Publications
Techno-economic Comparative Study of Grid-connected PV/Reformer/FC Hybrid Systems with Distinct Solar Tracking Systems
Feb 2023
Publication
The purpose of this study is to analyze and compare the techno-economic performance of grid-connected Hybrid Energy Systems (HES) consisting of Photovoltaic (PV) and Reformer Fuel-Cell (RF-FC) using different types of solar PV tracking techniques to supply electricity to a small location in the City of Chlef Algeria. The PV tracking systems considered in this study include fixed facing south at four different angles (32◦ 34◦ 36◦ 38◦) horizontal-axis with continuous adjustment vertical-axis with continuous adjustment and a two-axis tracking system. The software tool HOMER Pro (Hybrid Optimization of Multiple Energy Resources) is used to simulate and analyze the technical feasibility and life-cycle cost of these different configurations. The meteorological data consisting of global solar radiation and air temperature used in this study was collected from the geographical area of the City of Chlef during the year 2020. This study has shown that the optimal design of a grid-connected hybrid PV/RF-FC energy system with Vertical Single Axis Tracker (VSAT) leads to the best economic perfor mance with low values of Net Present Cost (NPC) Cost of Energy (COE) with a Positive Return on Investment (ROI) and the shortest Simple Payback (SP) period. In addition from the simulation results obtained it can be concluded that the Horizontal and Vertical Single-Axis Trackers (HSAT and VSAT) as well as the Dual-Axis Tracker (DAT) are not always cost effective compared to the Fixed Tilt System (FTS). Therefore it is neces sary to carefully analyze the use of each tracker to assess whether the energy gain achieved outweighs the overall shortcomings of the tracker.
New Protocol for Hydrogen Refueling Station Operation
Aug 2025
Publication
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the hydrogen compressor power requirement and the energy consumption for refilling the vehicle tank; therefore the proposed alternative design for hydrogen refueling stations is feasible and compatible with low-intensity renewable energy sources like solar photovoltaic wind farms or micro-hydro plants. Additionally the cascade method supplies higher pressure to the dispenser throughout the day thus reducing the refueling time for specific vehicle driving ranges. The simulation shows that the energy saving using the cascade method achieves 9% to 45% depending on the vehicle attendance. The hydrogen refueling station design supports a daily vehicle attendance of 9 to 36 with a complete refueling process coverage. The carried-out simulation proves that the vehicle tank achieves the maximum attainable pressure of 700 bars with a storage system of six tanks. The data analysis shows that the daily hourly hydrogen demand follows a sinusoidal function providing a practical tool to predict the hydrogen demand for any vehicle attendance allowing the planners and station designers to resize the elements to fulfill the new requirements. The proposed system is also applicable to hydrogen ICE vehicles.
Integrated Membrane Distillation-solid Electrolyte-based Alkaline Water Electrolysis for Enhancing Green Hydrogen Production
Jan 2025
Publication
This paper investigates the circularity of green hydrogen and resource recovery from brine using an integrated approach based on alkaline water electrolysis (AWE). Traditional AWE employs highly alkaline electrolytes which can lead to electrode corrosion undesirable side reactions and gas cross-over issues. Conversely indirect brine electrolysis requires pre-treatment steps which negatively impact both techno-economics and environmental sustainability. In response this study proposes an innovative brine electrolysis process utilizing solid electrolytes (SELs). The process includes an on-site brine treatment facility leveraging a self-driven phase transition technique and incorporates a hydrophobic membrane as part of a membrane distillation (MD) system to facilitate the gas pathway. Polyvinyl alcohol (PVA) and tetraethylammonium hydroxide (TEAOH)-based electrolytes combined with potassium hydroxide (KOH) at various concentrations function as a self-wetted electrolyte (SWE). This design partially disperses water vapor while effectively preventing the intrusion of contaminated ions into the SWE and electrode-catalyst interfaces. PVA-TEAOH-KOH-30 wt% SWE demonstrated the highest ion conductivity (112.4 mScm−1) and excellent performance with a current density of 375 mAcm−2. Long-term electrolysis confirmed with a nine-fold brine in volume concentration factor (VCF) demonstrated stable performance without MD membrane wetting. The Cl−/ClO− and Br− concentrations in the SWE were reduced by five orders of magnitude compared to the original brine. This electrolyzer supports the circular use of resources with hydrogen as an energy carrier and concentrated brine and oxygen as valuable by-products aligning with the sustainable development goals (SDGs) and net-zero emissions by 2050.
Advances in Type IV Tanks for Safe Hydrogen Storage: Materials, Technologies and Challenges
Oct 2025
Publication
This paper provides a comprehensive review of Type IV hydrogen tanks with a focus on materials manufacturing technologies and structural issues related to high-pressure hydrogen storage. Recent advances in the use of advanced composite materials such as carbon fibers and polyamide liners useful for improving mechanical strength and permeability have been reviewed. The present review also discusses solutions to reduce hydrogen blistering and embrittlement as well as exploring geometric optimization methodologies and manufacturing techniques such as helical winding. Additionally emerging technologies such as integrated smart sensors for real-time monitoring of tank performance are explored. The review concludes with an assessment of future trends and potential solutions to overcome current technical limitations with the aim of fostering a wider adoption of Type IV tanks in mobility and stationary applications.
A Complete Control-Oriented Model for Hydrogen Hybrid Renewable Microgrids with High-Voltage DC Bus Stabilized by Batteries and Supercapacitors
Oct 2025
Publication
The growing penetration of renewable energy sources requires resilient microgrids capable of providing stable and continuous operation. Hybrid energy storage systems (HESS) which integrate hydrogen-based storage systems (HBSS) battery storage systems (BSS) and supercapacitor banks (SCB) are essential to ensuring the flexibility and robustness of these microgrids. Accurate modelling of these microgrids is crucial for analysis controller design and performance optimization but the complexity of HESS poses a significant challenge: simplified linear models fail to capture the inherent nonlinear dynamics while nonlinear approaches often require excessive computational effort for real-time control applications. To address this challenge this study presents a novel state space model with linear variable parameters (LPV) which effectively balances accuracy in capturing the nonlinear dynamics of the microgrid and computational efficiency. The research focuses on a high-voltage DC bus microgrid architecture in which the BSS and SCB are connected directly in parallel to provide passive DC bus stabilization a configuration that improves system resilience but has received limited attention in the existing literature. The proposed LPV framework employs recursive linearisation around variable operating points generating a time-varying linear representation that accurately captures the nonlinear behaviour of the system. By relying exclusively on directly measurable state variables the model eliminates the need for observers facilitating its practical implementation. The developed model has been compared with a reference model validated in the literature and the results have been excellent with average errors MAE RAE and RMSE values remaining below 1.2% for all critical variables including state-of-charge DC bus voltage and hydrogen level. At the same time the model maintains remarkable computational efficiency completing a 24-h simulation in just 1.49 s more than twice as fast as its benchmark counterpart. This optimal combination of precision and efficiency makes the developed LPV model particularly suitable for advanced model-based control strategies including real-time energy management systems (EMS) that use model predictive control (MPC). The developed model represents a significant advance in microgrid modelling as it provides a general control-oriented approach that enables the design and operation of more resilient efficient and scalable renewable energy microgrids.
Conceptual Design of a Process for Hydrogen Production from Waste Biomass and its Storage in form of Liquid Ammonia
Feb 2023
Publication
In this work we present the simulation of a plant for the exploitation of renewable hydrogen (e.g. from biomass gasification) with production of renewable ammonia as hydrogen vector and energy storage medium. The simulation and sizing of all unit operations were performed with Aspen Plus® as software. Vegetable waste biomass is used as raw material for hydrogen production more specifically pine sawdust.<br/>The hydrogen production process is based on a gasification reactor operating at high temperature (700–800 °C) in the presence of a gasifying agent such as air or steam. At the outlet a solid residue (ash) and a certain amount of gas which mainly contains H2 CH4 CO and some impurities (e.g. sulphur or chlorine compounds) are obtained. Subsequently this gas stream is purified and treated in a series of reactors in order to maximize the hydrogen yield. In fact after the removal of the sulphur compounds through an absorption column with MEA (to avoid poisoning of the catalytic processes) 3 reactors are arranged in series: Methane Steam Reforming (MSR) High temperature Water-Gas Shift (HT-WGS) Low temperature Water-Gas Shift (LT-WGS).<br/>In the first MSR reactor methane reacts at 1000 °C in presence of steam and a nickel-based catalyst in order to obtain mainly H2 CO and CO2. Subsequently two steps of WGS are present to convert most of the CO into H2 and CO2. Also these reactions are carried out in the presence of a catalyst and with an excess of water.<br/>All the oxygenated compounds must be carefully eliminated: the remaining traces of CO are methanated while CO2 is removed by a basic scrubbing with MEA (35 wt%) inside an absorption column. The Haber-Bosch synthesis of ammonia was carried out at 200 bar and in a temperature range between 300 and 400 °C using two catalysts: Fe (wustite) and Ru/C.<br/>As overall balance from an hourly flow rate of 1000 kg of dry biomass and 600 kg of nitrogen 550 kg of NH3 at 98.8 wt% were obtained demonstrating the proof of concept of this newly designed process for the production of hydrogen from renewable waste biomass and its transformation into a liquid hydrogen vector to be easily transported and stored.
Decarbonizing Insular Energy Systems: A Literature Review of Practical Strategies for Replacing Fossil Fuels with Renewable Energy Sources
Feb 2025
Publication
The reliance on fossil fuels for electricity production in insular regions creates critical environmental economic and logistical challenges particularly for ecologically fragile islands. Transitioning to renewable energy is essential to mitigate these impacts enhance energy security and preserve unique ecosystems. This systematic review addresses key research questions: what practical strategies have proven effective in reducing fossil fuel dependency in island contexts and what barriers hinder their widespread adoption? By applying the PRISMA methodology this study examines a decade (2014–2024) of research on renewable energy systems highlighting successful initiatives such as the integration of solar and wind systems in Hawaii energy storage advancements in La Graciosa hybrid renewable grids in the Galápagos Islands and others. Specific barriers include high upfront costs regulatory challenges and technical limitations such as grid instability due to renewable energy intermittency. This review contributes by synthesizing lessons from diverse case studies and identifying innovative approaches like hydrogen storage predictive control systems and community-driven renewable projects. The findings offer actionable insights for policymakers and researchers to accelerate the transition towards sustainable energy systems in island environments.
Analyzing the Adoption of Hybrid Electric and Hydrogen Vehicles in Indonesia: A Multi-criteria and Total Cost of Ownership Approach
Jan 2025
Publication
Indonesia faces mounting challenges from climate change and environmental degradation underscoring the need for sustainable transportation solutions. This study evaluates factors influencing the adoption of Hybrid Electric Vehicles (HEV) Battery Electric Vehicles (BEV) and Hydrogen Fuel Cell Vehicles (HFCV) using Multi-Criteria Analysis (MCA) and Total Cost of Ownership (TCO) approaches. Eight key factors were analyzed: safety operational and maintenance costs initial cost government incentives charging speed resale value and environmental impact. Findings reveal that safety concerns particularly for hydrogen vehicles rank as the highest priority for consumers followed by cost efficiency and government support. Environmental considerations while significant were lower in priority. The study highlights the importance of targeted subsidies enhanced safety features and infrastructure investments to overcome barriers to adoption. By providing actionable recommendations such as raising public awareness of the long-term benefits of environmentally friendly vehicles this research supports policymakers in driving the transition to sustainable transportation in Indonesia. These insights contribute to addressing rising vehicle emissions and fostering the adoption of HEV5 BEV2 and HFCV6 aligning with Indonesia’s broader climate goals.
Unlocking Solar and Hydrogen Potentials: A Comparative Analysis of Solar Tracking Systems for South Africa's Energy Transition
Aug 2025
Publication
This study explores the potential of solar tracking technologies to enhance South Africa’s energy transition focusing on their role in supporting green hydrogen production for domestic use and export. Using the Global Energy System Model (GENeSYS-MOD) it evaluates four solar tracking technologies — horizontal axis tilted horizontal axis vertical axis and dual-axis — across six scenarios: tracking and non-tracking versions of a Business-as-Usual (BAU) scenario a 2 ◦C scenario and a high hydrogen demand and export (HighH2) scenario. The results identify horizontal axis tracking as the most cost-effective option followed by tilted horizontal axis tracking which is particularly prominent in the HighH2 scenario. Tracking systems enhance hydrogen production by extending power output and increasing electrolyzer full-load hours. In the HighH2 scenario they reduce hydrogen production costs in 2050 from 1.47 e/kg to 1.34 e/kg and system cost by 0.66% positioning South Africa competitively in the global hydrogen market. By integrating tracking technologies South Africa can align hydrogen production ambitions with renewable energy growth while mitigating grid and financial challenges. The research underscores the need for targeted energy investments and policies to maximize renewable energy and hydrogen potential ensuring a just energy transition that supports export opportunities domestic energy security and equitable socio-economic growth.
Impact of Hydrogen Release on Accidental Consequences in Deep-Sea Floating Photovoltaic Hydrogen Production Platforms
Jul 2025
Publication
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical model of FPHP comprehensively characterizes hydrogen leakage dynamics under varied rupture diameters (25 50 100 mm) transient release duration dispersion patterns and wind intensity effects (0–20 m/s sea-level velocities) on hydrogen–air vapor clouds. FLACS-generated data establish the concentration–dispersion distance relationship with numerical validation confirming predictive accuracy for hydrogen storage tank failures. The results indicate that the wind velocity and rupture size significantly influence the explosion risk; 100 mm ruptures elevate the explosion risk producing vapor clouds that are 40–65% larger than 25 mm and 50 mm cases. Meanwhile increased wind velocities (>10 m/s) accelerate hydrogen dilution reducing the high-concentration cloud volume by 70–84%. Hydrogen jet orientation governs the spatial overpressure distribution in unconfined spaces leading to considerable shockwave consequence variability. Photovoltaic modules and inverters of FPHP demonstrate maximum vulnerability to overpressure effects; these key findings can be used in the design of offshore platform safety. This study reveals fundamental accident characteristics for FPHP reliability assessment and provides critical insights for safety reinforcement strategies in maritime hydrogen applications.
Evaluating Freshwater, Desalinated Water, and Treated Brine as Water Feed for Hydrogen Production in Arid Regions
Aug 2025
Publication
Hydrogen production is increasingly vital for global decarbonization but remains a waterand energy-intensive process especially in arid regions. Despite growing attention to its climate benefits limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment (LCA) approach to evaluate three water supply strategies for hydrogen production: (1) seawater desalination without brine treatment (BT) (2) desalination with partial BT and (3) freshwater purification. Scenarios are modeled for the United Arab Emirates (UAE) Australia and Spain representing diverse electricity mixes and water stress conditions. Both electrolysis and steam methane reforming (SMR) are evaluated as hydrogen production methods. Results show that desalination scenarios contribute substantially to human health and ecosystem impacts due to high energy use and brine discharge. Although partial BT aims to reduce direct marine discharge impacts its substantial energy demand can offset these benefits by increasing other environmental burdens such as marine eutrophication especially in regions reliant on carbon-intensive electricity grids. Freshwater scenarios offer lower environmental impact overall but raise water availability concerns. Across all regions feedwater for SMR shows nearly 50% lower impacts than for electrolysis. This study focuses solely on the environmental impacts associated with water sourcing and treatment for hydrogen production excluding the downstream impacts of the hydrogen generation process itself. This study highlights the trade-offs between water sourcing brine treatment and freshwater purification for hydrogen production offering insights for optimizing sustainable hydrogen systems in water-stressed regions.
Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes
Apr 2015
Publication
The current fossil fuel-based generation of energy has led to large-scale industrial development. However the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2) a clean energy carrier with high-energy yields; upon the combustion of H2 H2O is the only major by-product. In recent decades the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation the biological routes for H2 production are categorized into four groups: photobiological fermentation anaerobic fermentation enzymatic and microbial electrolysis and a combination of these processes. Thus this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations and we delineate the limitations. Additionally alternative options such as bioaugmentation multiple process integration and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications.
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
Aug 2025
Publication
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However to the best of the authors’ knowledge no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment including both on-grid and off-grid configurations. Subsequently the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally potential barriers to large-scale implementation are discussed along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing.
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
Aug 2025
Publication
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology which is highly successful in mitigating carbon emissions has increased. On the other hand hydrogen is an important energy carrier for storing and transporting energy and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless the integration of CCS technologies into power production processes is a significant challenge requiring the enhancement of the combined power generation–CCS process. In recent years there has been a growing interest in process intensification (PI) which aims to create smaller cleaner and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive multi-scale multi-phase dynamic computational fluid dynamics (CFD)-based process model is constructed which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57% signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR.
Numerical Investigation of Transmission and Sealing Characteristics of Salt Rock, Limestone, and Sandstone for Hydrogen Underground Energy Storage in Ontario, Canada
Feb 2025
Publication
With the accelerating global transition to clean energy underground hydrogen storage (UHS) has gained significant attention as a flexible and renewable energy storage technology. Ontario Canada as a pioneer in energy transition offers substantial underground storage potential with its geological conditions of salt limestone and sandstone providing diverse options for hydrogen storage. However the hydrogen transport characteristics of different rock media significantly affect the feasibility and safety of energy storage projects warranting in-depth research. This study simulates the hydrogen flow and transport characteristics in typical energy storage digital rock core models (salt rock limestone and sandstone) from Ontario using the improved quartet structure generation set (I-QSGS) and the lattice Boltzmann method (LBM). The study systematically investigates the distribution of flow velocity fields directional characteristics and permeability differences covering the impact of hydraulic changes on storage capacity and the mesoscopic flow behavior of hydrogen in porous media. The results show that salt rock due to its dense structure has the lowest permeability and airtightness with extremely low hydrogen transport velocity that is minimally affected by pressure differences. The microfracture structure of limestone provides uneven transport pathways exhibiting moderate permeability and fracture-dominated transport characteristics. Sandstone with its higher porosity and good connectivity has a significantly higher transport rate compared to the other two media showing local high-velocity preferential flow paths. Directional analysis reveals that salt rock and sandstone exhibit significant anisotropy while limestone’s transport characteristics are more uniform. Based on these findings salt rock with its superior sealing ability demonstrates the best hydrogen storage performance while limestone and sandstone also exhibit potential for storage under specific conditions though further optimization and validation are required. This study provides a theoretical basis for site selection and operational parameter optimization for underground hydrogen storage in Ontario and offers valuable insights for energy storage projects in similar geological settings globally.
Synergizing Water Desalination and Hydrogen Production using Solar Stills with Novel Sensible Heat Storage and an Alkaline Electrolyzer
Dec 2024
Publication
This study tested a cogeneration (desalination/hydrogen production) system with natural and black sand as sensible heat storage considering the thermal efficiencies environmental impact water quality cost aspects and hydrogen generation rate. The black sand-modified distiller attained the highest water production of 4645 mL more than the conventional distiller by 1595 mL. It also offered better energy and exergy efficiencies of 45.26% and 3.72% respectively compared to 32.10% and 2.19% for the conventional one. Both modified distillers showed impressive improvements in water quality by significant reductions in total dissolved solids (TDS) from 29300 mg/L to 60–61 mg/L. Moreover the black sand-modified still reduced chemical oxygen demand (COD) to 135 mg/L. The production cost was minimized by using black sand to 0.0111$/L higher than one-fifth in the case of the lab-based distiller. Regarding hydrogen production the highest rate was obtained using distilled water from a labbased distiller of 0.742 gH₂/hr with an energy efficiency of 11.00%; however it was not much higher than the case of black sand-modified still (0.736 gH₂/hr production rate and 10.91% efficiency). Moreover the black sand-modified still showed the highest annual exergy output of 70.4 kWh/year with a significant annual decarbonization of 1.69 ton-CO2.
Experimental Assessment of Performance and Emissions for Hydrogen-diesel Dual Fuel Operation in a Low Displacement Compression Ignition Engine
Apr 2022
Publication
The combustion of pure H2 in engines is still troublesome needing further research and development. Using H2 and diesel in a dual-fuel compression ignition engine appears as a more feasible approach. Here we report an experimental assessment of performance and emissions for a single-cylinder four-stroke air-cooled compression ignition engine operating with neat diesel and H2-diesel dual-fuel. Previous studies typically show the performance and emissions for a specific operation condition (i.e. a fixed engine speed and torque) or a limited operating range. Our experiments covered engine speeds of 3000 and 3600 rpm and torque levels of 3 and 7 Nm. An in-house designed and built alkaline cell generated the H2 used for the partial substitution of diesel. Compared with neat diesel the results indicate that adding H2 decreased the air-fuel equivalence ratio and the Brake Specific Diesel Fuel Consumption Efficiency by around 14–29 % and 4–31 %. In contrast adding H2 increased the Brake Fuel Conversion Efficiency by around 3–36 %. In addition the Brake Thermal Efficiency increased in the presence of H2 in the range of 3–37 % for the lower engine speed and 27–43 % for the higher engine speed compared with neat diesel. The dual-fuel mode resulted in lower CO and CO2 emissions for the same power output. The emissions of hydrocarbons decreased with H2 addition except for the lower engine speed and the higher torque. However the dual-fuel operation resulted in higher NOx emissions than neat diesel with 2–6 % and 19–48 % increments for the lower and higher engine speeds. H2 emerges as a versatile energy carrier with the potential to tackle current energy and emissions challenges; however the dual-fuel strategy requires careful management of NOx emissions.
Hydrogen Pipelines Safety Using System Dynamics
Oct 2025
Publication
With the global expansion of hydrogen infrastructure the safe and efficient transportation of hydrogen is becoming more important. In this study several technical factors including material degradation pressure variations and monitoring effectiveness that influence hydrogen transportation using pipelines are examined using system dynamics. The results show that hydrogen embrittlement which is the result of microstructural trapping and limited diffusion in certain steels can have a profound effect on pipeline integrity. Material incompatibility and pressure fluctuations deepen fatigue damage and leakage risk. Moreover pipeline monitoring inefficiency combined with hydrogen’s high flammability and diffusivity can raise serious safety issues. An 80% decrease in monitoring efficiency will result in a 52% reduction in the total hydrogen provided to the end users. On the other hand technical risks such as pressure fluctuations and material weakening from hydrogen embrittlement also affect overall system performance. It is essential to understand that real-time detection using hydrogen monitoring is particularly important and will lower the risk of leakage. It is crucial to know where hydrogen is lost and how it impacts transport efficiency. The model offers practical insights for developing stronger and more reliable hydrogen transport systems thereby supporting the transition to a low-carbon energy future.
Geomechanics of Geological Storage of Hydrogen: Knowledge Gaps and Future Directions
Aug 2025
Publication
Underground hydrogen storage is critical for supporting the transition to renewable energy systems addressing the intermittent nature of solar and wind power. Despite its promise as a carbon-neutral energy carrier there remains limited understanding of the geomechanical behavior of subsurface reservoirs under hydrogen storage conditions. This knowledge gap is particularly significant for fast-cycling operations which have yet to be implemented on a large scale. This review evaluates current knowledge on the geomechanics of underground hydrogen storage focusing on risks and challenges in geological formations such as salt caverns depleted hydrocarbon reservoirs saline aquifers and lined rock caverns. Laboratory experiments field studies and numerical simulations are synthesized to examine cyclic pressurization induced seismicity thermal stresses and hydrogen-rock interactions. Notable challenges include degradation of rock properties fault reactivation micro-seismic activity in porous reservoirs and mineral dissolution/precipitation caused by hydrogen exposure. While salt caverns are effective for low-frequency hydrogen storage their behavior under fast-cyclic loading requires further investigation. Similarly the mechanical evolution of porous and fractured reservoirs remains poorly understood. Key findings highlight the need for comprehensive geomechanical studies to mitigate risks and enhance hydrogen storage feasibility. Research priorities include quantifying cyclic loading effects on rock integrity understanding hydrogen-rock chemical interactions and refining operational strategies. Addressing these uncertainties is essential for enabling large-scale hydrogen integration into global energy systems and advancing sustainable energy solutions. This work systematically focuses on the geomechanical implications of hydrogen injection into subsurface formations offering a critical evaluation of current studies and proposing a unified research agenda.
Enhancing Hydrogen Production from Chlorella sp. Biomass by Pre-Hydrolysis with Simultaneous Saccharification and Fermentation (PSSF)
Mar 2019
Publication
Simultaneous saccharification and fermentation (SSF) and pre-hydrolysis with SSF (PSSF) were used to produce hydrogen from the biomass of Chlorella sp. SSF was conducted using an enzyme mixture consisting of 80 filter paper unit (FPU) g-biomass−1 of cellulase 92 U g-biomass−1 of amylase and 120 U g-biomass−1 of glucoamylase at 35 ◦C for 108 h. This yielded 170 mL-H2 g-volatile-solids−1 (VS) with a productivity of 1.6 mL-H2 g-VS−1 h −1 . Pre-hydrolyzing the biomass at 50 ◦C for 12 h resulted in the production of 1.8 g/L of reducing sugars leading to a hydrogen yield (HY) of 172 mL-H2 g-VS−1 . Using PSSF the fermentation time was shortened by 36 h in which a productivity of 2.4 mL-H2 g-VS−1 h −1 was attained. To the best of our knowledge the present study is the first report on the use of SSF and PSSF for hydrogen production from microalgal biomass and the HY obtained in the study is by far the highest yield reported. Our results indicate that PSSF is a promising process for hydrogen production from microalgal biomass.
Realizing the Role of Hydrogen Energy in Ports: Evidence from Ningbo Zhoushan Port
Jul 2025
Publication
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port operations using the Chuanshan Port Area of Ningbo Zhoushan Port (CPANZP) as a case study. Through a comprehensive analysis of hydrogen production storage refueling and consumption technologies we demonstrate the feasibility and benefits of integrating hydrogen systems into port infrastructure. Our findings highlight the successful deployment of a hybrid “wind-solar-hydrogen-storage” energy system at CPANZP which achieves 49.67% renewable energy contribution and an annual reduction of 22000 tons in carbon emissions. Key advancements include alkaline water electrolysis with 64.48% efficiency multi-tier hydrogen storage systems and fuel cell applications for vehicles and power generation. Despite these achievements challenges such as high production costs infrastructure scalability and data integration gaps persist. The study underscores the importance of policy support technological innovation and international collaboration to overcome these barriers and accelerate the adoption of hydrogen energy in ports worldwide. This research provides actionable insights for port operators and policymakers aiming to balance operational efficiency with sustainability goals.
Risk Analysis of Hydrogen Leakage at Hydrogen Producing and Refuelling Integrated Station
Feb 2025
Publication
Hydrogen energy is considered the most promising clean energy in the 21st century so hydrogen refuelling stations (HRSs) are crucial facilities for storage and supply. HRSs might experience hydrogen leakage (HL) incidents during their operation. Hydrogen-producing and refuelling integrated stations (HPRISs) could make thermal risks even more prominent than those of HRSs. Considering HL as the target in the HPRIS through the method of fault tree analysis (FTA) and analytic hierarchy process (AHP) the importance degree and probability importance were appraised to obtain indicators for the weight of accident level. In addition the influence of HL from storage tanks under ambient wind conditions was analysed using the specific model. Based upon risk analysis of FTA AHP and ALOHA preventive measures were obtained. Through an evaluation of importance degree and probability importance it was concluded that misoperation material ageing inadequate maintenance and improper design were four dominant factors contributing to accidents. Furthermore four crucial factors contributing to accidents were identified by the analysis of the weight of the HL event with AHP: heat misoperation inadequate maintenance and valve failure. Combining the causal analysis of FTA with the expert weights from AHP enables the identification of additional crucial factors in risk. The extent of the hazard increased with wind speed and yet wind direction did not distinctly affect the extent of the risk. However this did affect the direction in which the risk spreads. It is extremely vital to rationally plan upwind and downwind buildings or structures equipment and facilities. The available findings of the research could provide theoretical guidance for the applications and promotion of hydrogen energy in China as well as for the proactive safety and feasible emergency management of HPRISs.
Optimized Activation of Coffee-ground Carbons for Hydrogen Storage
Mar 2025
Publication
This study evaluates and compares physical chemical and dual activation methods for preparing activated carbons from spent coffee grounds to optimize their porosity for hydrogen storage. Activation processes including both one-step and two-step chemical and physical methods were investigated incorporating a novel dual activation process that combines chemical and physical activation. The findings indicate that the two-step chemical activation yields superior results producing activated carbons with a high specific surface area of 1680 m2 /g and a micropore volume of 0.616 cm3 /g. These characteristics lead to impressive hydrogen uptake capacities of 2.65 wt% and 3.66 wt% at 77 K under pressures of 1 and 70 bar respectively. The study highlights the potential of spent coffee grounds as a cost-effective precursor for producing high-performance activated carbons.
Trends, Challenges, and Viability in Green Hydrogen Initiatives
Aug 2025
Publication
This review explores the current status of green hydrogen integration into energy and industrial ecosystems. By considering notable examples of existing and developing green hydrogen initiatives combined with insights from the relevant scientific literature this paper illustrates the practical implementation of those systems according to their main end use: power and heat generation mobility industry or their combination. Main patterns are highlighted in terms of sectoral applications geographical distribution development scales storage solutions electrolyzer technology grid interaction and financial viability. Open challenges are also addressed including the high production costs an underdeveloped transport and distribution infrastructure the geopolitical aspects and the weak business models with the industrial sector appearing as the most favorable environment where such challenges may first be overcome in the medium term.
Combustion and Specific Fuel Consumption Evaluation of a Single-cylinder Engine Fueled with Ethanol, Gasoline, and a Hydrogen-rich Mixture
Mar 2024
Publication
This study evaluates the effects of adding a hydrogen gaseous mixture (HGM) to primary fuel in a single cylinder research engine (SCRE). Storage and transportation of high-purity hydrogen limit the application of this gas. With the development of fuel reforming methods using hydrogenenriched mixtures in spark-ignited internal combustion engines is a convenient option to fossil fuels. Ethanol and gasoline were used as primary fuel by direct injection (DI) and gaseous mixture was added by fumigation system (FS). The experimental analysis was developed in Spark Ignition (SI) four-stroke engine 4 valves and 0.45 L of cubic capacity. For each operation condition and primary fuel spark timing and amount of HGM were adjusted in order to keep air-fuel ratio stochiometric (λ = 100). However the spark timing and the percentage of gas varied aiming to evaluate the behavior of the air-fuel mixture. It was evaluated the specific fuel consumption and the evolution of the combustion process. The results showed that the addition of reformed gas promotes acceleration of the combustion process ethanol and gasoline. Results were expressive when using ethanol. A reduction in fuel-specific consumption - for this fuel - with combustion centralized which did not occur when gasoline was employed.
Process Flexibility of Soprtion-enhanced Steam Reforming for Hydrogen Production from Gas Mixtures Representative of Biomass-derived Syngas
Sep 2025
Publication
Hydrogen is a critical enabler of CO2 valorization essential for the synthesis of carbon-neutral fuels such as efuels and advanced biofuels. Biohydrogen produced from renewable biomass is a stable and dispatchable source of low-carbon hydrogen helping to address supply fluctuations caused by the intermittency of renewable electricity and the limited availability of electrolytic hydrogen. This study experimentally demonstrates that sorption-enhanced steam reforming (SESR) is a robust and adaptable process for hydrogen production from biomass-derived syngas-like gas streams. By incorporating in situ CO2 capture SESR overcomes the thermodynamic limits of conventional reforming achieving high hydrogen yields (>96 %) and purities (up to 99.8 vol%) across a wide range of syngas compositions. The process maintains high conversion efficiency despite variations in CO CH4 and CO2 concentrations and sustains performance even with H2-rich feeds conditions that typically inhibit reforming reactions. Among the operating parameters temperature has the greatest influence on performance followed by the steam-to-carbon ratio and space velocity. Multi-objective optimization shows that SESR can maintain high hydrogen yield (>96 %) selectivity (>99 %) and purity (>99.5 vol%) within a moderately flexible operating window. Methane reforming is identified as the main performance-limiting step with a stronger constraint on H2 yield and purity than CO conversion through the water–gas shift reaction. In addition to hydrogen SESR produces a concentrated CO2 stream suitable for downstream utilization or storage. These results support the potential of SESR as a flexible and efficient approach for hydrogen production from heterogeneous renewable feedstocks.
Towards Water-conscious Green Hydrogen and Methanol: A Techno-economic Review
Jan 2025
Publication
To enable a sustainable and socially accepted hydrogen and methanol economy it is crucial to prioritize green and water-conscious production. In this review we reveal that there is a significant research gap regarding comprehensive assessments of such production methods. We present an innovative process chain consisting of adsorption-based direct air capture solid oxide electrolysis and methanol synthesis to address this issue. To allow future comprehensive techno-economic assessments we perform a systematic literature review and harmonization of the techno-economic parameters of the process chain’s technologies. Based on the conducted literature review we find that the long-term median specific energy demand of adsorption-based direct air capture is expected to decrease to 204 kWhel/tCO2 and 1257 kWhth/tCO2 while the capture cost is expected to decrease to 162 €2024/tCO2 with a relative high uncertainty. The evaluated sources expect a future increase in system efficiency of solid oxide electrolysis to 80% while the purchase equipment costs are expected to decrease significantly. Finally we demonstrate the feasibility of the process chain from a technoeconomic perspective and show a potential reduction in external heat demand of the DAC unit of up to 34% when integrated in the process chain.
A Novel Flow Channel Design for Improving Water Splitting in Anion Exchange Membrane Electrolysers
Jul 2025
Publication
Anion exchange membrane (AEM) alkaline water electrolyser s are a promising reactor in large - scale industrial green hydrogen production. However the configurations of electrolysers especially the flow channel are not well optimised. In this work we demonstrate that the several existing flow channel designs e.g. single serpentine parallel pin can significantly affect the AEM electrolysers’ performance. The two -phase flow behaviours associated with the mass transfer of both electrolyte and produced gas bubbles within these flow channels have been simulated and thoroughly studied via a three -dimensional (3D) computational fluid dynamics (CFD) model . A novel flow channel design named Parpentine that combines the features of Parallel and Single serpentine designs is proposed with an optimised balance among the electrolyte flow distribution bubble removal rate and pressure drop. The superiority of the Parpentine flow channel is well verified in practical AEM water electrolyser experiments using commercial Ni foam and self-designed efficient NiFe and NiMo electrodes. At a cell voltage of 2.5 V compared to the benchmark serpentine design a 12.4% ~ 34.8% increase in hydrogen production efficiency can be achieved in both 1 M and 5 M KOH conditions at room temperature. This work discovers a novel design and a new method for highly efficient water electrolysers.
Direct-Coupled Improvement of a Solar-Powered Proton Exchange Membrane Electrolyzer by a Reconfigurable Source
Sep 2024
Publication
This paper deals with proton exchange membrane (PEM) electrolyzers directly coupled with a photovoltaic source. It proposes a method to increase the energy delivered to the electrolyzer by reconfiguring the electrical connection of the arrays according to solar radiation. Unlike the design criterion proposed by the literature the suggested approach considers a source obtained by connecting arrays in parallel depending on solar radiation based on a fixed photovoltaic configuration. This method allows for the optimization of the operating point at medium or low solar radiation where the fixed configuration gives poor results. The analysis is performed on a low-power plant (400 W). It is based on a commercial photovoltaic cell whose equivalent model is retrieved from data provided by the manufacturer. An equivalent model of the PEM electrolyzer is also derived. Two comparisons are proposed: the former considers a photovoltaic source designed according to the traditional approach i.e. a fixed configuration; in the latter a DC/DC converter as interface is adopted. The role of the converter is discussed to highlight the pros and cons. The optimal set point of the converter is calculated using an analytical equation that takes into account the electrolyzer model. In the proposed study an increase of 17% 62% and 93% of the delivered energy has been obtained in three characteristic days summer spring/autumn and winter respectively compared to the fixed PV configuration. These results are also better than those achieved using the converter. Results show that the proposed direct coupling technique applied to PEM electrolyzers in low-power plants is a good trade-off between a fixed photovoltaic source configuration and the use of a DC/DC converter.
Analysis of Hydrogen-fuelled Combustor Design for Micro Gas Turbine Applications: Performance, Emissions, and Stability Considerations
Oct 2025
Publication
To address global CO2 emissions and the intermittency of renewables hydrogen is emerging as a promising carbon-free fuel for micro gas turbines (MGTs) offering potential for grid stability and decarbonization. However its high flame speed and adiabatic temperature present challenges including flashback and elevated NOx emissions. Conventional combustors often lack the compactness and NOx control needed for MGT-scale systems. This study numerically investigates pure hydrogen combustion in a compact MGT combustor using a secondary air dilution strategy. Based on the experimental setup of Tanneberger et al. simulations were conducted in ANSYS Fluent using steady-state RANS equations a CRECK-based chemical mechanism and the Flamelet Generated Manifold (FGM) model. The parametric study explores three design variables swirler blockage (B) central fuel tube length (C) and fuel injection split (S) along with five secondary air configurations (T1–T5). Results show that the secondary air hole pattern significantly affects flow structure and temperature uniformity. Configuration T1 provided the most uniform exhaust and lowest NOx emissions due to better air penetration and earlier dilution. Higher B and S increased local flame temperature intensifying thermal NOx via the Zeldovich mechanism. The findings offer design guidance for stable low-emission hydrogen combustors suitable for compact MGT applications.
Research Sites of the H2STORE Project and the Relevance of Lithological Variations for Hydrogen Storage at Depths
Sep 2013
Publication
The H2STORE collaborative project investigates potential geohydraulic petrophysical mineralogical microbiological and geochemical interactions induced by the injection of hydrogen into depleted gas reservoirs and CO2- and town gas storage sites. In this context the University of Jena performs mineralogical and geochemical investigations on reservoir and cap rocks to evaluate the relevance of preferential sedimentological features which will control fluid (hydrogen) pathways thus provoking fluid-rock interactions and related variations in porosity and permeability. Thereby reservoir sand- and sealing mudstones of different composition sampled from distinct depths (different: pressure/temperature conditions) of five German locations are analysed. In combination with laboratory experiments the results will enable the characterization of specific mineral reactions at different physico-chemical conditions and geological settings.
Operating Solutions to Improve the Direct Reduction of Iron Ore by Hydrogen in a Shaft Furnace
Aug 2025
Publication
The production of iron and steel plays a significant role in the anthropogenic carbon footprint accounting for 7% of global GHG emissions. In the context of CO2 mitigation the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based direct reduction of iron ore in shaft furnaces. Before industrialization detailed modeling and parametric studies were needed to determine the proper operating parameters of this promising technology. The modeling approach selected here was to complement REDUCTOR a detailed finite-volume model of the shaft furnace which can simulate the gas and solid flows heat transfers and reaction kinetics throughout the reactor with an extension that describes the whole gas circuit of the direct reduction plant including the top gas recycling set up and the fresh hydrogen production. Innovative strategies (such as the redirection of part of the bustle gas to a cooling inlet the use of high nitrogen content in the gas and the introduction of a hot solid burden) were investigated and their effects on furnace operation (gas utilization degree and total energy consumption) were studied with a constant metallization target of 94%. It has also been demonstrated that complete metallization can be achieved at little expense. These strategies can improve the thermochemical state of the furnace and lead to different energy requirements.
Biomass-based Chemical Looping Hydrogen Production: Performance Evaluation and Economic Viability
Oct 2025
Publication
Chemical looping hydrogen generation (CLHG) from biomass is a promising technology for producing carbonnegative hydrogen. However achieving autothermal operation without sacrificing hydrogen yield presents a significant thermodynamic challenge. This study proposes and evaluates a novel thermal management strategy that enables a self-sustaining process by balancing the system’s heat load with its internal exothermic reactions. A comprehensive analysis was conducted using process simulation to assess the system’s thermodynamic performance identify key sources of inefficiency through exergy analysis and determine its economic viability via a detailed techno-economic assessment. The results show that a 200 MWth CLHG plant can produce 2.06 t-H2/h with a hydrogen production efficiency and exergy efficiency of 34.46 % and 44.4 % respectively. The exergy analysis identified the fuel reactor as the largest source of thermodynamic inefficiency accounting for 66.4 % of the total exergy destruction. The techno-economic analysis yielded a base-case minimum selling price (MSP) of hydrogen of 2.63 USD/kg a rate competitive with other carbon-capture-enabled hydrogen production methods. Sensitivity analysis confirmed that the MSP is most influenced by biomass price and discount rate. Crucially the system’s carbon-negative nature allows it to leverage carbon pricing schemes which can significantly improve its economic performance. Under the EU’s current carbon price the MSP falls to 0.98 USD/kg-H2 and it can become negative in regions with higher carbon taxes suggesting profitability from carbon credits alone. This study demonstrates that the proposed CLHG system is a technically robust and economically compelling pathway for clean hydrogen production particularly in regulatory environments that incentivize carbon capture.
After-Treatment Technologies for Emissions of Low-Carbon Fuel Internal Combustion Engines: Current Status and Prospects
Jul 2025
Publication
In response to increasingly stringent emission regulations low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels methane methanol hydrogen and ammonia by systematically summarizing their combustion characteristics and emission profiles along with a review of existing after-treatment technologies tailored to each fuel type. For methane engines unburned hydrocarbon (UHC) produced during lowtemperature combustion exhibits poor oxidation reactivity necessitating integration of oxidation strategies such as diesel oxidation catalyst (DOC) particulate oxidation catalyst (POC) ozone-assisted oxidation and zoned catalyst coatings to improve purification efficiency. Methanol combustion under low-temperature conditions tends to produce formaldehyde and other UHCs. Due to the lack of dedicated after-treatment systems pollutant control currently relies on general-purpose catalysts such as three-way catalyst (TWC) DOC and POC. Although hydrogen combustion is carbon-free its high combustion temperature often leads to elevated nitrogen oxide (NOx) emissions requiring a combination of optimized hydrogen supply strategies and selective catalytic reduction (SCR)-based denitrification systems. Similarly while ammonia offers carbon-free combustion and benefits from easier storage and transportation its practical application is hindered by several challenges including low ignitability high toxicity and notable NOx emissions compared to conventional fuels. Current exhaust treatment for ammonia-fueled engines primarily depends on SCR selective catalytic reduction-coated diesel particulate filter (SDPF). Emerging NOx purification technologies such as integrated NOx reduction via hydrogen or ammonia fuel utilization still face challenges of stability and narrow effective temperatures.
Optimization Operation Method for Hydrogen-compressed Natural Gas-Integrated Energy Systems Considering Hydrogen-Thermal Multi-Energy Inertia
Dec 2024
Publication
Hydrogen-enriched compressed natural gas (HCNG) holds significant promise for renewable energy absorption and hydrogen utilization while also increasing the complexity of Integrated Energy System (IES) structures which presents challenges for optimal HCNG-IES operation. Energy inertia provides IES with potential operational flexibility. However existing HCNG-IES optimization technologies inadequately account for hydrogen and thermal inertia leaving significant opportunities to enhance system performance. In this study we begin with a comprehensive analysis and modeling of the hydrogen-thermal multi-energy inertia (HTMEI) processes which encompass the hydrogen inertia of HCNG loads and hydrogen storage tanks as well as the thermal inertia of thermal storage tanks and buildings. Following this we develop an optimization model for the operation of HCNG-IES that incorporates HTMEI to optimize the system's overall performance in terms of economic environmental and energy efficiency criteria. The resulting optimal scheduling scheme integrates the outputs of energy devices and multi-energy inertia processes. Case studies validate the efficacy of the proposed operational optimization method. The results indicate that in comparison with an operational optimization method that does not consider energy inertia the proposed approach reduces operational costs by 34.79% carbon emissions by 32.93% electricity purchased from the grid by 95.37% and natural gas consumption by 11.8%. Furthermore the analysis has verified the mutual enhancement between hydrogen inertia and thermal inertia along with their positive individual impacts on operational performance of the HCNGIES.
The Hydrogen Revolution in Diesel Engines: A Comprehensive Review of Performance, Combustion, and Emissions
Aug 2025
Publication
Fossil fuels have been the conventional source of energy that has driven economic growth and industrial development for a long time. However their extensive use has led to immense environmental problems especially concerning the emission of greenhouse gases. These problems have stimulated researchers to turn their attention to renewable alternative fuels. Hydrogen has risen in recent years as a prospective energy carrier because it is possible to produce it in an environmentally friendly manner and because it is the most common element. Hydrogen may be used in diesel engines in a dual-fuel mode. Hydrogen has a higher heating value flame speed and diffusivity in air. These superior fuel properties can enhance performance and combustion efficiency. Hydrogen can decrease carbon monoxide unburned hydrocarbons and soot emissions due to the absence of carbon in hydrogen. However hydrogen-fuelled diesel engines have problems such as engine knocking and high nitrogen oxide emission. This paper presents a comprehensive review of the recent literature on the performance combustion and emission characteristics of hydrogen-fuelled diesel engines. Moreover this paper discusses the long-term sustainability of hydrogen production methods nitrogen oxide emission reduction techniques challenges to the large-scale use of hydrogen economic implications of hydrogen use safety issues in hydrogen applications regulations on hydrogen safety conflicting NOx emission results in the literature and material incompatibility issues in hydrogen applications. This study highlights state-of-the-art developments along with critical knowledge gaps that will be useful in guiding future research. These findings can support researchers and industry professionals in the integration of hydrogen into both existing and future diesel engine technologies. According to the literature the use of hydrogen up to 46% decreased smoke emissions by over 75% while CO2 and CO emissions significantly decreased. Moreover hydrogen addition improved thermal efficiency up to 7.01% and decreased specific fuel consumption up to 7.19%.
Hydrogen Production via Ammonia Decomposition: Kinetic Analysis
Jul 2025
Publication
Ammonia (NH3) has emerged as a promising hydrogen carrier due to its high hydrogen content favourable storage and transport properties and carbon-free utilisation. Its ability to be stored as a liquid under relatively mild conditions and its compatibility with existing industrial infrastructure make it an efficient and scalable solution for hydrogen distribution. This study conducts a detailed investigation into the kinetics of ammonia decomposition over rutheniumbased catalysts which are known for their high catalytic activity for ammonia cracking. Experimental data across a wide range of operating conditions are used to validate the proposed models with a promising catalyst (0.5 wt.% Ru/Al2O3). The study employs kinetic models based on different theoretical frameworks such as the Langmuir isotherm the Temkin-Pyzhev approach and the microkinetic model focusing on evaluating various rate-determining steps. A comparison of these models shows that those that consider nitrogen desorption a ratedetermining step provide the best predictions of NH3 conversion effectively capturing the dependencies on temperature and feed molar fractions of reactants and products. This multifaceted approach integrates experimental data with proposed kinetic models contributing to a better understanding of NH3 decomposition through parameter optimisation. The findings provide valuable insights for modelling catalytic reactors optimising conditions and enhancing catalyst performance for efficient hydrogen production from ammonia.
An Experimental Study of Jet-wall and Jet-jet Interactions of Directly Injected Hydrogen and Methane in a Wave-piston Geometry
Oct 2025
Publication
This study investigates the interactive dynamics of directly injected (DI) hydrogen and methane jets with wall and neighboring jets in a non-reactive environment focusing on the influence of wave-shaped piston geometry. Experiments were conducted in a high-pressure optical chamber using a custom 2-hole DI injector with Schlieren imaging employed to capture the temporal evolution of jet structures for varying injection durations and injection pressure ratios. Comparative analyses between conventional flat and wave-shaped wall geometries reveals that the wave geometry significantly alters post-impingement jet behavior particularly enhancing jet guidance toward the center and promoting early detachment from the wall. For both hydrogen and methane jets impinging on the wave wall exhibited accelerated formation of a central flow structure akin to the radial mixing zone (RMZ) observed in reactive diesel combustion. This effect was most pronounced after end of injection where the trailing edge of the impinged jets in the wave geometry detached earlier and exhibited inward momentum forming U-shaped flow patterns indicative of efficient mixing. Quantitative jet area analysis further showed that the wave geometry confined and redirected the jets more effectively than the flat wall especially for hydrogen at shorter injection durations. These results demonstrate that the wave-piston concept originally developed for soot reduction in diesel engines also enhances jet-jet and jet-wall interaction efficiency in gaseous DI systems by promoting structured recirculation. Moreover these results suggest that wave-based piston geometries can substantially influence fuel-air mixing dynamics even in the absence of combustion providing a foundation for optimizing combustion chamber designs for low-carbon and high-diffusive gaseous fuels.
Minimum Hydrogen Consumption Energy Management for Hybrid Fuel Cell Ships Using Improved Weighted Antlion Optimization
Oct 2025
Publication
Energy management in hybrid fuel cell ship systems faces the dual challenges of optimizing hydrogen consumption and ensuring power quality. This study proposes an Improved Weighted Antlion Optimization (IW-ALO) algorithm for multi-objective problems. The method incorporates a dynamic weight adjustment mechanism and an elite-guided strategy which significantly enhance global search capability and convergence performance. By integrating IW-ALO with the Equivalent Consumption Minimization Strategy (ECMS) an improved weighted ECMS (IW-ECMS) is developed enabling real-time optimization of the equivalence factor and ensuring efficient energy sharing between the fuel cell and the lithium-ion battery. To validate the proposed strategy a system simulation model is established in Matlab/Simulink 2017b. Compared with the rule-based state machine control and optimization-based ECMS methods over a representative 300 s ferry operating cycle the IW-ECMS achieves a hydrogen consumption reduction of 43.4% and 42.6% respectively corresponding to a minimum total usage of 166.6 g under the specified load profile while maintaining real-time system responsiveness. These reductions reflect the scenario tested characterized by frequent load variations. Nonetheless the results highlight the potential of IW-ECMS to enhance the economic performance of ship power systems and offer a novel approach for multi-objective cooperative optimization in complex energy systems.
Production of Hydrogen-Rich Syngas via Biomass-Methane Co-Pyrolysis: Thermodynamic Analysis
Oct 2025
Publication
This study presents a thermodynamic equilibrium analysis of hydrogen-rich syngas production via biomass–methane co-pyrolysis employing the Gibbs free energy minimization method. A critical temperature threshold at 700 ◦C is identified below which methanation and carbon deposition are thermodynamically favored and above which cracking and reforming reactions dominate enabling high-purity syngas generation. Methane addition shifts the reaction pathway towards increased reduction significantly enhancing carbon and H2 yields while limiting CO and CO2 emissions. At 1200 ◦C and a 1:1 methane-tobiomass ratio cellulose produces 50.84 mol C/kg 119.69 mol H2/kg and 30.65 mol CO/kg; lignin yields 78.16 mol C/kg 117.69 mol H2/kg and 19.14 mol CO/kg. The H2/CO ratio rises to 3.90 for cellulose and 6.15 for lignin with energy contents reaching 43.16 MJ/kg and 52.91 MJ/kg respectively. Notably biomass enhances methane conversion from 25% to over 53% while sustaining a 67% H2 selectivity. These findings demonstrate that syngas composition and energy content can be precisely controlled via methane co-feeding ratio and temperature offering a promising approach for sustainable tunable syngas production.
Green Hydrogen Production with 25 kW Alkaline Electrolyzer Pilot Plant Shows Hydrogen Flow Rate Exponential Asymptotic Behavior with the Stack Current
Sep 2025
Publication
Green H2 production using electrolyzer technology is an emerging method in the current mandate using renewable-based power sources integrated with electrolyzer technology. Prior research has been extensively studied to understand the effects of intermittent power sources on the hydrogen production output. However in this context the characteristics of the working electrolyzer behave differently under system-level operation. In this paper we investigated a 25 kW alkaline electrolyzer for its stack performance in terms of stack efficiency the stack current vs. stack voltage and the relationship between the H2 flow rate and stack current. It was found that the current of 52 A produces the best system efficiency of 64% under full load operation for 1 h. The H2 flow rate behaves in an exponential asymptotic pattern and it is also found that the ramp-up time for hydrogen generation by the electrolyzer is significantly low thus marking it as an efficient option for producing green hydrogen with the input of a hybrid grid and renewable PV-based power sources. Hydrogen production techno-economic analysis has been conducted and the LCOH is found to be on the higher side for the current electrolyzer under investigation.
Detonation Processes Application to Increase Thermal Efficiency in Gas Turbine Cycles: Case Study for Hydrogen Enriched Fuels
Dec 2024
Publication
This work describes a thermodynamic comparison of the thermal efficiency of gas turbine engines featuring a conventional combustion chamber and a detonation combustion chamber using methane ethanol and mixtures of both ethanol and hydrogen and methane and hydrogen as fuels. The composition of gases was determined by the minimization of the Gibbs free energy whereas temperature pressure and velocity of detonation waves were determined by the Chapman-Jouguet theory. The results obtained here show that the DCC gas turbine cycle has a higher net work output and thermal efficiency than the CCC gas turbine cycle for all fuels studied in this work. The maximum thermal efficiency obtained with the DCC gas turbine cycle is indeed 57.22% which represents a 53.75% improvement over the maximum thermal efficiency obtained with the CCC gas turbine cycle (which has a peak thermal efficiency of 37.22%) under the same pressure ratio and turbine inlet temperature.
Alkaline Electrolysis for Green Hydrogen Production: A Novel, Simple Model for Thermo-electrochemical Coupled System Analysis
Dec 2024
Publication
Alkaline water electrolysis (AWE) is the most mature electrochemical technology for hydrogen production from renewable electricity. Thus its mathematical modeling is an important tool to provide new perspectives for the design and optimization of energy storage and decarbonization systems. However current models rely on numerous empirical parameters and neglect variations of temperature and concentration alongside the electrolysis cell which can impact the application and reliability of the simulation results. Thus this study proposes a simple four-parameter semi-empirical model for AWE system analysis which relies on minimal fitting data while providing reliable extrapolation results. In addition the effect of model dimensionality (i.e. 0D 1/2D and 1D) are carefully assessed in the optimization of an AWE system. The results indicate that the proposed model can accurately reproduce literature data from four previous works (R 2 ≥ 0.98) as well as new experimental data. In the system optimization the trade-offs existing in the lye cooling sizing highlight that maintaining a low temperature difference in AWE stacks (76-80°C) leads to higher efficiencies and lower hydrogen costs.
Optimization of Green Hydrogen Production via Direct Seawater Electrolysis Powered by Hybrid PV-Wind Energy: Response Surface Methodology
Oct 2025
Publication
This study explored the optimization of green hydrogen production via seawater electrolysis powered by a hybrid photovoltaic (PV)-wind system in KwaZulu-Natal South Africa. A Box–Behnken Design (BBD) adapted from Response Surface Methodology (RSM) was utilized to address the synergistic effect of key operational factors on the integration of renewable energy for green hydrogen production and its economic viability. Addressing critical gaps in renewable energy integration the research evaluated the feasibility of direct seawater electrolysis and hybrid renewable systems alongside their techno-economic viability to support South Africa’s transition from a coal-dependent energy system. Key variables including electrolyzer efficiency wind and PV capacity and financial parameters were analyzed to optimize performance metrics such as the Levelized Cost of Hydrogen (LCOH) Net Present Cost (NPC) and annual hydrogen production. At 95% confidence level with regression coefficient (R2 > 0.99) and statistical significance (p < 0.05) optimal conditions of electricity efficiency of 95% a wind-turbine capacity of 4960 kW a capital investment of $40001 operational costs of $40000 per year a project lifetime of 29 years a nominal discount rate of 8.9% and a generic PV capacity of 29 kW resulted in a predictive LCOH of 0.124$/kg H2 with a yearly production of 355071 kg. Within the scope of this study with the goal of minimizing the cost of production the lowest LCOH observed can be attributed to the architecture of the power ratios (Wind/PV cells) at high energy efficiency (95%) without the cost of desalination of the seawater energy storage and transportation. Electrolyzer efficiency emerged as the most influential factor while financial parameters significantly affected the cost-related responses. The findings underscore the technical and economic viability of hybrid renewable-powered seawater electrolysis as a sustainable pathway for South Africa’s transition away from coal-based energy systems.
Low-Carbon Hydrogen Production and Use on Farms: European and Global Perspectives
Oct 2025
Publication
This article examines the growing potential of low-emission hydrogen as an innovative solution supporting the decarbonization of the agricultural sector. It discusses its potential applications on farms including as an energy source for powering agricultural machinery producing fertilizers and storing energy from renewable sources. Within the European context it considers actions arising from the European Green Deal and the “Fit for 55” strategy which promote the development of hydrogen infrastructure and support research into low-emission technologies. The article also discusses global initiatives and trends in the development of the hydrogen economy pointing to international cooperation investment and the need for technology standardization. It highlights the challenges related to cost infrastructure and scalability as well as the opportunities hydrogen offers for a sustainable and energy-efficient agriculture of the future.
Assessing Cement Durability in Hydrogen-driven Underground Storage Systems
Oct 2025
Publication
As the world shifts towards renewable energy sources the need for reliable large-scale energy storage solutions becomes increasingly critical. Underground Hydrogen Storage (UHS) emerges as a promising option to bridge this gap. However the success of UHS heavily depends on the durability of infrastructure materials particularly cement in wellbores and in unlined rock caverns (URCs) where it serves a dual role in grouting and sealing. This study explores the chemical interactions between hydrogen and cement in these environments exploring how hydrogen might compromise cement integrity over time. We employed advanced thermodynamic analyses kinetic batch tests and 1D reactive transport models to simulate the behaviour of cement when exposed to hydrogen under conditions found in two potential UHS sites: the Haje URC in the Czech Republic and a depleted gas field in the Perth Basin Western Australia. Our results reveal that while certain cement phases are vulnerable to dissolution the overall increase in porosity is minimal suggesting a lower risk of significant degradation. Notably hydrogen was found to penetrate 5 cm of cement within just 4–5 days at both sites. These insights are crucial for enhancing the design and maintenance strategies of UHS facilities. Moreover this study not only advances our understanding of material sciences in the context of hydrogen energy storage but also underscores the importance of sustainable infrastructure in the transition away from fossil fuels.
Adaptive Hydrogen Fuel Cell Vehicle Scheduling Strategy Based on Traffic State Assessment in Power-Transportation Coupled Networks
Aug 2025
Publication
As the global demand for energy increases and the transition to renewable and clean sources accelerates microgrid (MG) has emerged as a promising solution. Hydrogen fuel cell vehicles (HFCVs) offer significant advantages over gasoline vehicles in terms of reducing carbon dioxide emissions. However the development of HFCVs is hindered by the substantial up-front costs of hydrogen refueling stations (HRSs) coupled with the high cost of hydrogen transportation and the limitations of the hydrogen supply chain. This research proposes a multimicrogrid (MMG) system that integrates hydrogen energy and utilizes it as the HRS for fuel vehicle refueling. An adaptive hydrogen energy management method is employed for fuel cell vehicles to optimize the coupling between the transportation network and the power system. An integrated transportation state assessment model is developed and a smart MMG system is deployed to receive information from the transportation network. Building on this foundation an adaptive hydrogen scheduling model is developed. HFCVs are influenced by the hydrogen price adjustments leading them to travel to different MGs for refueling which in turn regulates the unit output of the MMG system. The MMG system is then integrated with the IEEE 33 bus distribution system to analyze the daily load balance. This integrated approach results in reduced traffic congestion lower MG costs and optimized power distribution network load balance.
Is Green Hydrogen a Strategic Opportunity for Albania? A Techno-Economic, Environmental, and SWOT Analysis
Oct 2025
Publication
Hydrogen is increasingly recognized as a clean energy vector and storage medium yet its viability and strategic role in the Western Balkans remain underexplored. This study provides the first comprehensive techno-economic environmental and strategic evaluation of hydrogen production pathways in Albania. Results show clear trade-offs across options. The levelized cost of hydrogen (LCOH) is estimated at 8.76 €/kg H2 for grid-connected 7.75 €/kg H2 for solar and 7.66 €/kg H2 for wind electrolysis—values above EU averages and reliant on lower electricity costs and efficiency gains. In contrast fossil-based hydrogen via steam methane reforming (SMR) is cheaper at 3.45 €/kg H2 rising to 4.74 €/kg H2 with carbon capture and storage (CCS). Environmentally Life Cycle Assessment (LCA) results show much lower Global Warming Potential.
Techno-economic Evaluation of Retrofitting Power-to-methanol: Grid-connected Energy Arbitrage vs Standalone Renewable Energy
Aug 2025
Publication
The power-to-methanol (PtMeOH) will play a crucial role as a form of renewable chemical energy storage. In this paper PtMeOH techno-economics are assessed using the promising configuration from the previous work (Mbatha et al. [1]). This study evaluated the effect of parameters such as the CO2 emission tax electricity price and CAPEX reduction on the product methanol economic parity with respect to a reference case. Superior to previous economic studies a scenario where an existing methanol synthesis infrastructure is 100 % retrofitted with the promising electrolyser is assessed in terms of its economics and the associated economic parity. The volatile South African electricity market is considered as a case study. The sensitivity of the PtMeOH and green H2 profitability are checked. Grid-connected and standalone renewable energy PtMeOH scenarios are assessed. Foremost generalisable effect trends of these parameters on the net present value (NPV) and the levelized cost of methanol(LCOMeOH) and H2 (LCOH2) are discussed. The results show that economic parity of H2 (LCOH2 = current selling price = 4.06 €/kg) can be reached with an electricity price of 30 €/MWh and 70 % of the CAPEX. While the LCOMeOH will still be above 2 €/kg at 80 % of the CAPEX and electricity price of 20 €/MWh. This indicates that even if the CAPEX reduces to 20 % of its original in this study and the electricity price reduces to about 20 €/MWh the LCOMEOH will still not reach economic parity (LCOMeOH > current selling price = 0.44 €/kg). The results show that to make the retrofitted plant with a minimum of 20 years of life span profitable a feasible reduction in the electricity price to below 10 €/MWh along with favourable incentives such as CO2 credit and reduction in CAPEX particularly that of the electrolyser and treatment of the PtMeOH as a multiproduct plant will be required.
Reviewing Sector Coupling in Offshore Energy System Integration Modelling: The North Sea Context
Dec 2024
Publication
Offshore energy system integration is particularly important for realising a rapid and cost-effective low-carbon energy transition in the North Sea region. Effective implementation of strategies that require collaboration be tween countries developers and operators must be underpinned by robust and comprehensive modelling results. Intra-system interactions and diversity of sectors needed to facilitate the energy transition must be adequately captured within whole-system models. Historically consideration of the offshore energy environment within macro-scale models has been supplementary to the onshore system. However increased deployment of offshore wind focus on geological storage for energy security and technological development and investment in hydrogen and carbon storage projects highlights the importance of expanding the role of the offshore system within modelling. This study presents a comprehensive investigation of energy system integration challenges within offshore system modelling and how these define the requirements of the employed methodology. The findings suggest large-scale offshore system modelling studies typically include few energy vectors limited spatial resolution and simplified network flow characteristics. Despite the North Sea focus these challenges reflect fundamental barriers within large-scale offshore energy system modelling and thus extend to similar offshore contexts globally. Key approaches are identified to maximise sectoral and technological diversity while maintaining sufficient temporal and spatial resolution to suitably represent the evolving offshore system are identified. We make concrete suggestions for future work in this field based on identified best practice among the reviewed literature.
Evaluation of the Impact of Gaseous Hydrogen on Pipeline Steels Utilizing Hollow Specimen Technique and μCT
Feb 2024
Publication
The high potential of hydrogen as a key factor on the pathway towards a climate neutral economy leads to rising demand in technical applications where gaseous hydrogen is used. For several metals hydrogen-metal interactions could cause a degradation of the material properties. This is especially valid for low carbon and highstrength structural steels as they are commonly used in natural gas pipelines and analyzed in this work. This work provides an insight to the impact of hydrogen on the mechanical properties of an API 5L X65 pipeline steel tested in 60 bar gaseous hydrogen atmosphere. The analyses were performed using the hollow specimen technique with slow strain rate testing (SSRT). The nature of the crack was visualized thereafter utilizing μCT imaging of the sample pressurized with gaseous hydrogen in comparison to one tested in an inert atmosphere. The combination of the results from non-conventional mechanical testing procedures and nondestructive imaging techniques has shown unambiguously how the exposure to hydrogen under realistic service pressure influences the mechanical properties of the material and the appearance of failure.
Future of Hydrogen in the U.S. Energy Sector: MARKAL Modeling Results
Mar 2024
Publication
Hydrogen is an attractive energy carrier which could play a role in decarbonizing process heat power or transport applications. Though the U.S. already produces about 10 million metric tons of H2 (over 1 quadrillion BTUs or 1% of the U.S. primary energy consumption) production technologies primarily use fossil fuels that release CO2 and the deployment of other cleaner H2 production technologies is still in the very early stages in the U.S. This study explores (1) the level of current U.S. hydrogen production and demand (2) the importance of hydrogen to accelerate a net-zero CO2 future and (3) the challenges that must be overcome to make hydrogen an important part of the U.S. energy system. The study discusses four scenarios and hydrogen production has been shown to increase in the future but this growth is not enough to establish a hydrogen economy. In this study the characteristics of hydrogen technologies and their deployments in the long-term future are investigated using energy system model MARKAL. The effects of strong carbon constraints do not cause higher hydrogen demand but show a decrease in comparison to the business-as-usual scenario. Further according to our modeling results hydrogen grows only as a fuel for hard-to-decarbonize heavy-duty vehicles and is less competitive than other decarbonization solutions in the U.S. Without improvements in reducing the cost of electrolysis and increasing the performance of near-zero carbon technologies for hydrogen production hydrogen will remain a niche player in the U.S. energy system in the long-term future. This article provides the reader with a comprehensive understanding of the role of hydrogen in the U.S. energy system thereby explaining the long-term future projections.
Multiplier Effect on Reducing Carbon Emissions of Joint Demand and Supply Side Measures in the Hydrogen Market
Jun 2024
Publication
Hydrogen energy is critical in replacing fossil fuels and achieving net zero carbon emissions by 2050. Three measures can be implemented to promote hydrogen energy: reduce the cost of low-carbon hydrogen through technological improvements increase the production capacity of low-carbon hydrogen by stimulating investment and enhance hydrogen use as an energy carrier and in industrial processes by demand-side policies. This article examines how effective these measures are if successfully implemented in boosting the hydrogen market and reducing global economy-wide carbon emissions using a global computable general equilibrium model. The results show that all the measures increase the production and use of low-carbon hydrogen whether implemented alone or jointly. Notably the emissions reduced by joint implementation of all the measures in 2050 become 2.5 times the sum of emissions reduced by individual implementation indicating a considerable multiplier effect. This suggests supply and demand side policies be implemented jointly to maximize their impact on reducing emissions.
Integrating Scenario-based Stochastic-model Predictive Control and Load Forecasting for Energy Management of Grid-connected Hybrid Energy Storage Systems
Jun 2023
Publication
In the context of renewable energy systems microgrids (MG) are a solution to enhance the reliability of power systems. In the last few years there has been a growing use of energy storage systems (ESSs) such as hydrogen and battery storage systems because of their environmentally-friendly nature as power converter devices. However their short lifespan represents a major challenge to their commercialization on a large scale. To address this issue the control strategy proposed in this paper includes cost functions that consider the degradation of both hydrogen devices and batteries. Moreover the proposed controller uses scenarios to reflect the stochastic nature of renewable energy resources (RESs) and load demand. The objective of this paper is to integrate a stochastic model predictive control (SMPC) strategy for an economical/environmental MG coupled with hydrogen and battery ESSs which interacts with the main grid and external consumers. The system's participation in the electricity market is also managed. Numerical analyses are conducted using RESs profiles and spot prices of solar panels and wind farms in Abu Dhabi UAE to demonstrate the effectiveness of the proposed controller in the presence of uncertainties. Based on the results the developed control has been proven to effectively manage the integrated system by meeting overall constraints and energy demands while also reducing the operational cost of hydrogen devices and extending battery lifetime.
Hydrogen Storage in Depleted Gas Reservoirs with Carbon Dioxide as a Cushion Gas: Exploring a Lateral Gas Seperation Strategy to Reduce Gas Mixing
Jan 2025
Publication
Large-scale H2 storage in depleted hydrocarbon reservoirs offers a practical way to use existing energy infra structure to address renewable energy intermittency. Cushion gases often constitute a large initial investment especially when expensive H2 is used. Cheaper alternatives such as CO2 or in-situ CH4 can reduce costs and in the case of CO2 integrate within carbon capture and storage systems. This study explored cushion and working gas dynamics through numerically modelling a range of storage scenarios in laterally extensive reservoirs – such as those in the Southern North Sea. In all simulations the cushion and working gases were separated laterally to limit contact surface area and therefore mixing. This work provides valuable insights into (i) capacity estima tions of CO2 storage and H2 withdrawal (ii) macro-scale fluid dynamics and (iii) the effects of gas mixing trends on H2 purity. The results underscore key trade-offs between CO2 storage volumes and H2 withdrawal and purity
A Hybrid Robust-stochastic Approach for Optimal Scheduling of Interconnected Hydrogen-based Energy Hubs
Jan 2021
Publication
The energy hub (EH) concept is an efficient way to integrate various energy carriers. Inaddition demand response programmes (DRPs) are complementary to improving anEH's efficiency and increase energy system flexibility. The hydrogen storage system as agreen energy carrier has an essential role in balancing supply and demand preciselysimilar to other storage systems. A hybrid robust‐stochastic approach is applied herein toaddress fluctuations in wind power generation multiple demands and electricity marketprice in a hydrogen‐based smart micro‐energy hub (SMEH) with multi‐energy storagesystems. The proposed hybrid approach enables the operator to manage the existinguncertainties with more flexibility. Also flexible electrical and thermal demands under anintegrated demand response programme (IDRP) are implemented in the proposedSMEH. The optimal scheduling of the hydrogen‐based SMEH problem considering windpower generation and electricity market price fluctuations as well as IDRP is modelledvia a mixed‐integer linear programming problem. Finally the validity and applicability ofthe proposed model are verified through simulation and numerical results.
Development of Effective Hydrogen Production and Process Electrification Systems to Reduce the Environmental Impacts of the Methanol Production Process
Jun 2025
Publication
The methanol industry responsible for around 10% of GHG emissions in the chemical sector faces growing challenges due to its environmental impacts. This article aims to reduce the lifecycle environmental impacts of the CO2-to-methanol process by exploring advanced electrification methods for hydrogen production and CO2 conversion. The process analysis and comprehensive life cycle assessment (LCA) are conducted on four different methanol production pathways: conventional natural gas CO2 hydrogenation trireforming of methane (TRM) and the novel electrified combined reforming (ECRM) by including two hydrogen production routes: PEM electrolysis and the innovative plasma-assisted methane pyrolysis. The LCA was performed using the ReCiPe method covering midpoint and endpoint categories across four Canadian provinces—British Columbia Alberta Ontario and Quebec. The efficient plasma technology improves environmental performance for all pathways. The plasma-assisted CO2 hydrogenation pathway in British Columbia and Quebec shows the lowest GHG emissions achieving -2.01 and -1.72 kg CO2/kg MeOH respectively. In Alberta the conventional pathway has the lowest impact followed by plasmaassisted TRM. The CO2 hydrogenation with the PEM pathway shows the highest GHG emissions at 8.00 kg CO2/kg MeOH highlighting the challenges of using hydrogen from PEM electrolysis in regions with carbon-intensive electricity grids. However the inclusion of carbon black as a byproduct further reduces the environmental impact making these plasma-assisted pathways more viable. This LCA study underscores the influence of regional factors and technology choices on the sustainability of methanol production with an example of a 107% reduction in GHG emissions when plasma-assisted ECRM is shifting from Alberta to Quebec.
Hydrogen in Burners: Economic and Environmental Implications
Nov 2024
Publication
For centuries fossil fuels have been the primary energy source but their unchecked use has led to significant environmental and economic challenges that now shape the global energy landscape. The combustion of these fuels releases greenhouse gases which are critical contributors to the acceleration of climate change resulting in severe consequences for both the environment and human health. Therefore this article examines the potential of hydrogen as a sustainable alternative energy source capable of mitigating these climate impacts. It explores the properties of hydrogen with particular emphasis on its application in industrial burners and furnaces underscoring its clean combustion and high energy density in comparison to fossil fuels and also examines hydrogen production through thermochemical and electrochemical methods covering green gray blue and turquoise pathways. It discusses storage and transportation challenges highlighting methods like compression liquefaction chemical carriers (e.g. ammonia) and transport via pipelines and vehicles. Hydrogen combustion mechanisms and optimized burner and furnace designs are explored along with the environmental benefits of lower emissions contrasted with economic concerns like production and infrastructure costs. Additionally industrial and energy applications safety concerns and the challenges of large-scale adoption are addressed presenting hydrogen as a promising yet complex alternative to fossil fuels.
Determining Onshore or Offshore Hydrogen Storage for Large Offshore Wind Parks: The North Sea Wind Power Hub Case
Aug 2024
Publication
The large-scale integration of renewable energy sources leads to daily and seasonal mismatches between supply and demand and the curtailment of wind power. Hydrogen produced from surplus wind power offers an attractive solution to these challenges. In this paper we consider a large offshore wind park and analyze the need for hydrogen storage at the onshore and offshore sides of a large transportation pipeline that connects the wind park to the mainland. The results show that the pipeline with line pack storage though important for day-to-day fluctuations will not offer sufficient storage capacity to bridge seasonal differences. Furthermore the results show that if the pipeline is sufficiently sized additional storage is only needed on one side of the pipeline which would limit the needed investments. Results show that the policy which determines what part of the wind power is fed into the electricity grid and what part is converted into hydrogen has a significant influence on these seasonal storage needs. Therefore investment decisions for hydrogen systems should be made by considering both the onshore and offshore storage requirements in combination with electricity transport to the mainland.
Zone Negligible Extent: Example of Specific Detailed Risk Assessment for Low Pressure Equipment in a Hydrogen Refuelling Station
Sep 2023
Publication
The MultHyFuel project aims to develop evidence-based guidelines for the safe implementation of Hydrogen Refueling Stations (HRS) in a multi-fuel context. As a part of the generation of good practice guidelines for HRS Hazardous Area Classification (HAC) methodologies were analyzed and applied to case studies representing example configurations of HRS. It has been anticipated that Negligible Extent (NE) classifications might be applicable for sections of the HRS for instance a hydrogen generator. A NE zone requires that an ignition of a flammable cloud would result in negligible consequences. In addition depending on the pressure of the system IEC 60079-10-1:2020 establishes specific requirements in order to classify the hazardous area as being of NE. One such requirement is that a zone of NE shall not be applied for releases from flammable gas systems at pressures above 2000 kPag (20 barg) unless a specific detailed risk assessment is documented. However there is no definition within the standard as to the requirements of the specific detailed risk assessment. In this work an example for a specific detailed risk assessment for the NE classification is presented:<br/>• Firstly the requirements of cloud volume dilution and background concentration for a zone of NE classification from IEC 60079-10-1:2020 are analyzed for hydrogen releases from equipment placed in a mechanically ventilated enclosure.<br/>• Secondly the consequences arising from the ignition of the localized cloud are estimated and compared to acceptable harm criteria in order to assess if negligible consequences are obtained from the scenario.<br/>• In addition a specific qualitative risk assessment for the ignition of the cloud in the enclosure was considered incorporating the estimated consequences and analyzing the available safeguards in the example system.<br/>Recommendations for the specific detailed risk assessment are proposed for this scenario with the intention to support improved definition of the requirement in future revisions of IEC 60079-10-1.
Hydrogen Sampling Systems Adapted to Heavy-duty Refuelling Stations' Current and Future Specifications - A Review
Sep 2024
Publication
To meet the new regulation for the deployment of alternative fuels infrastructure which sets targets for electric recharging and hydrogen refuelling infrastructure by 2025 or 2030 a large infrastructure comprising trucksuitable hydrogen refuelling stations will soon be required. However further standardisation is required to support the uptake of hydrogen for heavy-duty transport for Europe’s green energy future. Hydrogen-powered vehicles require pure hydrogen as some contaminants can reduce the performance of the fuel cell even at very low levels. Even if previous projects have paved the way for the development of the European quality infrastructure for hydrogen conformity assessment sampling systems and methods have yet to be developed for heavy-duty hydrogen refuelling stations (HD-HRS). This study reviews different aspects of the sampling of hydrogen at heavy-duty hydrogen refuelling stations for purity assessment with a focus on the current and future specifications and operations at HD-HRS. This study describes the state-of-the art of sampling systems currently under development for use at HD-HRS and highlights a number of aspects which must be taken into consideration to ensure safe and accurate sampling: risk assessment for the whole sampling exercise selection of cylinders methods to prepare cylinders before the sampling filling pressure and venting of the sampling systems.
Evaluation of Green and Blue Hydrogen Production Potential in Saudi Arabia
Sep 2024
Publication
The Kingdom of Saudi Arabia has rich renewable energy resources specifically wind and solar in addition to geothermal beside massive natural gas reserves. This paper investigates the potential of both green and blue hydrogen production for five selected cities in Saudi Arabia. To accomplish the said objective a techno-economic model is formulated. Four renewable energy scenarios are evaluated for a total of 1.9 GW installed capacity to reveal the best scenario of Green Hydrogen Production (GHP) in each city. Also Blue Hydrogen Production (BHP) is investigated for three cases of Steam Methane Reforming (SMR) with different percentages of carbon capture. The economic analysis for both GHP and BHP is performed by calculating the Levelized Cost of Hydrogen (LCOH) and cash flow. The LCOH for GHP range for all cities ($3.27/kg -$12.17/kg)) with the lowest LCOH is found for NEOM city (50% PV and 50% wind) ($3.27/kg). LCOH for BHP are $0.534/kg $0.647/kg and $0.897/kg for SMR wo CCS/U SMR 55% CCS/U and SMR 90% CCS/U respectively.
A Numerial Study on Hydrogen Blending in Natural Gas Pipeline by a T-pipe
Mar 2024
Publication
In order to study the flow blending and transporting process of hydrogen that injects into the natural gas pipelines a three-dimensional T-pipe blending model is established and the flow characteristics are investigated systematically by the large eddy simulation (LES). Firstly the mathematical formulation of hydrogen-methane blending process is provided and the LES method is introduced and validated by a benchmark gas blending model having experimental data. Subsequently the T-pipe blending model is presented and the effects of key parameters such as the velocity of main pipe hydrogen blending ratio diameter of hydrogen injection pipeline diameter of main pipe and operating pressure on the hydrogen-methane blending process are studied systematically. The results show that under certain conditions the gas mixture will be stratified downstream of the blending point with hydrogen at the top of the pipeline and methane at the bottom of the pipeline. For the no-stratified scenarios the distance required for uniformly mixing downstream the injection point increases when the hydrogen mixing ratio decreases the diameter of the hydrogen injection pipe and the main pipe increase. Finally based on the numerical results the underlying physics of the stratification phenomenon during the blending process are explored and an indicator for stratification is proposed using the ratio between the Reynolds numbers of the natural gas and hydrogen.
Novel Model Reference-based Hybrid Decoupling Control of Multiport-isolated DC-DC Converter for Hydrogen Energy Storage System Integration
Dec 2024
Publication
Hydrogen energy storage systems (HESS) are increasingly recognised for their role in sustainable energy ap plications though their performance depends on efficient power electronic converter (PEC) interfaces. In this paper a multiport-isolated DC-DC converter characterised by enhanced power density reduced component count and minimal conversion stages is implemented for HESS applications. However the high-frequency multiwinding transformer in this converter introduces cross-coupling effects complicating control and result ing in large power deviations from nominal values due to step changes on other ports which adversely impact system performance. To address this issue a novel model reference-based decoupling control technique is pro posed to minimise the error between the actual plant output and an ideal decoupling reference model which represents the cross-coupling term. This model reference-based decoupling control is further extended into a hybrid decoupling control technique by integrating a decoupling matrix achieving more robust decoupling across a wider operating region. The hybrid decoupling technique mathematically ensures an improved control performance with the cross-coupling term minimised through a proportional-derivative controller. The proposed hybrid decoupling controller achieves a maximum power deviation.
Impact of an Electrode-diaphragm Gap on Diffusive Hydrogen Crossover in Alkaline Water Electrolysis
Oct 2023
Publication
Hydrogen crossover limits the load range of alkaline water electrolyzers hindering their integration with renewable energy. This study examines the impact of the electrode-diaphragm gap on crossover focusing on diffusive transport. Both finite-gap and zero-gap designs employing the state-of-the-art Zirfon UTP Perl 500 and UTP 220 diaphragms were investigated at room temperature and with a 12 wt% KOH electrolyte. Experimental results reveal a relatively high crossover for a zero-gap configuration which corresponds to supersaturation levels at the diaphragm-electrolyte interface of 8–80 with significant fluctuations over time and between experiments due to an imperfect zero-gap design. In contrast a finite-gap (500 μm) has a significantly smaller crossover corresponding to supersaturation levels of 2–4. Introducing a cathode gap strongly decreases crossover unlike an anode gap. Our results suggest that adding a small cathode-gap can significantly decrease gas impurity potentially increase the operating range of alkaline electrolyzers while maintaining good efficiency.
Status and Perspectives of Key Materials for PEM Electrolyzer
Sep 2024
Publication
Proton exchange membrane water electrolyzer (PEMWE) represents a promising technology for the sustainable production of hydrogen which is capable of efficiently coupling to intermittent electricity from renewable energy sources (e.g. solar and wind). The technology with compact stack structure has many notable advantages including large current density high hydrogen purity and great conversion efficiency. However the use of expensive electrocatalysts and construction materials leads to high hydrogen production costs and limited application. In this review recent advances made in key materials of PEMWE are summarized. First we present a brief overview about the basic principles thermodynamics and reaction kinetics of PEMWE. We then describe the cell components of PEMWE and their respective functions as well as discuss the research status of key materials such as membrane electrocatalysts membrane electrode assemblies gas diffusion layer and bipolar plate. We also attempt to clarify the degradation mechanisms of PEMWE under a real operating environment including catalyst degradation membrane degradation bipolar plate degradation and gas diffusion layer degradation. We finally propose several future directions for developing PEMWE through devoting more efforts to the key materials.
Optimization of Hydrogen Production System Performance Using Photovoltaic/Thermal-Coupled PEM
Oct 2024
Publication
A proton exchange membrane electrolyzer can effectively utilize the electricity generated by intermittent solar power. Different methods of generating electricity may have different efficiencies and hydrogen production rates. Two coupled systems namely PV/T- and CPV/T-coupling PEMEC respectively are presented and compared in this study. A maximum power point tracking algorithm for the photovoltaic system is employed and simulations are conducted based on the solar irradiation intensity and ambient temperature of a specific location on a particular day. The simulation results indicate that the hydrogen production is relatively high between 11:00 and 16:00 with a peak between 12:00 and 13:00. The maximum hydrogen production rate is 99.11 g/s and 29.02 g/s for the CPV/T-PEM and PV/T-PEM systems. The maximum energy efficiency of hydrogen production in CPV/T-PEM and PV/T-PEM systems is 66.7% and 70.6%. Under conditions of high solar irradiation intensity and ambient temperature the system demonstrates higher total efficiency and greater hydrogen production. The CPV/T-PEM system achieves a maximum hydrogen production rate of 2240.41 kg/d with a standard coal saving rate of 15.5 tons/day and a CO2 reduction rate of 38.0 tons/day. Compared to the PV/T-PEM system the CPV/T-PEM system exhibits a higher hydrogen production rate. These findings provide valuable insights into the engineering application of photovoltaic/thermal-coupled hydrogen production technology and contribute to the advancement of this field.
Nanomaterials for Hydrogen Storage Applications: A Review
Sep 2008
Publication
Nanomaterials have attracted great interest in recent years because of the unusual mechanical electrical electronic opticalmagnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respectto energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of thisnew class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes nano-magnesiumbased hydrides complex hydride/carbon nanocomposites boron nitride nanotubes TiS2/MoS2 nanotubes alanates polymernanocomposites and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen.Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related tothe nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomicor molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides forimproving the thermodynamics and hydrogen reaction kinetics are discussed. In addition various carbonaceous nanomaterialsand novel sorbent systems (e.g. carbon nanotubes fullerenes nanofibers polyaniline nanospheres and metal organic frameworksetc.) and their hydrogen storage characteristics are outlined.
Advancements in Hydrogen Storage Technologies: Integrating with Renewable Energy and Innovative Solutions for a Sustainable Future
Apr 2025
Publication
Hydrogen storage plays a crucial role in achieving net-zero emissions by enabling large-scale energy storage balancing renewable energy fluctuations and ensuring a stable supply for various applications. This study provides a comprehensive analysis of hydrogen storage technologies with a particular focus on underground storage in geological formations such as salt caverns depleted gas reservoirs and aquifers. These formations offer high-capacity storage solutions with salt caverns capable of holding up to 6 TWh of hydrogen and depleted gas reservoirs exceeding 1 TWh per site. Case studies from leading projects demonstrate the feasibility of underground hydrogen storage (UHS) in reducing energy intermittency and enhancing supply security. Challenges such as hydrogen leakage groundwater contamination induced seismicity and economic constraints remain critical concerns. Our findings highlight the technical economic and regulatory considerations for integrating UHS into the oil and gas industry emphasizing its role in sustainable energy transition and decarbonization strategies.
Development of a Novel Renewable Energy-based Integrated System Coupling Biomass and H2S Sources for Clean Hydrogen Production
Oct 2024
Publication
The present work aims to develop a novel integrated energy system to produce clean hydrogen power and biochar. The Palmaria palmata a type of seaweed and hydrogen sulfide from the industrial gaseous waste streams are taken as potential feedstock. A combined thermochemical approach is employed for the processing of both feedstocks. For clean hydrogen production the zinc sulfide thermochemical cycle is employed. Both stoichiometric and non-stoichiometric equilibrium-based models of the proposed plant design are developed in the Aspen Plus software and a comprehensive thermodynamic analysis of the system is also performed by evaluating energy and exergy efficiencies. The study further explores the modeling simulation and parametric analyses of various subsections to enhance the hydrogen and biochar production rate. The parametric analyses show that the first step of the thermochemical cycle (sulfurization reaction) follows stoichiometric pathway and the ZnO to H2S ratio of 1 represents the optimal point for reactant conversion. On the other hand the second step of the thermochemical cycle (regeneration reaction) does not follow a stoichiometric pathway and ZnS conversion of 12.87% is achieved at a high temperature of 1400oC. It is found that a hydrogen production rate of 0.71 mol/s is achieved with the introduction of 0.27 mol/s of H2S. The energy and exergy efficiencies of the zinc sulfide thermochemical cycle are found to be 65.23% and 35.58% respectively. A biochar production rate of 0.024 kg/s is obtained with the Palmaria palmata fed rate of 0.097 kg/s. The Palmaria to biochar energy and exergy efficiencies are found to be 55.43% and 45.91% respectively. The overall energy and exergy efficiencies of the proposed plant are determined to be 72.88% and 50.03% respectively.
Integrating Alkaline Electrolysis with Oxyfuel Combustion for Hydrogen and Electricity Production
Feb 2024
Publication
The present study explores the potential of integrating the NET Zero Cycle (NZC) with hydrogen production by alkaline electrolyzers. To achieve this an Aspen Plus model was developed for the NZC and its accuracy was first confirmed by comparing it with literature data. The creation of a model for an alkaline electrolyzer was achieved using Aspen Custom Modeler and later imported into Aspen Plus. A comprehensive simulation was conducted in Aspen Plus to examine the synergies between the NZC and the alkaline electrolyzer. In this integration the oxygen demand of the NZC is met by a combination of an air separation unit (ASU) and the electrolyzer. The electrolyzer not only partially fulfills the oxygen requirements but also acts as an external heat supplier for the regenerator. Additionally the NZC supplies deionized water to the electrolyzer. A thermodynamic analysis in dicates that the integration of the NZC and alkaline electrolyzers results in a higher efficiency of 56.5 % compared to the stand-alone NZC an improvement of 2.3 %. Assuming that the NZC and alkaline electrolyzer operate at the same power production and input levels the alkaline electrolyzer can generate substantial oxygen to reduce the energy consumption of the ASU significantly. This aspect represents one of the primary reasons for the enhanced efficiency observed in this study. However the ASU still needs to be operated to provide the full oxygen demands of the process. To identify the key parameters influencing the integration of the NZC and alkaline electrolyzers a sensitivity analysis was performed. To enhance the system efficiency a comprehensive investigation was conducted to analyze the influence of key parameters such as combustor outlet temperature (COT) turbine outlet pressure (TOP) and combustor outlet pressure (COP) on the thermodynamic first law efficiency of the cycle. An increase in electrolyzer input power and a reduction in electrolyzer inlet feed were associated with a higher cycle effi ciency. The results also highlight that the TOP COT and the electrolyzer input power have a more significant impact on the cycle thermodynamic first law efficiency within the range of 5.7 4.0 and 2.6 % respectively while COP only causes a 0.4 % change in cycle efficiency. The integrated system demonstrates an impressive system first law thermodynamic efficiency of 62.5 % and exergy efficiency of 60.6 %.
A Review of Hydrogen Leak Detection Regulations and Technologies
Aug 2024
Publication
Hydrogen (H2 ) is positioned as a key solution to the decarbonization challenge in both the energy and transportation sectors. While hydrogen is a clean and versatile energy carrier it poses significant safety risks due to its wide flammability range and high detonation potential. Hydrogen leaks can occur throughout the hydrogen value chain including production storage transportation and utilization. Thus effective leak detection systems are essential for the safe handling storage and transportation of hydrogen. This review aims to survey relevant codes and standards governing hydrogen-leak detection and evaluate various sensing technologies based on their working principles and effectiveness. Our analysis highlights the strengths and limitations of the current detection technologies emphasizing the challenges in achieving sensitive and specific hydrogen detection. The results of this review provide critical insights into the existing technologies and regulatory frameworks informing future advancements in hydrogen safety protocols.
Evaluating the Economic Viability of Decentralised Solar PV-based Green Hydrogen for Cooking in Ghana
Jul 2024
Publication
Developing countries including Ghana face challenges ensuring access to clean and reliable cooking fuels and technologies. Traditional biomass sources mainly used in most developing countries for cooking contribute to deforestation and indoor air pollution necessitating a shift towards environmentally friendly alternatives. The study’s primary objective is to evaluate the economic viability of using solar PV-based green hydrogen as a sustainable fuel for cooking in Ghana. The study adopted well-established equations to investigate the economic performance of the proposed system. The findings revealed that the levelized cost of hydrogen using the discounted cash flow approach is about 89% 155% and 190% more than electricity liquefied petroleum gas (LPG) and charcoal. This implies that using the hydrogen produced for cooking fuel is not cost-competitive compared to LPG charcoal and electricity. However with sufficient capital subsidies to lower the upfront costs the analysis suggests solar PV-based hydrogen could become an attractive alternative cooking fuel. In addition switching from firewood to solar PVbased hydrogen for cooking yields the highest carbon dioxide (CO2) emissions savings across the cities analysed. Likewise replacing charcoal with hydrogen also offers substantial CO2 emissions savings though lower than switching from firewood. Correspondingly switching from LPG to hydrogen produces lower CO2 emissions savings than firewood and charcoal. The study findings could contribute to the growing body of knowledge on sustainable energy solutions offering practical insights for policymakers researchers and industry stakeholders seeking to promote clean cooking adoption in developing economies.
Projecting Technological Advancement of Electrolyzers and the Impact on the Competitiveness of Hydrogen
Dec 2024
Publication
Green hydrogen has the potential to decarbonize hard-to-abate sectors and processes and should therefore play an important role in the energy system in achieving climate goals. However the main hydrogen supply is still based on fossil fuels and only limited amounts of electrolyzers have been installed. Switching from fossil-based fuel sources to green hydrogen is highly dependent on when and at what price green hydrogen will become available which in turn is dependent on the technological development of electrolyzers. In this paper we apply the experience curve methodology to project the capital expenditure and electrical consumption developments of the three main electrolysis technologies: alkaline proton exchange membrane and solid oxide electrolysis. Based on our calculations we expect that both AEL and PEM will reach similar costs by 2030 of around 300 e per kW and SOEC will remain the most expensive technology with a considerable cost reduction down to 828 e per kW. The electrical consumptions will fall to 4.23 kWh per Nm3 for AEL 3.86 kWh per Nm3 for PEM and 3.05 kWh per Nm3 for SOEC. Based on this technological progress we calculate that the levelized cost of hydrogen will be reduced to 2.43–3.07 e per kg. To reach lower levelized cost of hydrogen notable reductions in electricity (purchase) cost are required.
Simulations of Blast Wave and Fireball Occurring due to Rupture oj High-Pressure Hydrogen Tank
Jun 2017
Publication
In the present study pilot simulations of the phenomena of blast wave and fireball generated by the rupture of a high-pressure (35 MPa) hydrogen tank (volume 72 L) due to fire were carried out. The computational fluid dynamics (CFD) model includes the realizable k-ε model for turbulence and the eddy dissipation model coupled with the one-step chemical reaction mechanism for combustion. The simulation results were compared with experimental data on a stand-alone hydrogen tank rupture in a bonfire test. The simulations provided insights into the interaction between the blast wave propagation and combustion process. The simulated blast wave decay is approximately identical to the experimental data concerning pressure at various distances. Fireball is first ignited at the ground level which is considered to be due to stagnation flow conditions. Subsequently the flame propagates toward the interface between hydrogen and air.
Experimental Study on the Effect of the Ignition Location on Vented Deflagration of Hydrogen-air Mixtures in Enclosure
Sep 2023
Publication
No countermeasures exist for accidents that might occur in hydrogen-based facilities (leaks fires explosions etc.). In South Korea discussions are underway regarding measures to ensure safety from such accidents such as the construction of underground hydrogen storage tank facilities. However explosion vents with a minimum ventilation area are required in such facilities to minimize damage to buildings and other structures due to accidental explosions. These explosion vents allow the generated overpressure and flames to be safely dispersed outside; however a safe separation distance must be secured to minimize damage to humans. This study aimed to determine the safe separation distance to minimize human damage after analyzing the dispersed overpressure and flame behavior following a vent explosion. Explosion experiments were conducted to investigate the influence of the ignition source location on internal and external overpressure and external flame behavior using a cuboid concrete structure with a volume of 20.33 m3 filled with a hydrogen-air mixture (29.0 vol.%). The impact on overpressure and flame was increased with the increasing distance of the ignition source from the vent. Importantly depending on the ignition location the incident pressure was up to 24.4 times higher while the reflected pressure was 8.7 times higher. Additionally a maximum external overpressure of 30.01 kPa was measured at a distance of 2.4 m from the vent predicting damage to humans at the “Injury” level (1 % fatality probability). Whereas no significant damage would occur at a distance of 7.4 m or more from the vent.
Green Hydrogen Techno-economic Assessments from Simulated and Measured Solar Photovoltaic Power Profiles
Nov 2024
Publication
Studies estimating the production cost of hydrogen-based fuels known as e-fuels often use renewable power profile time series obtained from open-source simulation tools that rely on meteorological reanalysis and satellite data such as Renewables.ninja or PVGIS. These simulated time series contain errors compared to real on-site measured data which are reflected in e-fuels cost estimates plant design and operational performance increasing the risk of inaccurate plant design and business models. Focusing on solar-powered e-fuels this study aims to quantify these errors using high-quality on-site power production data. A state-of-the-art optimization techno-economic model was used to estimate e-fuel production costs by utilizing either simulated or high-quality measured PV power profiles across four sites with different climates. The results indicate that in cloudy climates relying on simulated data instead of measured data can lead to an underestimation of the fuel production costs by 36 % for a hydrogen user requiring a constant supply considering an original error of 1.2 % in the annual average capacity factor. The cost underestimation can reach 25 % for a hydrogen user operating between 40 % and 100 % load and 17.5 % for a fully flexible user. For comparison cost differences around 20 % could also result from increasing the electrolyser or PV plant costs by around 55 % which highlights the importance of using high-quality renewable power profiles. To support this an open-source collaborative repository was developed to facilitate the sharing of measured renewable power profiles and provide tools for both time series analysis and green hydrogen techno-economic assessments.
A Prospective Approach to the Optimal Deployment of a Hydrogen Supply Chain for Sustainable Mobility in Island Territories: Application to Corsica
Oct 2024
Publication
This study develops a framework for designing hydrogen supply chains (HSC) in island territories using Mixed Integer Linear Programming (MILP) with a multi-period approach. The framework minimizes system costs greenhouse gas emissions and a risk-based index. Corsica is used as a case study with a Geographic Information System (GIS) identifying hydrogen demand regions and potential sites for production storage and distribution. The results provide an optimal HSC configuration for 2050 specifying the size location and technology while accounting for techno-economic factors. This work integrates the unique geographical characteristics of islands using a GIS-based approach incorporates technology readiness levels and utilizes renewable electricity from neighboring regions. The model proposes decentralized configurations that avoid hydrogen transport between grids achieving a levelized cost of hydrogen (LCOH) of €8.54/kg. This approach offers insight into future options and incentive mechanisms to support the development of hydrogen economies in isolated territories.
Deflagration-to-detonation Transition Due to a Pressurised Release of a Hydrogen Jet. First Results of the Ongoing TAU_NRCN-CEA Project
Sep 2023
Publication
A sudden release of compressed gases and the formation of a jet flow can occur in nature and various engineering applications. In particular high-pressure hydrogen jets can spontaneously ignite when released into an environment that contains oxygen. For some scenarios these high-pressure hydrogen jets can be released into a mixture containing hydrogen and oxygen. This scenario can possibly lead to a wide range of combustion regimes such as jet flames slow or fast deflagrations or even hazardous detonations. Each combustion regime is characterized by typical pressures and temperatures however fast transition between regimes is also possible.<br/>A common project between Tel Aviv University (TAU) Nuclear Research Center Negev (NRCN) and Commissariat à l’Energie Atomique et aux énergies alternatives (CEA) has been recently launched in order to understand these phenomena from experimental modelling and numerical points of view. The main goal is to investigate the dynamics and combustion regimes that arise once a pressurized hydrogen jet is released into a reactive environment that contains inhomogeneous concentrations of hydrogen steam and air.<br/>In this paper we present the first numerical results describing high-pressure hydrogen release obtained using a massively parallel compressible structured-grid flow solver. The experimental arrangements devoted to this phenomenon will also be described.
The Potential for the Use of Hydrogen Storage in Energy Cooperatives
Oct 2024
Publication
According to the European Hydrogen Strategy hydrogen will solve many of the problems with energy storage for balancing variable renewable energy sources (RES) supply and demand. At the same time we can see increasing popularity of the so-called energy communities (e.g. cooperatives) which (i) enable groups of entities to invest in manage and benefit from shared RES energy infrastructure; (ii) are expected to increase the energy independence of local communities from large energy corporations and increase the share of RES. Analyses were conducted on 2000 randomly selected energy cooperatives and four energy cooperatives formed on the basis of actual data. The hypotheses assumed in the research and positively verified in this paper are as follows: (i) there is a relationship between hydrogen storage capacity and the power of RES which allows an energy community to build energy independence; (ii) the type of RES generating source is meaningful when optimizing hydrogen storage capacity. The paper proves it is possible to build “island energy independence” at the local level using hydrogen storage and the efficiency of the power-to-power chain. The results presented are based on simulations carried out using a dedicated optimization model implemented by mixed integer programming. The authors’ next research projects will focus on optimizing capital expenditures and operating costs using the Levelized Cost of Electricity and Levelized Cost of Hydrogen methodologies.
Experimental Study of the Mitigation of Hydrogen-Air Explosions by Aqueous Foam
Sep 2023
Publication
The development of hydrogen production technologies as well as new uses represents an opportunity both to accelerate the ecological transition and to create an industrial sector. However the risks associated with the use of hydrogen must not be overlooked. The mitigation of a hydrogen explosion in an enclosure is partly based on prevention strategies such as detection and ventilation but also on protection strategies such as explosion venting. However in several situations such as in highly constrained urban environments the discharge of the explosion through blast walls could generate significant overpressure effects outside the containment which are unacceptable. Thus having alternative mitigation solutions can make the effects of the explosion acceptable by reducing the flame speed and the overpressure loading or suppressing the secondary explosion. The objective of this paper is to present the experimental study of the mitigation of hydrogen-air deflagration in a 4 m3 vented enclosure by injection of aqueous foam. After a description of the experimental set-up the main experimental results are presented showing the influence of aqueous foam on flame propagation (Fig. 1). Different foam expansion ratios were investigated. An interpretation of the mitigating effect of foam on the explosion effects is proposed based on the work of Kichatov [5] and Zamashchikov [2].
The Technopolitics of Hydrogen: Arab Gulf States' Pursuit of Significance in a Climate-Constrained World
Nov 2024
Publication
Despite uncertainties surrounding the hydrogen economy’s emergence in terms of technological innovation production storage and transport policy and regulation economic viability and environmental impact coun tries worldwide actively pursue initiatives to engage in this critical energy transition. Politicians analysts and global experts see ‘clean’ hydrogen as the ultimate solution for addressing the climate crisis. This optimism is shared by several major oil and gas-exporting nations which are investing heavily in hydrogen infrastructure to establish themselves as future global hubs. Oman Saudi Arabia and the United Arab Emirates (UAE) are especially well-positioned benefiting from strategic advantages over other hydrogen-producing regions in the Global South. Advocates in these countries view hydrogen as a potential ‘silver bullet’ for sustaining political and economic influence in a world increasingly shaped by climate constraints. Western technology and expertise play a significant role in supporting these efforts. By using various qualitative methods this paper employs and expand the concept of technopolitics to evaluate the role of industrialized nations in endorsing the Gulf states’ authoritarian top-down techno-optimistic approach to their sustainability agenda.
How Would Structural Change in Electricity and Hydrogen End Use Impact Low-Carbon Transition of an Energy System? A Case Study of China
Feb 2024
Publication
Driven by global targets to reduce greenhouse gas emissions energy systems are expected to undergo fundamental changes. In light of carbon neutrality policies China is expected to significantly increase the proportion of hydrogen and electricity in its energy system in the future. Nevertheless the future trajectory remains shrouded in uncertainty. To explore the potential ramifications of varying growth scenarios pertaining to hydrogen and electricity on the energy landscape this study employs a meticulously designed bottom-up model. Through comprehensive scenario calculations the research aims to unravel the implications of such expansions and provide a nuanced analysis of their effects on the energy system. Results show that with an increase in electrification rates cumulative carbon dioxide emissions over a certain planning horizon could be reduced at the price of increased unit reduction costs. By increasing the share of end-use electricity and hydrogen from 71% to 80% in 2060 the unit carbon reduction cost will rise by 17%. Increasing shares of hydrogen could shorten the carbon emission peak time by approximately five years but it also brings an increase in peak shaving demand.
Synergy-based Hydrogen Pricing in Hydrogen-Integrated Electric Power System: Sensititivy Analysis
Nov 2024
Publication
Hydrogen price significantly impacts its potential as a viable alternative in the sustainable energy transition. This study introduces a synergy-based Hydrogen Pricing Mechanism (HPM) within an integrated framework. The HPM leverages synergy between a Renewable-Penetrated Electric Power System (RP-EPS) and a Hydrogen Energy System (HES). Utilizing the Alternating Direction Method of Multipliers (ADMM) it facilitates data exchange quantifying integration levels and simplifying the complexities. The study assesses the HPM’s operational sensitivity across various scenarios of hydrogen generation transportation and storage. It also evaluates the benefits of synergy-based versus stand-alone HPMs. Findings indicate that the synergy-based HPM effectively integrates infrastructure and operational improvements from both EPS and HES leading to optimized hydrogen pricing.
A Hydrogen Vision for the UK
Apr 2023
Publication
This report shows how the infrastructure that exists today can evolve from one based on the supply of fossil fuels to one providing the backbone of a clean hydrogen system. The ambitious government hydrogen targets across the UK will only be met with clarity focus and partnership. The gas networks are ready to play their part in the UK’s energy future. They have a plan know what is needed to deliver it and are taking the necessary steps to do just that.
SSEXHY Experimental Results on Pressure Dynamics from Head-on Reflections of Hydrogen Flames
Sep 2023
Publication
In the past few years CEA has been fully involved at both experimental and modeling levels in projects related to hydrogen safety in nuclear and chemical industries and has carried out a test program using the experimental bench SSEXHY (Structure Submitted to an EXplosion of HYdrogen) in order to build a database of the deformations of simple structures following an internal hydrogen explosion. Different propagation regimes of explosions were studied varying from detonations to slow deflagrations.<br/>During the experimental campaign it was found that high-speed deflagrations corresponding to relatively poor hydrogen-air mixtures resulted in higher specimen deformation compared to those related to detonations of nearly stoichiometric mixtures. This paper explains this counter-intuitive result from qualitative and quantitative points of view. It is shown that the overpressure and impulse from head-on reflections of hydrogen flames corresponding to poor mixtures of specific concentrations could have very high values at the tube end.
Towards a Resilience Evaluation Framework for Hydrogen Supply Chains: A Systematic Literature Review and Future Research Agenda
Dec 2024
Publication
Hydrogen energy is crucial for achieving net zero targets making the resilience of hydrogen supply chains (HSCs) increasingly important. Understanding current research on HSC resilience is key to enhancing it. Few studies summarise HSC resilience evaluation methods and link them to the general supply chain resilience and complex adaptive system (CAS) evaluation approaches. This study addresses this gap by systematically reviewing the literature on HSC resilience evaluations defining HSC resilience and conducting content analysis. It proposes a conceptual framework integrating technical operational and organisational perspectives. Each perspective is further subdivided based on the course of events resulting in a system-based HSC resilience evaluation frame work with three layers of analysis. By linking HSC indicators with CAS theory and supply chain performance metrics the study offers novel insights into HSC resilience evaluations identifies research gaps provides prac tical guidance for practitioners and outlines future research directions for advancing HSC resilience understanding.
Industrial Waste Gases as a Resource for Sustainable Hydrogen Production: Resource Availability, Production Potential, Challenges, and Prospects
May 2024
Publication
Industrial sectors pivotal for the economic prosperity of nations rely heavily on affordable reliable and environmentally friendly energy sources. Industries like iron and steel oil refineries and coal-fired power plants while instrumental to national economies are also the most significant contributors to waste gases that contain substantial volumes of carbon monoxide (CO). CO can be converted to a highly efficient and carbon free fuel hydrogen (H2) through a well-known water gas shift reaction. However the untapped potential of H2 from waste industrial streams is yet to be explored. This is the first article that investigates the potential of H2 production from industrial waste gases. The available resource (i.e. CO) and its H2 production potential are estimated. The article also provides insights into the principal challenges and potential avenues for long-term adoption. The results showed that 249.14 MTPY of CO are available to produce 17.44 MTPY of H2 annually. This suggests a significant potential for H2 production from waste gases to revolutionize industrial waste management and contribute significantly towards Sustainable Development Goals 7 9 and 13ensuring access to affordable reliable sustainable and modern energy for all and taking decisive climate action respectively.
Towards a Multi-color Hydrogen Production Network? Competing Imaginaries of Development in Northern Patagonia, Argentina
Feb 2024
Publication
Green hydrogen has recently gained importance as a key element in the transition to a low-carbon energy future sparking a boom in possible production regions. This article aims at situating incipient hydrogen production in the Argentine province of Río Negro within a global production network (GPN). The early configuration of the hydrogen-GPN includes several stakeholders and is contested in many ways. To explore the possible materialization of the hydrogen economy in Argentina this article links GPN literature to the concept of sociotechnical imaginaries. In so doing this study finds three energy imaginaries linked to hydrogen development: First advocates of green hydrogen (GH2) project a sociotechnical imaginary in which GH2 is expected to promote scientific and technological progress. Second proponents of blue hydrogen point to Vaca Muerta and the role of natural gas for energy autonomy. Third opponents of the GH2 project question the underlying growth and export model emphasizing conservation and domestic energy sovereignty. The competition between different capital fractions i.e. green and fossil currently poses the risk of pro-fossil path decisions and lock-in effects. Current power constellations have led to the replacement of green with low-emission resulting in the promotion of multi-colored hydrogen. This is particularly evident in the draft for the new national hydrogen law and the actors involved in defining the national hydrogen strategy. The conceptual combination of actors and their interests their current power relations and the sociotechnical imaginaries they deploy illustrates how Argentina's energy future is already being shaped today.
Profitability Model of Green Hydrogen Production on an Existing Wind Power Plant Location
Feb 2024
Publication
This paper presents a new economic profitability model for a power-to-gas plant producing green hydrogen at the site of an existing wind power plant injected into the gas grid. The model is based on a 42 MW wind power plant for which an optimal electrolyzer of 10 MW was calculated based on the 2500 equivalent full load hours per year and the projection of electricity prices. The model is calculated on an hourly level for all variables of the 25 years of the model. With the calculated breakeven electricity price of 74.23 EUR/MWh and the price of green hydrogen production of 99.44 EUR/MWh in 2045 the wind power plant would produce 22410 MWh of green hydrogen from 31% of its total electricity production. Green hydrogen injected into the gas system would reduce the level of CO2 emissions by 4482 tons. However with the projected prices of natural gas and electricity the wind power plant would cover only 20% of the income generated by the electricity delivered to the grid by producing green hydrogen. By calculating different scenarios in the model the authors concluded that the introduction of a premium subsidy model is necessary to accelerate deployment of electrolyzers at the site of an existing wind power plant in order to increase the wind farm profitability.
Hydrogen Production from Municipal Waste and Low Grade Lignite Blend
Nov 2024
Publication
The updraft rotating bed gasifier (URBG) offers a sustainable solution for waste-to-energy conversion utilizing low-grade lignite and municipal solid waste (MSW) from metropolitan dumping sites. This study investigates the co-gasification of lignite with various MSW components demonstrating a significant enhancement in gasification efficiency due to the synergistic effects arising from their higher hydrogen-to-carbon (H/C) ratios. We find feedstock blending is key to maximizing gasification efficiency from 11% to 52% while reducing SO emissions from 739 mg/kg to 155 mg/kg. Increasing the combustion zone temperature to 1100 K resulted in a peak hydrogen yield which was 19% higher than at 800 K. However steam management is complicated as increasing it improves hydrogen fraction in produced gas but gasification efficiency is compromised. These findingsshowcase the URBG’s potential to address both energy production and waste management challenges guiding fossil-reliant regions toward a more sustainable energy future.
Numerical Simulation of Transition to Detonation in a Hydrogen-air Mixture Due to Shock Wave Focusing on a 90-Deg Wedge
Sep 2023
Publication
The interaction of a shock wave with a specific angle or concave wall due to its reflection and focusing is a way to onset the detonation provided sufficiently strong shock wave. In this work we present numerical simulation results of the detonation initiation due to the shock reflection and focusing in a 90-degree wedge for mixtures of H2 and air. The code used was ddtFoam [1–3] that is a component of the larger OpenFOAM open-source CFD package of density-based code for solving the unsteady compressible Navier-Stokes equations. The numerical model represents the 2-D geometry of the experiments performed by Rudy [4]. The numerical results revealed three potential scenarios in the corner after reflection: shock wave reflection without ignition deflagrative ignition with intermediate transient regimes with a delayed transition to detonation in lagging combustion zone at around 1.8 mm from the apex of the wedge and ignition with an instantaneous transition to detonation with the formation of the detonation wave in the corner tip. In the experimental investigation the transition velocity for the stoichiometric mixture was approximately 715 m/s while in the numerical simulation the transition velocity for the stoichiometric mixture was 675.65 m/s 5.5% decrease in velocity.
Study on the Application of a Multi-Energy Complementary Distributed Energy System Integrating Waste Heat and Surplus Electricity for Hydrogen Production
Feb 2024
Publication
To improve the recovery of waste heat and avoid the problem of abandoning wind and solar energy a multi-energy complementary distributed energy system (MECDES) is proposed integrating waste heat and surplus electricity for hydrogen storage. The system comprises a combined cooling heating and power (CCHP) system with a gas engine (GE) solar and wind power generation and miniaturized natural gas hydrogen production equipment (MNGHPE). In this novel system the GE’s waste heat is recycled as water vapor for hydrogen production in the waste heat boiler while surplus electricity from renewable sources powers the MNGHPE. A mathematical model was developed to simulate hydrogen production in three building types: offices hotels and hospitals. Simulation results demonstrate the system’s ability to store waste heat and surplus electricity as hydrogen thereby providing economic benefit energy savings and carbon reduction. Compared with traditional energy supply methods the integrated system achieves maximum energy savings and carbon emission reduction in office buildings with an annual primary energy reduction rate of 49.42–85.10% and an annual carbon emission reduction rate of 34.88–47.00%. The hydrogen production’s profit rate is approximately 70%. If the produced hydrogen is supplied to building through a hydrogen fuel cell the primary energy reduction rate is further decreased by 2.86–3.04% and the carbon emission reduction rate is further decreased by 12.67–14.26%. This research solves the problem of waste heat and surplus energy in MECDESs by the method of hydrogen storage and system integration. The economic benefits energy savings and carbon reduction effects of different building types and different energy allocation scenarios were compared as well as the profitability of hydrogen production and the factors affecting it. This has a positive technical guidance role for the practical application of MECDESs.
Optimizing Sustainable Energy Systems: A Comparative Study of Geothermal-powered Desalination for Green Hydrogen Production
Oct 2024
Publication
The synergy between hydrogen and water is crucial in moving towards a sustainable energy future. This study explores the integration of geothermal energy with desalination and hydrogen production systems to address water and clean energy demands. Two configurations one using multi-effect distillation (MED) and the other reverse osmosis (RO) were designed and compared. Both configurations utilized geothermal energy with MED directly using geothermal heat and RO converting geothermal energy into electricity to power desalination. The systems are evaluated based on various performance indicators including net power output desalinated water production hydrogen production exergy efficiency and levelized costs. Multi-objective optimization using an artificial neural network (ANN) and genetic algorithm (GA) was conducted to identify optimal operational conditions. Results highlighted that the RO-based system demonstrated higher water production efficiency achieving a broader range of optimal solutions and lower levelized costs of water (LCOW) and hydrogen production while the MED-based system offered economic advantages under specific conditions. A case study focused on Canada illustrated the potential benefits of these systems in supporting hydrogen-powered vehicles and residential water needs emphasizing the significant impact of using high-quality desalinated water to enhance the longevity and efficiency of proton exchange membrane electrolyzers (PEME). This research provides valuable insights into the optimal use of geothermal energy for sustainable water and hydrogen production.
Hydrogen Engine Conversion Aspects
Oct 2024
Publication
The transition from traditional petrol-based combustion engines to hydrogen-powered systems represents a promising advancement in sustainable and clean energy solutions. This review paper explores the intricacies of converting a conventional internal combustion engine to operate on hydrogen gas. Key topics include the performance limitations of hydrogen engines the role of water injection in combustion modulation and the investigation of direct injection and port injection systems. This review also examines challenges associated with lean and rich mixtures risks of backfire and pre-ignition and the conversion’s overall impact on engine performance and longevity. Additionally this paper discusses hydrogen lubrication to prevent mechanical wear and addresses emission-related considerations.
The Integration of Thermal Energy Storage Within Metal Hydride Systems: A Comprehensive Review
Dec 2024
Publication
Hydrogen storage technologies are key enablers for the development of low-emission sustainable energy supply chains primarily due to the versatility of hydrogen as a clean energy carrier. Hydrogen can be utilized in both stationary and mobile power applications and as a lowenvironmental-impact energy source for various industrial sectors provided it is produced from renewable resources. However efficient hydrogen storage remains a significant technical challenge. Conventional storage methods such as compressed and liquefied hydrogen suffer from energy losses and limited gravimetric and volumetric energy densities highlighting the need for innovative storage solutions. One promising approach is hydrogen storage in metal hydrides which offers advantages such as high storage capacities and flexibility in the temperature and pressure conditions required for hydrogen uptake and release depending on the chosen material. However these systems necessitate the careful management of the heat generated and absorbed during hydrogen absorption and desorption processes. Thermal energy storage (TES) systems provide a means to enhance the energy efficiency and cost-effectiveness of metal hydride-based storage by effectively coupling thermal management with hydrogen storage processes. This review introduces metal hydride materials for hydrogen storage focusing on their thermophysical thermodynamic and kinetic properties. Additionally it explores TES materials including sensible latent and thermochemical energy storage options with emphasis on those that operate at temperatures compatible with widely studied hydride systems. A detailed analysis of notable metal hydride–TES coupled systems from the literature is provided. Finally the review assesses potential future developments in the field offering guidance for researchers and engineers in advancing innovative and efficient hydrogen energy systems.
Multi-Physics Digital Model of an Aluminum 2219 Liquid Hydrogen Aircraft Tank
Feb 2024
Publication
Future liquid hydrogen-powered aircraft requires the design and optimization of a large number of systems and subsystems with cryogenic tanks being one of the largest and most critical. Considering previous space applications these tanks are usually stiffened by internal members such as stringers frames and stiffeners resulting in a complex geometry that leads to an eventual reduction in weight. Cryogenic tanks experience a variety of mechanical and thermal loading conditions and are usually constructed out of several different materials. The complexity of the geometry and the loads highlights the necessity for a computational tool in order to conduct analysis. In this direction the present work describes the development of a multi-physics finite element digital simulation conducting heat transfer and structural analysis in a fully parametric manner in order to be able to support the investigation of different design concepts materials geometries etc. The capabilities of the developed model are demonstrated by the design process of an independent-type aluminum 2219 cryogenic tank for commuter aircraft applications. The designed tank indicates a potential maximum take-off weight reduction of about 8% for the commuter category and demonstrates that aluminum alloys are serious candidate materials for future aircraft.
Hydrogen Storage Performance During Underground Hydrogen Storage in Depleted Gas Reservoirs: A Review
Mar 2024
Publication
Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources. Underground hydrogen storage (UHS) in depleted gas reservoirs holds significant potential for large-scale energy storage and the seamless integration of intermittent renewable energy sources due to its capacity to address challenges associated with the intermittent nature of renewable energy sources ensuring a steady and reliable energy supply. Leveraging the existing infrastructure and well-characterized geological formations depleted gas reservoirs offer an attractive option for large-scale hydrogen storage implementation. However significant knowledge gaps regarding storage performance hinder the commercialization of UHS operation. Hydrogen deliverability hydrogen trapping and the equation of state are key areas with limited understanding. This literature review critically analyzes and synthesizes existing research on hydrogen storage performance during underground storage in depleted gas reservoirs; it then provides a high-level risk assessment and an overview of the techno-economics of UHS. The significance of this review lies in its consolidation of current knowledge highlighting unresolved issues and proposing areas for future research. Addressing these gaps will advance hydrogen-based energy systems and support the transition to a sustainable energy landscape. Facilitating efficient and safe deployment of UHS in depleted gas reservoirs will assist in unlocking hydrogen’s full potential as a clean and renewable energy carrier. In addition this review aids policymakers and the scientific community in making informed decisions regarding hydrogen storage technologies.
A Comprehensive Overview of Technologies Applied in Hydrogen Valleys
Dec 2024
Publication
Hydrogen valleys are encompassed within a defined geographical region with various technologies across the entire hydrogen value chain. The scope of this study is to analyze and assess the different hydrogen technologies for their application within the hydrogen valley context. Emphasizing on the coupling of renewable energy sources with electrolyzers to produce green hydrogen this study is focused on the most prominent electrolysis technologies including alkaline proton exchange membrane and solid oxide electrolysis. Moreover challenges related to hydrogen storage are explored alongside discussions on physical and chemical storage methods such as gaseous or liquid storage methanol ammonia and liquid organic hydrogen carriers. This article also addresses the distribution of hydrogen within valley operations especially regarding the current status on pipeline and truck transportation methods. Furthermore the diverse applications of hydrogen in the mobility industrial and energy sectors are presented showcasing its potential to integrate renewable energy into hard-to-abate sectors.
Economic Analysis of Hydrogen Energy Systems: A Global Perspective
Aug 2024
Publication
In the realm of renewable energy the integration of wind power and hydrogen energy systems represents a promising avenue towards environmental sustainability. However the development of cost-effective hydrogen energy storage solutions is crucial to fully realize the potential of hydrogen as a renewable energy source. By combining wind power generation with hydrogen storage a comprehensive hydrogen energy system can be established. This study aims to devise a physiologically inspired optimization approach for designing a standalone wind power producer that incorporates a hydrogen energy system on a global scale. The optimization process considers both total cost and capacity loss to determine the optimal configuration for the system. The optimal setup for an off-grid solution involves the utilization of eight distinct types of compact horizontal-axis wind turbines. Additionally a sensitivity analysis is conducted by varying component capital costs to assess their impact on overall cost and load loss. Simulation results indicate that at a 15% loss the cost of energy (COE) is $1.3772 while at 0% loss it stands at $1.6908. Capital expenses associated with wind turbines and hydrogen storage systems significantly contribute to the overall cost. Consequently the wind turbine-hydrogen storage system emerges as the most cost-effective and reliable option due to its low cost of energy.
No more items...