixtures
Sep 2007
Publication
Several today’s and future applications in energy technology bear the risk of the formation of flammable hydrogen/air mixtures either due to the direct use of hydrogen or due to hydrogen appearing as a by-product. If there’s the possibility of hydrogen being released accidentally into closed areas countermeasures have to be implemented in order to mitigate the threat of an explosion. In the field of nuclear safety passive auto-catalytic recombiners (PAR) are well-known devices for reducing the risk of a hydrogen detonation in a nuclear power plant in the course of a severe accident. Hydrogen and oxygen react on catalyst materials like platinum or palladium already far below conventional flammability limits. The most important concern with regard to the utilization of hydrogen recombiners is the adequate removal of the reaction heat. Already low hydrogen concentrations may increase the system temperature beyond the self-ignition limit of hydrogen/air mixtures and may lead to an unintended ignition on hot parts of the PAR.<br/>Starting from the nuclear application since several years IEF-6 and LRST perform joint research in the field of passive auto-catalytic recombiners including experimental studies modelling and development of new design concepts. Recently approaches on specifically designed catalysts and on passive cooling devices have been successfully tested. In a design study both approaches are combined in order to provide means for efficient and safe removal of hydrogen. The paper summarizes results achieved so far and possible designs for future applications.
Stress Corrosion Cracking Of Stainless Steels In High Pressure Alkaline Electrolysers
Sep 2005
Publication
Hydrogen-producing high-pressure electrolysers operating with 40% potassium hydroxide solution and an applied oxygen pressure up to 30 barg have been developed. Austenitic stainless steels of type AISI316L are deemed resistant to stress corrosion cracking (SCC) in concentrated KOH solutions. However SCC has on some occasions been observed on the oxygen side of the high-pressure electrolysers thereby representing a safety risk in the operation. Several materials have been tested for resistance to SCC using C-ring specimens in autoclaves under conditions similar to the high-pressure electrolysers and at temperatures up to 120°C. The tests confirmed the observed susceptibility of austenitic stainless steels to SCC in concentrated KOH solutions. Higher alloyed austenitic stainless steels also showed SCC. Duplex stainless steel and nickel based Alloy 28 showed good resistance to SCC in the given environment. Further tests are needed to define the optimum weld procedure.
Phenomena of Dispersion and Explosion of High Pressurized Hydrogen
Sep 2005
Publication
To make “Hydrogen vehicles and refuelling station systems” fit for public use research on hydrogen safety and designing mitigative measures are significant. For compact storage it is planned to store under high pressure (40MPa) at the refuelling stations so that the safety for the handling of high-pressurized hydrogen is essential. This paper describes the experimental investigation on the hypothetical dispersion and explosion of high-pressurized hydrogen gas which leaks through a large scale break in piping and blows down to atmosphere. At first we investigated time history of distribution of gas concentration in order to comprehend the behaviour of the dispersion of high-pressurized hydrogen gas before explosion experiments. The explosion experiments were carried out with changing the time of ignition after the start of dispersion. Hydrogen gas with the initial pressure of 40MPa was released through a nozzle of 10mm diameter. Through these experiments it was clarified that the explosion power depends not only on the concentration and volume of hydrogen/air pre-mixture but also on the turbulence characteristics before ignition. To clarify the explosion mechanism the numerical computer simulation about the same experimental conditions was performed. The initial conditions such as hydrogen distribution and turbulent characteristics were given by the results of the atmospheric diffusion simulation. By the verification of these experiments the results of CFD were fully improved.
Analysis of Jet Flames and Unignited Jets from Unintended Releases of Hydrogen
Sep 2007
Publication
A combined experimental and modeling program is being carried out at Sandia National Laboratories to characterize and predict the behavior of unintended hydrogen releases. In the case where the hydrogen leak remains unignited knowledge of the concentration field and flammability envelope is an issue of importance in determining consequence distances for the safe use of hydrogen. In the case where a high-pressure leak of hydrogen is ignited a classic turbulent jet flame forms. Knowledge of the flame length and thermal radiation heat flux distribution is important to safety. Depending on the effective diameter of the leak and the tank source pressure free jet flames can be extensive in length and pose significant radiation and impingement hazard resulting in consequence distances that are unacceptably large. One possible mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. The reasoning is that walls will reduce the extent of unacceptable consequences due to jet releases resulting from accidents involving high-pressure equipment. While reducing the jet extent the walls may introduce other hazards if not configured properly. The goal of this work is to provide guidance on configuration and placement of these walls to minimize overall hazards using a quantitative risk assessment approach. Detailed Navier-Stokes calculations of jet flames and unignited jets are used to understand how hydrogen leaks and jet-flames interact with barriers. The effort is complemented by an experimental program that considers the interaction of jet flames and unignited jets with barriers.
No more items...