Publications
Multi‑Criteria Optimization and Techno‑Economic Assessment of a Wind–Solar–Hydrogen Hybrid System for a Plateau Tourist City Using HOMER and Shannon Entropy‑EDAS Models
Aug 2025
Publication
Hydrogen offers an effective pathway for the large‑scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein the wind–solar–hydrogen stand‑alone and grid‑connected systems in the plateau tourist city of Lijiang City in Yunnan Province are modeled and techno‑economically evaluated by using the HOMER Pro software (version 3.14.2) with the multi‑criteria decision anal‑ ysis models. The system is composed of 5588 kW solar photovoltaic panels an 800 kW wind turbine a 1600 kW electrolyzer a 421 kWh battery and a 50 kW fuel cell. In addi‑ tion to meeting the power requirements for system operation the system has the capacity to provide daily electricity for 200 households in a neighborhood and supply 240 kg of hydrogen per day to local hydrogen‑fueled buses. The stand‑alone system can produce 10.15 × 106 kWh of electricity and 93.44 t of hydrogen per year with an NPC of USD 8.15 million an LCOE of USD 0.43/kWh and an LCOH of USD 5.26/kg. The grid‑connected system can generate 10.10 × 106 kWh of electricity and 103.01 ton of hydrogen annually. Its NPC is USD 7.34 million its LCOE is USD 0.11/kWh and its LCOH is USD 3.42/kg. This study provides a new solution for optimizing the configuration of hybrid renewable en‑ ergy systems which will develop the hydrogen economy and create low‑carbon‑emission energy systems.
Modelling Studies of the Hazards Posed by Liquid Hydrogen Use in Civil Aviation
Sep 2021
Publication
As part of the ENABLEH2 project modelling studies have been carried out to examine liquid hydrogen release and dispersion behaviour for different LH2 aircraft and airport infrastructure leak/spill accident scenarios. The FLACS CFD model has been used to simulate the potential hazard effects following an accidental LH2 leak including the extent of the flammable LH2 clouds formed magnitude of explosion overpressures and pool fire radiation hazards. A comparison has also been made between the relative hazard consequences of using LH2 with conventional Jet A/A-1 fuel. The results indicate that in the event of accidental fuel leak/spill LH2 has some safety advantages over Jet A/A-1 but will also introduce additional hazards not found with Jet A/A-1 that will need to be carefully managed and mitigated against.
Techno-economic Assessment of Hydrogen-based Energy Storage Systems in Determining the Optimal Configuration of the Nuclear-renewable Hybrid Energy System
Apr 2024
Publication
Population growth and economic development have significantly increased global energy demand. Hence it has raised concerns about the increase in the consumption of fossil fuels and climate change. The present work introduced a new approach to using carbon-free energy sources such as nuclear and renewable to meet energy demand. The idea of using the Nuclear-Renewable Hybrid Energy System (N-R HES) is suggested as a leading solution that couples a nuclear power plant with renewable energy and hydrogen-based storage systems. For this purpose using a meta-heuristic method based on Newton’s laws the configuration of the N-R HES is optimized from an economic and reliability point of view. The optimal system is selected from among six cases with different subsystems such as wind turbine photovoltaic panel nuclear reactor electrolysis fuel cell and hydrogen storage tank. Furthermore the performance of hydrogen-based energy storage systems such as hightemperature electrolysis (HTE) and low-temperature electrolysis (LTE) is evaluated from technical and economic aspects. The results of this work showed that using nuclear energy to supply the base load increases the reliability of the system and reduces the loss of power supply probability to zero. More than 70 % of the power is produced by nuclear reactors which includes more than 80 % of the system costs. The key findings showed that despite HTE’s higher efficiency using LTE as a storage system in N-R HES is more cost-effective. Finally due to recent developments and the safer design of nuclear reactors they can play an important role in combination with renewable energies to support carbon-free energy sectors especially in remote areas for decades to come.
Development of a Method for Evaluating H2-Filling Stations
Nov 2024
Publication
To expedite the development of the infrastructural expansion for hydrogen applications the research project “THEWA” was founded. Within this project the development of hydrogen-refueling stations is being advanced so that the hydrogen strategy for mobility in Germany can move forward. One development point of the project is to develop an evaluation model that recommends a concept for hydrogen-refueling stations for initial individual situations. In this work an evaluation method is developed that provides an appropriate recommendation. For this purpose basics such as the general structure of hydrogen-refueling stations their classification into functional areas and alreadyexisting evaluation methods for multi-criteria decisions are shown. The method for the evaluation of hydrogen-refueling stations will be developed in a component-based manner for which a selection of influencing factors of hydrogen-refueling stations will be explained and categorized. With the help of an expert workshop these are scaled so that the result is an evaluation method based on an expert assessment and the consideration of individual customer requirements. In addition the method is implemented in a tool so that it can be used more easily.
Internal Model Control for Onboard Methanol-Reforming Hydrogen Production Systems
Jan 2025
Publication
Methanol reforming is considered to be one of the most promising hydrogen production technologies for hydrogen fuel cells. It is expected to solve the problem of hydrogen storage and transportation because of its high hydrogen production rate low cost and good safety. However the strong nonlinearity and slow response of the pressure and temperature subsystems pose challenges to the tracking control of the methanol reforming hydrogen production system. In this paper two internal model-based temperature and pressure controllers are proposed in which the temperature is adjusted by controlling the air flow and the pressure is adjusted by controlling the opening of the backpressure valve. Firstly a lumped parameter model of the methanol reforming hydrogen production system is constructed using MATLAB/Simulink® (produced by MathWorks in Natick Massachusetts USA). In addition the transfer function model of the system is obtained by system identification at the equilibrium point and the internal model controller is further designed. The simulation results show that the control method achieves the robustness of the system and the temperature and pressure of the reforming reactor can quickly and accurately track the target value when the load changes. Small-load step tests indicate stable tracking of the temperature and pressure for the reforming reactor without steady-state errors. Under large-temperature step signal testing the response time for the reforming temperature is about 148 s while the large-pressure step signal test shows that the response time for the reforming pressure is about 8 s. Compared to the PID controller the internal model controller exhibits faster response zero steady-state error and no overshoot. The results show that the internal model control method has strong robustness and dynamic characteristics.
An Overview of Low-carbon Hydrogen Production via Water Splitting Driven by Piezoelectric and Pyroelectric Catalysis
Jun 2024
Publication
The focus on sustainable energy sources is intensifying as they present a viable alternative to conventional fossil fuels. The emergence of clean and renewable hydrogen fuel marks a significant technological shift toward decarbonizing the environment. Harnessing mechanical and thermal energy through piezoelectric and pyroelectric catalysis has emerged as an effective strategy for producing hydrogen and contributing to reducing dependence on carbon-based fuels. In this regard this review presents recent advances in piezoelectric and pyroelectric catalysis induced by mechanical and thermal excitations respectively towards hydrogen generation via the water splitting process. A thorough description of the fundamental principles underlying the piezoelectric and pyroelectric effects is provided complemented by an analysis of the catalytic processes induced by these effects. Subsequently these effects are examined to propose the prerequisites needed for such catalysts to achieve water splitting reaction and hydrogen generation. Special attention is devoted to identifying the various strategies adopted to enhance hydrogen production in order to provide new paths for increased efficiency.
An Optimal Standalone Wind-photovoltaic Power Plant System for Green Hydrogen Generation: Case Study for Hydrogen Refueling Station
May 2024
Publication
Sustainability goals include the utilization of renewable energy resources to supply the energy needs in addition to wastewater treatment to satisfy the water demand. Moreover hydrogen has become a promising energy carrier and green fuel to decarbonize the industrial and transportation sectors. In this context this research investigates a wind-photovoltaic power plant to produce green hydrogen for hydrogen refueling station and to operate an electrocoagulation water treatment unit in Ostrava Czech Republic’s northeast region. The study conducts a techno-economic analysis through HOMER Pro® software for optimal sizing of the power station components and to investigate the economic indices of the plant. The power station employs photovoltaic panels and wind turbines to supply the required electricity for electrolyzers and electrocoagulation reactors. As an offgrid system lead acid batteries are utilized to store the surplus electricity. Wind speed and solar irradiation are the key role site dependent parameters that determine the cost of hydrogen electricity and wastewater treatment. The simulated model considers the capital operating and replacement costs for system components. In the proposed system 240 kg of hydrogen as well as 720 kWh electrical energy are daily required for the hydrogen refueling station and the electrocoagulation unit respectively. Accordingly the power station annually generates 6997990 kWh of electrical energy in addition to 85595 kg of green hydrogen. Based on the economic analysis the project’s NPC is determined to be €5.49 M and the levelized cost of Hydrogen (LCH) is 2.89 €/kg excluding compressor unit costs. This value proves the effectiveness of this power system which encourages the utilization of green hydrogen for fuel-cell electric vehicles (FCVs). Furthermore emerging electrocoagulation studies produce hydrogen through wastewater treatment increasing hydrogen production and lowering LCH. Therefore this study is able to provide practicable methodology support for optimal sizing of the power station components which is beneficial for industrialization and economic development as well as transition toward sustainability and autonomous energy systems.
Development of a Hydrophobic Coating for the Porous Gas Diffusion Layer in a PEM-based Electrochemical Hydrogen Pump to Mitigate Anode Flooding
Jan 2019
Publication
Anode flooding is one of the critical issues in developing a proton exchange membrane (PEM)-based electrochemical hydrogen pump. Improving the hydrophobicity of the gas diffusion layer (GDL) has been studied as an approach to mitigating anode flooding in electrochemical pumps. A mixture of Nafion™ and oxidized carbon nanotubes (O-CNT) has been applied to the porous gas diffusion medium in the hydrogen pump cell. The coating renders the GDL hydrophobic with an effective contact angle of 130°. Electrochemical pump testing has shown that with the help of the coating the flood-recovery performance of the hydrogen pump was greatly improved. A hydrogen pump cell with an uncoated GDL was not able to recover from a flooded state while a hydrogen pump cell with a coated GDL was able to recover its performance in about 100 s.
Potential of Hydrogen Fuel Cell Aircraft for Commercial Applications with Advanced Airframe and Propulsion Technologies
Jan 2025
Publication
The present work demonstrates a comparative study of hydrogen fuel cells and combustion aircraft to investigate the potential of fuel cells as a visionary propulsion system for radically more sustainable medium- to long-range commercial aircraft. The study which considered future airframe and propulsion technologies under the Se2A project was conducted to quantify potential emissions and costs associated with such aircraft and to determine the benefits and drawbacks of each energy system option for different market segments. Future technologies considered in the present work include laminar flow control active load alleviation new materials and structures ultra-high bypass ratio turbofan engines more efficient thermal management systems and superconducting electric motors. A multi-fidelity initial sizing framework with coupled constraint and mission analysis blocks was used for parametric airplane sizing and calculations of all necessary characteristics. Analyses performed for three reference aircraft of different sizes and ranges concluded that fuel-cell aircraft could have operating cost increases in the order of 30% compared to hydrogen combustion configurations and were caused by substantial weight and fuel burn increases. In-flight changes in emissions of fuel cell configurations at high altitudes were progressively reduced from medium-range to long-range segments from being similar to hydrogen combustion for medium-range to 24% for large long-range aircraft although fuel cell aircraft consume 22–30% more fuel than combustion aircraft. Results demonstrate a positive environmental impact of fuel cell propulsion for longrange applications the possibilities of being a more emission-universal solution if desired optimistic technology performance metrics are satisfied. The study also demonstrates progressively increasing technology requirements for larger aircraft making the long-range application’s feasibility more challenging. Therefore substantial development of fuel cell technologies for long-range aircraft is imperative. The article also emphasizes the importance of airframe and propulsion technologies and the necessity of green hydrogen production to achieve desired emissions.
Palm Trees, Energy Security and Green Hydrogen Futures: Tourists' Views on Mallorca's Low Carbon Transition
Jan 2025
Publication
The development of green hydrogen can provide a welcome boost in energy security particularly for island nations that may be reliant on energy imports or intermittent renewables as part of their energy transition. However the expansion of a green hydrogen economy may have social environmental and economic impacts on tourism-reliant islands which may not be accounted for using typical market assessments. In this study focus groups and an online choice experiment survey are conducted with recent international tourists to Mallorca Spain to elicit preferences for green hydrogen infrastructure including the visual and biodiversity impacts potential for export and the value for the provision of additional local and tourism benefits. The results indicate generally positive attitudes to the development of green hydrogen in Mallorca however respondents indicate significant disutility associated with high visual impact of green hydrogen infrastructure with the exception of respondents that have previous experience with hydrogen transport. In general respondents favour policies that do not negatively impact biodiversity value restrictions on exports to enhance energy security on the island and are willing to pay to support green hydrogen development in Mallorca which provides benefits to tourism and local residents.
Multi-stage Monitoring of Hydrogen Systems for Improved Maintenance Approaches: An Extensive Review
Jan 2025
Publication
Hydrogen is considered a promising solution for global decarbonisation as an alternative to fossil fuels. However it can interact with and brittle most metallic materials and is highly flammable. These properties call for a systematic investigation of physical and chemical hazards and for the definition of a comprehensive risk management and monitoring framework including proper maintenance planning. This study aims at establishing a hydrogen monitoring scheme and it provides a descriptive bibliometric and interpretative review of the current state-of-the-art of suitable techniques to ensure the safe handling of hydrogen systems. The descriptive analysis outlines the technologies available to supervise the hydrogen-material interactions and detect hydrogen leaks and flames. The bibliometric analysis shows quantitative data to identify the most relevant research groups. The interpretative study discusses the findings and examines the possibility of combining the identified techniques with maintenance programs to prevent catastrophic events.
Safety Criteria for the Transport of Hydrogen in Permanently Mounted Composite Pressure Vessels
Aug 2020
Publication
The recent growth of the net of hydrogen fuelling stations increases the demands to transport compressed hydrogen on road by battery vehicles or tube-trailers both in composite pressure vessels. As a transport regulation the ADR is applicable in Europe and adjoined regions and is used for national transport in the EU. This regulation provides requirements based on the behaviour of each individual pressure vessel regardless of the pressure of the transported hydrogen and relevant consequences resulting from generally possible worst case scenarios such as sudden rupture. In 2012 the BAM (German Federal Institute for Materials Research and Testing) introduced consequence-dependent requirements and established them in national transport requirements concerning the “UN service life checks” etc. to consider the transported volume and pressure of gases. This results in a requirement that becomes more restrictive as the product of pressure and volume increases. In the studies presented here the safety measures for hydrogen road transport are identified and reviewed through a number of safety measures from countries including Japan the USA and China. Subsequently the failure consequences of using trailer vehicles the related risk and the chance are evaluated. A benefit-related risk criterion is suggested to add to regulations and to be defined as a safety goal in standards for hydrogen transport vehicles and for mounted pressure vessels. Finally an idea is given for generating probabilistic safety data and for highly efficient evaluation without a significant increase of effort.
Network Evolutionary Game Analysis of Coal-to-Hydrogen CCUS Technology Dissemination in Carbon Trading Market
Jan 2025
Publication
Integrating coal-to-hydrogen production with Carbon Capture Utilization and Storage (CCUS) is essential for reducing greenhouse gas emissions and facilitating a shift towards a more sustainable energy paradigm. This paper explores the diffusion of CCUS technology within the coal-to-hydrogen sector against the dynamic backdrop of the carbon trading market. An evolutionary game-theoretic approach is utilized within a smallworld network framework to analyze the spread of CCUS technology among coal-tohydrogen enterprises. The simulation reveals that current market dynamics along with technological market and policy-related uncertainties do not robustly encourage the adoption of CCUS. As the carbon trading market continues to mature carbon prices become a significant factor influencing the diffusion of CCUS technology in coal-to-hydrogen processes. Furthermore investment costs hydrogen market prices and governmental policies are identified as pivotal elements in the propagation of CCUS technology. This study contributes valuable insights into the sustainable development of the hydrogen industry and the broader implications for low-carbon energy transition strategies.
Navigating the Intersection of Microgrids and Hydrogen: Evolutionary Trends, Challenges, and Future Strategies
Jan 2025
Publication
Growing interest in sustainable energy has gathered significant attention for alternative technologies with hydrogen-based solutions emerging as a crucial component in the transition to cleaner and more resilient energy systems. Following that hydrogenbased microgrids integrated with renewable energy sources including wind and solar have gained substantial attention as an upcoming pathway toward long-term energy sustainability. Hydrogen produced through processes such as electrolysis and steam methane reforming can be stored in various forms including compressed gas liquid or solid-state hydrides and later utilized for electricity generation through fuel cells and gas turbines. This dynamic energy system offers highly flexible scalable and resilient solutions for various applications. Specifically hydrogen-based microgrids are particularly suitable for offshore and islanded applications with geographical factors adverse environmental conditions and limited access to conventional energy solutions. This is critical for energy independence long-term storage capacity and grid stability. This review explores topological and functional-based classifications of microgrids advancements in hydrogen generation storage and utilization technologies and their integration with microgrid systems. It also critically evaluates the key challenges of each technology including cost efficiency and scalability which impact the feasibility of hydrogen microgrids.
Optimal Scheduling of Hydrogen Storage in Integrated Energy System Including Multi-source and Load Uncertainties
Dec 2024
Publication
Demand response (DR) is a crucial element in the optimization of integrated energy systems (IESs) that incor porate distributed generation (DG). However its inherent uncertainty poses significant challenges to the eco nomic viability of IESs. This research presents a novel economic dispatch model for IESs utilizing information gap decision theory (IGDT). The model integrates various components to improve IES performance and dispatch efficiency. With a focus on hydrogen energy the model considers users’ energy consumption patterns thereby improving system flexibility. By applying IGDT the model effectively addresses the uncertainty associated with DR and DG overcoming the limitations of traditional methods. The research findings indicate that in relation to the baseline method the proposed model has the potential to reduce operating costs by 6.3 % and carbon emissions by 4.2 %. The integration of a stepwise carbon trading mechanism helps boost both economic and environmental advantages achieving a 100 % wind power consumption rate in the optimized plan. In addition the daily operating costs are minimized to 23758.99 ¥ while carbon emissions are significantly reduced to 34192 kg. These findings provide quantitative decision support for IES dispatch planners to help them develop effective dispatch strategies that are consistent with low-carbon economic initiatives.
Hydrogen Jet Flame Simulation and Thermal Radiation Damage Estimation for Leakage Accidents in a Hydrogen Refueling Station
Jun 2024
Publication
With the rapid development of hydrogen energy worldwide the number of hydrogen energy facilities such as hydrogen refueling stations has grown rapidly in recent years. However hydrogen is prone to leakage accidents during use which could lead to hazards such as fires and explosions. Therefore research on the safety of hydrogen energy facilities is crucial. In this paper a study of high-pressure hydrogen jet flame accidents is conducted for a proposed integrated hydrogen production and refueling station in China. The effects of leakage direction and leakage port diameter on the jet flame characteristics are analyzed and a risk assessment of the flame accident is conducted. The results showed that the death range perpendicular to the flame direction increased from 2.23 m to 5.5 m when the diameter of the leakage port increased from 4 mm to 10 mm. When the diameter of the leakage port is larger than 8 mm the equipment on the scene will be within the boundaries of the damage. The consequences of fire can be effectively mitigated by a reasonable firewall setup to ensure the overall safety of the integrated station.
Strategic Optimization and Design of Cost-effective and Sustainable Hydrogen Supply Chain Networks - Qatar Case Study
Jan 2025
Publication
This study introduces a multi-period integrated optimization model for designing a strategic hydrogen supply chain (HSC) network concentrating on the post-production stages of conditioning storage transportation and post-conditioning. Qatar serves as the case study for evaluating three HSC pathways—ammonia (as a hydrogen carrier) liquefied hydrogen and compressed hydrogen—across pre-conditioning storage shipping and postconditioning stages. The optimization framework spans a 20-year plan supporting strategic long-term hydrogen export infrastructure planning. Economic and environmental factors are incorporated to analyze HSC performance under various scenarios accounting for realistic constraints such as investment limits and emission caps. Key findings reveal trade-offs between pathways and design strategies that must account for balancing costs with environmental impacts. Results indicate that the ammonia pathway is preferred in scenarios without emission penalties but becomes less favorable with increased penalties shifting preference toward the liquified hydrogen pathway. With stringent emission limits short- and mid-range markets are prioritized underscoring the importance of emissions-conscious strategies. This study demonstrates the utility of optimi zation tools in balancing economic and environmental objectives offering policymakers and industry stake holders a robust framework for developing sustainable and efficient HSC networks.
Marine Renewable-Driven Green Hydrogen Production Toward a Sustainable Solution and a Low-carbon Future in Morocco
May 2024
Publication
Oceanic energy sources notably offshore wind and wave power present a significant opportunity to generate green hydrogen through water electrolysis. This approach allows for offshore hydrogen production which can be efficiently transported through existing pipelines and stored in various forms offering a versatile solution to tackle the intermittency of renewable energy sources and potentially revolutionize the entire electrical grid infrastructure. This research focusses on assessing the technical and economic feasibility of this method in six strategic coastal regions in Morocco: Laayoune Agadir Essaouira Eljadida Casablanca and Larache. Our proposed system integrates offshore wind turbines oscillating water column wave energy converters and PEM electrolyzers to meet energy demands while aligning with global sustainability objectives. Significant electricity production estimates are observed across these regions ranging from 14 MW to 20 MW. Additionally encouraging annual estimates of hydrogen production varying between 20 and 40 tonnes for specific locations showcase the potential of this approach. The system’s performance demonstrates promising efficiency rates ranging from 13% to 18% while maintaining competitive production costs. These findings underscore the ability of oceanic energy-driven green hydrogen to diversify Morocco’s energy portfolio bolster water resilience and foster sustainable development. Ultimately this research lays the groundwork for comprehensive energy policies and substantial infrastructure investments positioning Morocco on a trajectory towards a decarbonized future powered by innovative and clean technologies.
Analysis of Solid Oxide Fuel and Electrolysis Cells Operated in a Real-system Environment: State-of-the-health Diagnostic, Failure Modes, Degradation Mitigation and Performance Regeneration
Aug 2022
Publication
Solid oxide cells (SOC) play a major role in strategic visions to achieve decarbonization and climate-neutrality. With its multifuel capability this technology has received rapidly growing amount of attention from researchers worldwide. Due to the great flexibility of SOCs with respect to the fuels that can be used not only hydrogen but also biogas natural gas diesel reformates and many other conventional and alternative fuels can be used. This makes it possible to couple SOCs with diverse sustainable fuel sources to generate electricity or to generate valuable fuels such as syngas when utilizing renewable electricity. In this paper the reader is provided with a review of the existing knowledge about solid oxide fuel cell (SOFC) and solid oxide electrolysis (SOE) systems and how to safely operate them over the long-term placing a special focus on real-world operating environments. Both the utilization and generation of real commercially available fuels are taken into consideration. Different failure modes can appear during the system operation under real-world conditions and reduce the SOC lifetime an aspect that is extensively discussed in this review. Firstly a detailed discussion of the difference between carbon-free and carbon-containing fuels is presented considering different impurities and their impacts on the SOC performance stability and lifetime. Secondly unfavorable operating conditions are presented and possibilities for the early identification of different failure modes are explored. An overview of available conventional and non-conventional diagnostic tools and their applications is provided here. Overall this review paper presents a guideline for all relevant degradation issues related to SOCs operated in a real-world environment describing (i) how these issues appear and how to understand them (ii) how to predict them (iii) how to identify them and (iv) how to prevent them as well as if required how to reverse them. To achieve this goal individual chapters specifically address failure modes degradation prediction degradation prevention and performance regeneration. The reader is provided with necessary knowledge about the long-term and short-term operating stability and the degradation provoked in a compact summary. The available knowledge about specific process frequencies is summarized in one diagram which is a novel contribution of this review. This enables researchers to rapidly identify all occurring process mechanisms with SOFCs and SOECs. Moreover suggestions for how to accelerate degradation and how to regenerate performance are summarized in several tables.
Experimental and Modelling Study of an Electrochemical Hydrogen Compressor
Mar 2019
Publication
The energy world is changing rapidly pushed also by the need for new green energy sources to reduce greenhouse gas emissions. The fast development of renewable energies has created many problems associated with grid management and stability which could be solved with storage systems. The hydrogen economy could be an answer to the need of storage systems and clean fuel for transportation. The Electrochemical Hydrogen Compressor (EHC) is an electrochemical device which could find a place in this scenario giving a solution for the hydrogen purification and compression for storage. This work analyzes through experimental and modeling studies the performance of the EHC in terms of polarization curve Hydrogen Recovery Factor (HRF) and outlet hydrogen purity. The influence of many input parameters such as the total inlet flow rate the hydrogen inlet concentration the contaminant in the feed and the cathode pressure have been investigated. Furthermore the EHC performance have been modelled in a 1D + 1D model implemented in Matlab® solving the Butler-Volmer system of equations numerically. The experimental campaign has shown that high purities can be obtained for the hydrogen separation from N2 and CH4 and purities over 98% feeding He. An increase in the cathode pressure has shown a slight improvement in the obtained purity. A comparison between PSA unit and EHC for a mixture 75% H2 – 25% CH4 at different outlet hydrogen pressure and purity was performed to analyze the energy consumption required. Results show PSA unit is convenient at large scale and high H2 concentration while for low concentration is extremely energy intense. The EHC proved to be worthwhile at small scale and higher outlet hydrogen pressure.
Progress and Prospects of Reversible Solid Oxide Fuel Cell Materials
Dec 2021
Publication
Reversible solid oxide fuel cell (RSOFC) is an energy device that flexibly interchanges between electrical and chemical energy according to people’s life and production needs. The development of cell materials affects the stability and cost of the cell but also restricts its market-oriented development. After decades of research by scientists a lot of achievements and progress have been made on RSOFC materials. According to the composition and requirements of each component of RSOFC this article summarizes the research progress based on materials and discusses the merits and demerits of current cell materials in electrochemical performance. According to the efficiency of different materials in solid oxide fuel cell (SOFC mode) and solid oxide electrolyzer (SOEC mode) the challenges encountered by RSOFC in the operation are evaluated and the future development of RSOFC materials is boldly prospected.
An Environmentally Sustainable Energy Management Strategy for Marine Hybrid Propulsion
Jan 2025
Publication
Integrating electric technologies such as battery energy storage systems and electric propulsion has become an appealing option for reducing fuel consumption and emissions in the transportation sector making these technologies increasingly popular for research and industrial application in the maritime sector. In addition hydrogen is a promising technology for reducing emissions although hydrogen production technologies significantly influence the overall impact of hydrogen-powered systems. This paper proposes an optimizationbased strategy to minimize the environmental impact of a hybrid propulsion system over a given load profile while furthermore considering the environmental impact resulting from the hydrogen production chain. The propulsion system includes diesel generators hydrogen-powered fuel cells batteries and electric motors; mathematical models and assumptions are discussed in detail. The paper applies the proposed strategy and compares different hybrid solutions considering equivalent CO2 emissions discussing a test case applied to a short-range ferry operating in a marine protected area an area particularly sensitive to the problem of atmospheric emissions. The results demonstrate that the proposed strategy can reduce greenhouse gas emissions by up to 73% compared to a conventional mechanical propulsion system.
Sensitivity Analysis of the Methanation Process in Underground Hydrogen Storage: A Case Study in Upper Austria
Jan 2025
Publication
Underground hydrogen storage (UHS) has attracted increasing attention as a promising technology for the largescale storage of renewable energy resources and the decarbonization of energy systems. This study aimed to identify critical parameters influencing UHS performance particularly the role of hydrogen conversion via in situ methanation and hydrogen recovery during production cycles. The main focus is the Lehen field in Upper Austria where a pilot hydrogen storage project was conducted under the leadership of RAG Austria AG. A layered reservoir model was developed on the basis of well-log data to simulate the field trials that occurred in 2016. A sensitivity analysis was performed with the one-parameter-at-a-time (OPAAT) method and the response surface methodology (RSM) to evaluate the impacts of different parameters on hydrogen methanation and hydrogen recovery. The RSM results indicate the activation energy as the most influential factor on methanation that accounts for ~20000 moles variation in generated methane significantly higher than the 6000 moles variance observed in OPAAT. However initial CO2 content contributes up to 15000 moles of methane gener ation as per RSM whereas OPAAT results in a larger impact of up to 32000 moles. These discrepancies demonstrate the limitations of isolated parameter analyses like OPAAT which may not accurately capture the complex interactions between factors influencing the methanation process. This research provides valuable in sights for optimizing UHS performance by emphasizing the influence of reservoir parameters on storage effi ciency. In addition a robust workflow for conducting comprehensive sensitivity analyses of UHS systems is established. By understanding these key factors the potential and predictability of large-scale UHS systems can be significantly improved.
A Perspective on the Decarbonization of the Metals Industry
Nov 2024
Publication
The decarbonization of the metals industry is a major challenge for the energy transition. Metals are indeed essential elements in the expansion of renewable energy installations worldwide but they also represent a relevant source of carbon emissions. Therefore metals producers need to carefully shift their technologies towards less carbon intensive routes. After ranking all the metals in terms of world production volume and total estimated carbon emissions the three most relevant ones have been selected: steel aluminum and chromium. Concentrating the rest of the analysis on them several production processes are available for implementing the decarbonization step but none of them is currently capable of overcoming the challenge alone and being compatible with the 1.5°C trajectory. In this perspective the main production routes are reviewed and proper combinations of proven or emerging technologies are streamlined with the aim to provide an industrially feasible approach to curb the carbon emissions from the metals industry.
Decentralized Hydrogen-oxygen Co-production via Electrolysis for Large Hospitals with Integrated Hydrogen Refuelling Station
Jan 2025
Publication
In the pursuit of greener and more self-sufficient healthcare operations this study presents an integrated eco nomic and environmental analysis of on-site co-production of oxygen and hydrogen through proton exchange membrane electrolysis specifically designed for the Santa Maria Hospital in Lisbon Portugal. The proposed system aims to meet the hospital’s oxygen demand while simultaneously producing hydrogen for use in fuel cell electric vehicles such as ambulances. A 1.5 MW PEM electrolyser is found to be sufficient to meet the hospital’s O2 needs while generating hydrogen at a levelized cost of hydrogen of 4.6 €/kgH2. When considering the implementation costs of an on-site hydrogen refueling station an O2 drying and storage unit as well as the avoided costs in bulk liquid O2 purchases the break-even point for the sale of H2 at the refueling stations is 2.4 €/kgH2. Apart from the economic benefits that could be achieved by selling the produced H2 above this price the environmental analysis showed that 1874 tons of CO2 emissions per year could be avoided by the imple mentation of the concept proposed here. This integrated system not only contributes to the hospital’s energy independence but also serves as a model for sustainable solutions in the healthcare sector with significant environmental and financial benefits.
Hydrogen Production Towards a Carbon-free Economy: A Comprehensive Thermodynamic Analysis
Jan 2025
Publication
Sustainable hydrogen production is key to achieving zero-emission targets and a hydrogen-based economy. Hydrogen production methods vary in terms of resource technology and system efficiency. This work analyzes the thermodynamics of fourteen hydrogen production pathways using Gibbs free energy minimization to examine the effects of pressure (1–60 bar) temperature (100–1000 ◦C) and feed composition using reactant conversion and product selectivity as key indicators of reaction performance. The impact of simultaneous reactions on hydrogen production is also discussed. From the results full conversion (100 %) independent of parameter variations at 1 bar pressure was observed for biomass gasification and steam reforming of glycerol methanol ethanol and bio-oil reactions. However H2 selectivity in all tested reactions except for NH3 dissociation and the splitting of water and H2S is greatly affected by side reactions. Finally the thermodynamic results of all reactions are compared and validated with published experiments followed by an evaluation of the challenges and opportunities in hydrogen production. The study provides optimal reaction parameters and a comprehensive comparison of H2 production processes aiding in designing and developing processes based on regional resource availability. Additionally it highlights the potential for both local and remote hydrogen production pathways from various renewable energy sources.
Everything About Hydrogen Podcast: Nuclear-enabled Hydrogen at Port of Belledune
Jul 2024
Publication
The team sits down with Rishi Jain to discuss Cross River’s marquee wind hydro nuclear hydrogen ammonia project in the revitalized heavy industrial Port of Belledune New Brunswick Canada.
The podcast can be found on their website.
The podcast can be found on their website.
Recent Progress in Seawater Electrolysis for Hydrogen Evolution by Transition Metal Phosphides
Dec 2021
Publication
The electrocatalytic seawater splitting has become an important and necessary way for large-scale hydrogen production with challenges ahead. In this review a brief introduction to the reaction mechanism of seawater electrocatalytic process is first provided including the cathodic hydrogen evolution reaction and the anodic oxygen evolution reaction as well as the competitive chloride evolution reaction. Recent progress in transition metal phosphides-based catalysts for seawater electrolysis such as phosphorus doped transition metals binary metal phosphides and structural engineering are then evaluated and discussed. Finally the challenges and opportunities of transition metal phosphides are proposed and discussed.
Assessment of Selected Alternative Fuels for Spanish Navy Ships According to Multi-Criteria Decision Analysis
Dec 2023
Publication
Climate change and environmental degradation are growing concerns in today’s society which has led to greater awareness and responsibility regarding the need to adopt sustainable practices. The European Union has established the goal of achieving climate neutrality by 2050 which implies a significant reduction in greenhouse gas emissions in all sectors. To achieve this goal renewable energies the circular economy and energy efficiency are being promoted. A major source of emissions is the use of fossil fuels in different types of ships (from transport ships to those used by national navies). Among these it highlights the growing interest of the defense sector in trying to reduce these emissions. The Spanish Ministry of Defense is also involved in this effort and is taking steps to reduce the carbon footprint in military operations and improve sustainability in equipment acquisition and maintenance. The objective of this study is to identify the most promising alternative fuel among those under development for possible implementation on Spanish Navy ships in order to reduce greenhouse gas emissions and improve its capabilities. To achieve this a multi-criteria decision-making method will be used to determine the most viable fuel option. The data provided by the officers of the Spanish Navy is of great importance thanks to their long careers in front of the ships. The analysis revealed that hydrogen was the most suitable fuel with the highest priority ahead of LNG and scored the highest in most of the sections of the officials’ ratings. These fuels are less polluting and would allow a significant reduction in emissions during the navigation of ships. However a further study would also have to be carried out on the costs of adapting to their use and the safety of their use.
Multi-Temporal Energy Management Strategy for Fuel Cell Ships Considering Power Source Lifespan Decay Synergy
Dec 2024
Publication
With increasingly stringent maritime environmental regulations hybrid fuel cell ships have garnered significant attention due to their advantages in low emissions and high efficiency. However challenges related to the coordinated control of multi-energy systems and fuel cell degradation remain significant barriers to their practical implementation. This paper proposes an innovative multi-timescale energy management strategy that focuses on optimizing the lifespan decay synergy of fuel cells and lithium batteries. The study designs an attention-based CNN-LSTM hybrid model for power prediction and constructs a twostage optimization framework: The first stage employs Model Predictive Control (MPC) for long-term power planning to optimize equivalent hydrogen consumption while the second stage focuses on real-time power allocation considering both power source degradation and system operational efficiency. The simulation results demonstrate that compared to single-layer MPC and the Equivalent Consumption Minimization Strategy (ECMS) the proposed method exhibits significant advantages in reducing single-voyage costs minimizing differences in power source degradation rates and alleviating power source stress. The overall performance of this strategy approaches the global optimal solution obtained through Dynamic Programming comprehensively validating its superiority in simultaneously optimizing system economics and durability.
The Effect of Defueling Rate on the Temperature Evolution of On-board Hydrogen Tanks
Jul 2015
Publication
During the driving of a fuel cell car the expansion of the hydrogen along the emptying of the high pressure storage tank produces a cooling of the gas. The hydrogen vessel can experience a fast depressurization during acceleration or under an emergency release. This can result on the one hand in exceeding the low safety temperature limit of 40 C inside the on-board compressed hydrogen tank and on the other hand in the cooling of its walls. In the present paper defueling experiments of two different types of on-board hydrogen tanks (Type III and Type IV) have been performed in all the range of expected defueling rates. The lowest temperatures have been found on the bottom part of the Type IV tank in very fast defuelings. For average driving conditions in both types of vessels the inside gas temperature gets closer to that of the walls and the tank would arrive to the refuelling station at a temperature significantly lower than the ambient temperature.
Green Energy Revolution and Substitution of Hydrocarbons with Hydrogen: Distribution Network Infrastructure Materials
Dec 2023
Publication
Global warming is an accepted fact of life on Earth posing grave consequences in the form of weather patterns with life-threatening outcomes for inhabitants and their cultures especially those of island countries. These wild and unpredictable weather patterns have persuaded authorities governments and industrial leaders to adapt a range of solutions to combat the temperature rise on Earth. One such solution is to abandon fossil fuels (hydrocarbons) for energy generation and employ renewable energy sources or at least use energy sources that do not generate greenhouse gases. One such energy carrier is hydrogen which is expected to slowly replace natural gas and will soon be pumped into the energy distribution pipeline network. Since the current energy distribution network was designed for hydrocarbons its use for hydrogen may pose some threat to the safety of urban society. This is the first time an overview article has examined the replacement of hydrocarbons by hydrogen from a totally different angle by incorporating material science viewpoints. This article discusses hydrogen properties and warns about the issue of hydrogen embrittlement in the current pipeline network if hydrogen is to be pumped through the current energy distribution network i.e. pipelines. It is recommended that sufficient study and research be planned and carried out to ensure the safety of using the current energy distribution network for hydrogen distribution and to set the necessary standards and procedures for future design and construction.
Multi-functional Hybrid Energy System for Zero-energy Residential Buildings: Integrating Hydrogen Production and Renewable Energy Solutions
Jan 2025
Publication
The increasing global residential energy demand causes carbon emissions and ecological impacts necessitating cleaner efficient solutions. This study presents an innovative hybrid energy system integrating wind power and gas turbines for a four-story 16-unit residential building. The system generates electricity heating cooling and hydrogen using a Proton Exchange Membrane electrolyzer and a compression chiller. Integrating the electrolyzer enables hydrogen production and demonstrates hydrogen’s potential as a versatile clean energy carrier for systems contributing to advancements in hydrogen utilization. Simulations with Engineering Equation Solver software coupled with neural network-based multi-objective optimization fine-tuned parameters such as gas turbine efficiency wind turbine count and gas turbine inlet temperature to enhance exergy efficiency and reduce operational costs. The optimized system achieves an energy efficiency of 33.69% and an exergy efficiency of 36.95% and operates at $446.04 per hour demonstrating economic viability. It produces 51061 MWh annually exceeding the building’s energy demands and allowing surplus energy use elsewhere. BEopt simulations confirm the system meets residential needs by providing 2.52 GWh of electricity 3.36 GWh of heating and 5.11 GWh of cooling annually. This system also generates 10 kg of hydrogen per hour and achieves a CO₂ reduction of 10416 tons/year. The wind farm (25 turbines) provides most of the energy at 396.7 dollars per hour while the gas turbine operates at 80% efficiency. By addressing the challenges of intermittent renewable energy in residential Zero-Energy Buildings this research offers a scalable and environmentally friendly solution contributing to sustainable urban living and advancing hydrogen energy applications.
Advancing Hydrogen: A Closer Look at Implementation Factors, Current Status and Future Potential
Dec 2023
Publication
This review article provides a comprehensive analysis of the hydrogen landscape outlining the imperative for enhanced hydrogen production implementation and utilisation. It places the question of how to accelerate hydrogen adoption within the broader context of sustainable energy transitions and international commitments to reduce carbon emissions. It discusses influencing factors and policies for best practices in hydrogen energy application. Through an in-depth exploration of key factors affecting hydrogen implementation this study provides insights into the complex interplay of both technical and logistical factors. It also discusses the challenges of planning constructing infrastructure and overcoming geographical constraints in the transition to hydrogen-based energy systems. The drive to achieve net-zero carbon emissions is contingent on accelerating clean hydrogen development with blue and green hydrogen poised to complement traditional fuels. Public–private partnerships are emerging as catalysts for the commercialisation of hydrogen and fuel-cell technologies fostering hydrogen demonstration projects worldwide. The anticipated integration of clean hydrogen into various sectors in the coming years signifies its importance as a complementary energy source although specific applications across industries remain undefined. The paper provides a good reference on the gradual integration of hydrogen into the energy landscape marking a significant step forward toward a cleaner greener future.
Transitioning to a Renewable Hydrogen System: Optimal Infrastructure for Self-sufficient Hydrogen Supply in Austria by 2030
Aug 2024
Publication
In this study we employ an optimization model to optimally design a self-sufficient independent of any imports and exports hydrogen infrastructure for Austria by 2030. Our approach integrates key hydrogen technologies within a detailed spatial investment and operation model – coupled with a European scale electricity market model. We focus on optimizing diverse infrastructure componentsincluding trailers pipelines electrolyzers and storages to meet Austria's projected hydrogen demand. To accurately estimate this demand in hourly resolution we combine existing hydrogen strategies and projections to account for developments in various industrial sectors consider demand driven by the transport sector and integrate hydrogen demand arising from its use in gas-powered plants. Accounting for the inherent uncertainty linked to such projections we run the analysis for two complementary scenarios. Our approach addresses the challenges of integrating large quantities of renewable hydrogen into a future energy system by recognizing the critical role of domestic production in the early market stages. The main contribution of this work is to address the gap in optimizing hydrogen infrastructure for effective integration of domestic renewable hydrogen production in Austria by 2030 considering sector coupling potentials optimal electrolyzer placement and the design of local hydrogen networks.
A High-performance Capillary-fed Electrolysis Cell Promises More Cost-competitive Renewable Hydrogen
Mar 2022
Publication
Renewable or green hydrogen will play a critical role in the decarbonisation of hard-to-abate sectors and will therefore be important in limiting global warming. However renewable hydrogen is not cost-competitive with fossil fuels due to the moderate energy efficiency and high capital costs of traditional water electrolysers. Here a unique concept of water electrolysis is introduced wherein water is supplied to hydrogen- and oxygen-evolving electrodes via capillary-induced transport along a porous inter-electrode separator leading to inherently bubble-free operation at the electrodes. An alkaline capillary-fed electrolysis cell of this type demonstrates water electrolysis performance exceeding commercial electrolysis cells with a cell voltage at 0.5 A cm−2 and 85 °C of only 1.51 V equating to 98% energy efficiency with an energy consumption of 40.4 kWh/kg hydrogen (vs. ~47.5 kWh/kg in commercial electrolysis cells). High energy efficiency combined with the promise of a simplified balance-ofplant brings cost-competitive renewable hydrogen closer to reality.
Understanding Costs in Hydrogen Infrastructure Networks: A Multi-stage Approach for Spatially-aware Pipeline Design
Jan 2025
Publication
The emergence and design of hydrogen transport infrastructures are crucial steps towards the development of a hydrogen economy. However pipeline routing remains underdeveloped in hydrogen infrastructure design models despite its significant impact on the resultant cost and network configuration. Many previous studies assume uniform cost surfaces on which pipelines are designed. Studies that consider a variable cost surface focus on designing candidate networks rather than bespoke routes for a given infrastructure. This study proposes a novel multi-stage approach based on a graph-based Steiner tree with Obstacles Genetic Algorithm (StObGA) to route pipelines on a complex cost surface for multi-source multi-sink hydrogen networks. The application of StObGA results in cost savings of 20–40% compared to alternative graph-based methods that assume uniform cost surfaces. Furthermore this publication presents an in-depth methodological comparative analysis of different pipeline routing and sizing methods used in the literature and discusses their impact. Finally we demonstrate how this model can generate design variations and provide practical insights to inform industry and policymakers.
Review of Next Generation Hydrogen Production from Offshore Wind Using Water Electrolysis
Dec 2023
Publication
Hydrogen produced using renewable energy from offshore wind provides a versatile method of energy storage and power-to-gas concepts. However few dedicated floating offshore electrolyser facilities currently exist and therefore conditions of the offshore environment on hydrogen production cost and efficiency remain uncertain. Therefore this review focuses on the conversion of electrical energy to hydrogen using water electrolysis located in offshore areas. The challenges associated with the remote locations fluctuating power and harsh conditions are highlighted and recommendations for future electrolysis system designs are suggested. The latest research in polymer electrolyte membrane alkaline and membraneless electrolysis are evaluated in order to understand their capital costs efficiency and current research status for achieving scaled manufacturing to the GW scale required in the next three decades. Operating fundamentals that govern the performance of each device are investigated and future recommendations of research specifically for the integration of water electrolysers with offshore wind turbines is presented.
Optimal Sizing of Renewable Energy Storage: A Techno-economic Analysis of Hydrogen, Battery and Hybrid Systems Considering Degradation and Seasonal Storage
Feb 2023
Publication
Energy storage is essential to address the intermittent issues of renewable energy systems thereby enhancing system stability and reliability. This paper presents the design and operation optimisation of hydrogen/battery/ hybrid energy storage systems considering component degradation and energy cost volatility. The study ex amines a real-world case study which is a grid-connected warehouse located in a tropical climate zone with a photovoltaic solar system. An accurate and robust Multi-Objective Modified Firefly Algorithm (MOMFA) is proposed for the optimal design and operation of the energy storage systems of the case study. To further demonstrate the robustness and versatility of the optimisation method another synthetic case is tested for a location in a temperate climate zone that has a high seasonal mismatch. The modelling results show that the system in the tropical zone always provides a superior return when compared to a similar system in the temperate zone due to abundant solar resources. When comparing battery-only and hydrogen-only systems battery systems perform better than hydrogen systems in many situations with a higher self-sufficient ratio and net present value. However if there is high seasonal variation and a high requirement for using renewable energy (the penetration of renewable energy is >80 %) using hydrogen for energy storage is more beneficial. Furthermore the hybrid system (i.e. combining battery and hydrogen) outperforms battery-only and hydrogenonly systems. This is attributed to the complementary combination of hydrogen which can be used as a longterm energy storage option and battery which is utilised as a short-term option. This study also shows that storing hydrogen in a long-term strategy can lower component degradation enhance efficiency and increase the total economic performance of hydrogen and hybrid storage systems. The developed optimisation method and findings of this study can support the implementation of energy storage systems for renewable energy.
Maximizing H2 Production from a Combination of Catalytic Partial Oxidation of CH4 and Water Gas Shift Reaction
Jan 2025
Publication
A single-bed and dual-bed catalyst system was studied to maximize H2 production from the combination of partial oxidation of CH4 and water gas shift reaction. In addition the different types of catalysts including Ni Cu Ni-Re and Cu-Re supported on gadolinium-doped ceria (GDC) were investigated under different operating conditions of temperature (400–650 ◦C). Over Ni-based catalysts methane can easily dissociate on a Ni surface to give hydrogen and carbon species. Then carbon species react with lattice oxygen of ceria-based material to form CO. The addition of Re to Ni/GDC enhances CH4 dissociation on the Ni surface and increases oxygen storage capacity in the catalyst thus promoting carbon elimination. In addition the results showed that a dual-bed catalyst system exhibited catalytic activity better than a single-bed catalyst system. The dual-bed catalyst system by the combination of 1%Re4%Ni/GDC as a partial oxidation catalyst and 1%Re4%Cu/GDC as a water gas shift catalyst provided the highest CH4 conversion and H2 yield. An addition of Re onto Ni/GDC and Cu/GDC caused an increase in catalytic performance because Re addition could improve the catalyst reducibility and increase metal surface area as more of their surface active sites are exposed to reactants.
A Bibliometric Study on the Research Trends and Hotspots of Proton Exchange Membrane Electrolyzer
Jan 2024
Publication
The application of hydrogen energy produced by proton exchange membrane electrolyzer (PEMEC) is conducive to the solution of the greenhouse effect and the energy crisis. In order to understand the development trends and research hotspot of PEMEC in recent years a total of 1874 research articles related to this field from 2003 to 2023 were obtained from the Web of Science Core Collection (WoS CC) database. The visualization software VOSviewer is used for bibliometric analysis and the research progress hotspots and trends in the PEMEC field are summarized. It was found that in the past two decades literature in the PEMEC field has shown a trend of stable increase at first and then rapidly increasing. And it is in a stage of rapid growth after 2021.Renewable Energy previously published research articles related to PEMEC with the highest frequency of citations. There are a total of 6128 researchers in this field but core authors only account for 4.5% of the total. Although China entered this field later than the United States and Canada it has the largest number of research articles. The research results provide a comprehensive overview of various aspects in the PEMEC field which is beneficial for researchers to grasp the development hotspots of PEMEC.
Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art
Dec 2023
Publication
To achieve a more ecologically friendly energy transition by the year 2050 under the European “green” accord hydrogen has recently gained significant scientific interest due to its efficiency as an energy carrier. This paper focuses on large-scale hydrogen production systems based on marine renewable-energy-based wind turbines and tidal turbines. The paper reviews the different technologies of hydrogen production using water electrolyzers energy storage unit base hydrogen vectors and fuel cells (FC). The focus is on large-scale hydrogen production systems using marine renewable energies. This study compares electrolyzers energy storage units and FC technologies with the main factors considered being cost sustainability and efficiency. Furthermore a review of aging models of electrolyzers and FCs based on electrical circuit models is drawn from the literature and presented including characterization methods of the model components and the parameters extraction methods using a dynamic current profile. In addition industrial projects for producing hydrogen from renewable energies that have already been completed or are now in progress are examined. The paper is concluded through a summary of recent hydrogen production and energy storage advances as well as some applications. Perspectives on enhancing the sustainability and efficiency of hydrogen production systems are also proposed and discussed. This paper provides a review of behavioral aging models of electrolyzers and FCs when integrated into hydrogen production systems as this is crucial for their successful deployment in an ever-changing energy context. We also review the EU’s potential for renewable energy analysis. In summary this study provides valuable information for research and industry stakeholders aiming to promote a sustainable and environmentally friendly energy transition.
Life-cycle Assessment of Hydrogen Produced through Chemical Looping Dry Reforming of Biogas
Jun 2024
Publication
Chemical looping dry reforming of methane (CLDRM) using perovskites as a catalyst is considered a promising option for producing hydrogen from biogas. In this work the life-cycle performance of a system compiling a CLDRM unit paired with a water gas shift unit a pressure swing adsorption unit and a combined cycle scheme to provide steam and electricity was assessed. The main data needed to reflect the behavior of the reforming reaction was obtained experimentally and implemented in an Aspen Plus® simulation. Inventory data was obtained through process simulation and used to assess the environmental performance of the process in terms of carbon footprint acidification freshwater eutrophication ozone depletion photochemical ozone formation and depletion of minerals and metals. Overall the environmental viability of the production of green hydrogen from biogas was found to be heavily dependent on the biogas leakage in anaerobic digestion plants. The CLDRM system was benchmarked against a conventional DRM implementation for the same feedstock. While the conventional DRM plant environmentally outperformed the perovskite-based CLDRM the latter might present advantages from an implementation point of view.
Research Progress on Corrosion and Hydrogen Embrittlement in Hydrogen-Natural Gas Pipeline Transportation
Jun 2023
Publication
Hydrogen clean efficient and zero-carbon is seen as a most promising energy source. The use of existing gas pipelines for hydrogenenatural gas transportation is considered to be an effective way to achieve long-distance large-scale efficient and economical hydrogen transportation. However the pipelines for hydrogenenatural gas transportation contain lots of impurities (e.g. CH4 high-pressure H2 H2S and CO2) and free water which will inevitably lead to corrosion and hydrogen embrittlement. This paper presents a systematic review of research and an outlook for corrosion and hydrogen embrittlement in hydrogenenatural gas pipeline transportation. The results show that gasphase hydrogen charging is suitable for hydrogenenatural gas transportation but this technique lacks technical standards. By contrast the liquid-phase hydrogen charging technique is more mature but has large deviation from the engineering reality. In the hydrogenenatural gas transportation pipelines corrosion and hydrogen embrittlement are synergetic and competitive but the failure mechanism and change law when corrosion and hydrogen embrittlement coexist remain unclear which need to be further clarified by experiments. The failure mechanism is believed to be mainly sensitive to three key factors i.e. the H2S/CO2 partial pressure ratio the hydrogen blending ratio and material strength. The increase of the three factors will make the pipeline materials more corrosive and more sensitive to hydrogen embrittlement. The research findings can be used as a reference for research and development of long-distance hydrogenenatural gas transportation technology and will drive the high-quality development of the hydrogenenatural gas blending industry.
Thermodynamic Evaluation of Solar Energy-based Methanol and Hydrogen Production and Power Generation Pathways: A Comparative Study
Sep 2024
Publication
This work presents a comparative novel evaluation of two distinct fuels methanol and hydrogen production and power generation routes via fuel cells. The first route includes the methanol production from direct partial oxidation of methane to methanol where the methanol is condensed stored and sent to a direct methanol fuel cell. The second route is hydrogen production from solar methane cracking (named as turquoise hydrogen) where heat is supplied from concentrated solar power and hydrogen is stored and directed to a hydrogen fuel cell. This study aims to provide insights into these fuel's production conditions storage methods energy and exergy efficiencies. The proposed system is simulated using the Engineering Equation Solver software and a thermodynamic analysis of the entire system including all the equipment and process streams is performed. The methanol and hydrogen route's overall energy and exergy efficiencies are 39.75% 38.35% 35.84% and 34.58% respectively. The highest exergy destruction rate of 1605 kW is observed for the partial oxidation of methane to methanol. The methanol and hydrogen routes generate 32.087 MWh and 11.582 MWh of electricity for 16-hour of fuel cell operation respectively. Sensitivity analysis has been performed to observe the effects of different parameters such as operating temperature and mass flow rate of fuels on the electricity production and energy efficiencies of the systems.
Design, Development, and Performance of a 10 kW Polymer Exchange Membrane Fuel Cell Stack as Part of a Hybrid Power Source Designed to Supply a Motor Glider
Aug 2020
Publication
A 10 kW PEMFC (polymer exchange membrane fuel cell) stack consisting of two 5 kW modules (A) and (B) connected in series with a multi-function controller unit was constructed and tested. The electrical performance of the V-shaped PEMFC stack was investigated under constant and variable electrical load. It was found that the PEMFC stack was capable of supplying the required 10 kW of electrical power. An optimised purification process via ‘purge’ or humidification implemented by means of a short-circuit unit (SCU) control strategy enabled slightly improved performance. Online monitoring of the utilisation of the hydrogen system was developed and tested during the operation of the stack especially under variable electrical load. The air-cooling subsystem consisting of a common channel connecting two 5 kW PEMFC modules and two cascade axial fans was designed manufactured using 3D printing technology and tested with respect to the electrical performance of the device. The dependence of total partial-pressure drop vs. ratio of air volumetric flow for the integrated PEMFC stack with cooling devices was also determined. An algorithm of stack operation involving thermal humidity and energy management was elaborated. The safety operation and fault diagnosis of the PEMFC stack was also tested.
Regime-driven Niches and Institutional Entrepreneurs: Adding Hydrogen to Regional Energy Systems in Germany
Nov 2023
Publication
In recent years production and supply of hydrogen has gained significant attention within the German energy transition. This is due to increasingly urgent pressures to mitigate climate change and geopolitical imperatives to substitute natural gas. Hydrogen is seen as an important cross-sectoral energy carrier serving multiple functions including heat production for industry and households fuel for transportation and energy storage for stabilization of electricity supply. In the context of various funding mechanisms on several administrative levels regional value chains for green hydrogen supply are emerging. To date however few studies analyzing regional hydrogen systems exist. Due to its high projected demand of energy sources for heating industrial processes and mobility Germany appears to be a very relevant research area in this emerging field. Situated within the concept of the multi-level perspective this article examines the way how regional “niches” of green hydrogen evolve and how they are organized. The study takes an evolutionary perspective in analyzing processes of embedding green hydrogen infrastructures in regional energy regimes which entered “re-configuration”-pathways. It argues that the congruence of available resources for renewable electricity established networks of institutional entrepreneurs and access to higher level funding are conditions which put incumbent regime-actors in favorable positions to implement green hydrogen niches. Conversely the embedding of green hydrogen infrastructures in regional energy systems is a case in point of how the attributes of niches in particular technological domains can be used to explain the transition pathway entered by a surrounding energy regime.
Process Path for Reducing Carbon Emissions from Steel Industry—Combined Electrification and Hydrogen Reduction
Jan 2024
Publication
This review focuses on the energy structure of iron and steel production and a feasible development path for carbon reduction. The process path and feasible development direction of carbon emission reduction in the iron and steel industry have been analyzed from the perspective of the carbon–electricity–hydrogen ternary relationship. Frontier technologies such as “hydrogen replacing carbon” are being developed worldwide. Combining the high efficiency of microwave electric-thermal conversion with the high efficiency and pollution-free advantages of hydrogen-reducing agents may drive future developments. In this review a process path for “microwave + hydrogen” synergistic metallurgy is proposed. The reduction of magnetite powder by H2 (CO) in a microwave field versus in a conventional field is compared. The driving effect of the microwave field is found to be significant and the synergistic reduction effect of microwaves with H2 is far greater than that of CO.
Comparative Study of Global, European and Italian Standards on Hydrogen Refuelling Stations
Jan 2022
Publication
The purpose of this paper is to give a strategic overview of the existing standards governing the construction and operation of hydrogen refueling stations. A succinct and comprehensive study of hydrogen refueling station standards globally in Europe and in Italy is conducted and discussed in light of the new European Hydrogen Strategy and Roadmap. Among the numerous topics examined a particular emphasis is placed on the standards in force for on-site hydrogen production via water electrolysis hydrogen storage both liquid and gaseous and refueling protocols for lightduty and heavy-duty vehicles on an international level through the provision of ISO IEC and SAE standards; on a European level through the examination of the CEN/CENELEC database; and on an Italian national level through the analysis of the UNI database.
Recent Advances in Electrocatalysts for Seawater Splitting
Dec 2020
Publication
Water splitting is an effective strategy to produce renewable and sustainable hydrogen energy. Especially seawater splitting avoiding use of the limited freshwater resource is more intriguing. Nowadays electrocatalysts explored for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using natural seawater or saline electrolyte have been increasingly reported. To better understand the current status and challenges of the electrocatalysts for HER and OER from seawater we comprehensively review the recent advances in electrocatalysts for seawater splitting. The fundamentals challenges and possible strategies for seawater splitting are firstly presented. Then the recently reported electrocatalysts that explored for HER and OER from seawater are summarized and discussed. Finally the perspectives in the development of high-efficient electrocatalysts for seawater splitting are also proposed.
No more items...