Applications & Pathways
Methodology for Evaluating and Comparing Different Sustainable Energy Generation and Storage Systems for Residential Buildings—Application to the Case of Spain
Nov 2025
Publication
This paper focuses on assessing different sustainable energy generation and storage systems for residential buildings in Spain identifying the best-performing system according to the end-user requirements. As outlined by the consulted literature the authors have selected two types of hybrid configurations—a Photovoltaic System with Battery Backup (PSBB) and a Photovoltaic System with Hydrogen Hybrid Storage Backup (PSHB)—and a Grid-Based System with Renewable Hydrogen Contribution (GSHC) is proposed. A Fuzzy Analytical Hierarchy Process methodology (FAHP) is employed for evaluating the hybrid power systems from a multi-criteria approach: acquisition operational and environmental. The main requirements for selecting the optimal system are organized under these criteria and evaluated using key performance indicators. This methodology allows the selection of the best option considering objective and subjective system performance indicators. Beyond establishing the ranking a sensitivity analysis was conducted to provide insights into how individual criteria influence the ranking of the hybrid power systems alternatives. The results demonstrate that the selection of hybrid power systems for a residential building is highly dependent on consumer preferences but the PSBB system scores highly in operation and acquisition criteria while the GSHC has good performance in all the criteria.
Deployment of Modular Renewable Energy Sources and Energy Storage Schemes in a Renewable Energy Valley
Nov 2025
Publication
While community energy initiatives and pilot projects have demonstrated technical feasibility and economic benefits their site-specific nature limits transferability to systematic scalable investment models. This study addresses this gap by proposing a modular framework for Renewable Energy Valleys (REVs) developed from real-world Community Energy Lab (CEL) demonstrations in Crete Greece which is an island with pronounced seasonal demand fluctuation strong renewable potential and ongoing hydrogen valley initiatives. Four modular business schemes are defined each representing different sectoral contexts by combining a baseline of 50 residential units with one representative large consumer (hotel rural households with thermal loads municipal swimming pool or hydrogen bus). For each scheme a mixed-integer linear programming model is applied to optimally size and operate integrated solar PV wind battery (BAT) energy storage and hydrogen systems across three renewable energy penetration (REP) targets: 90% 95% and 99.9%. The framework incorporates stochastic demand modeling sector coupling and hierarchical dispatch schemes. Results highlight optimal technology configurations that minimize dependency on external sources and curtailment while enhancing reliability and sustainability under Mediterranean conditions. Results demonstrate significant variation in optimal configurations across sectors and targets with PV capacity ranging from 217 kW to 2840 kW battery storage from 624 kWh to 2822 kWh and hydrogen systems scaling from 65.2 kg to 192 kg storage capacity. The modular design of the framework enables replication beyond the specific context of Crete supporting the scalable development of Renewable Energy Valleys that can adapt to diverse sectoral mixes and regional conditions.
Feasibility and Sensitivity Analysis of an Off-Grid PV/Wind Hybrid Energy System Integrated with Green Hydrogen Production: A Case Study of Algeria
Nov 2025
Publication
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the technoeconomic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer fuel cell and hydrogen storage) to supply both electricity and hydrogen to decentralized sites in Algeria. Using HOMER Pro five representative Algerian regions were analyzed accounting for variations in solar irradiation wind speed and groundwater availability. A deferrable water-extraction and treatment load was incorporated to model the water requirements of the electrolyzer. In addition a comprehensive sensitivity analysis was conducted on solar irradiation wind speed and the capital costs of PV panels and wind turbines to capture the effects of renewable resource and investment cost fluctuations. The results indicate significant regional variation with the levelized cost of energy (LCOE) ranging from 0.514 to 0.868 $/kWh the levelized cost of hydrogen (LCOH) between 8.31 and 12.4 $/kg and the net present cost (NPC) between 10.28 M$ and 17.7 M$ demonstrating that all cost metrics are highly sensitive to these variations.
Benefit Allocation Strategies for Electric–Hydrogen Coupled Virtual Power Plants with Risk–Reward Tradeoffs
Nov 2025
Publication
Driven by carbon neutrality goals electric–hydrogen coupled virtual power plants (EHCVPPs) integrate renewable hydrogen production with power system flexibility resources emerging as a critical technology for large-scale renewable integration. As distributed energy resources (DERs) within EHCVPPs diversify heterogeneous resources generate diversified market values. However inadequate benefit allocation mechanisms risk reducing participation incentives destabilizing cooperation and impairing operational efficiency. To address this benefit allocation must balance fairness and efficiency by incorporating DERs’ regulatory capabilities risk tolerance and revenue contributions. This study proposes a multi-stage benefit allocation framework incorporating risk–reward tradeoffs and an enhanced optimization model to ensure sustainable EHCVPP operations and scalability. The framework elucidates bidirectional risk–reward relationships between DERs and EHCVPPs. An individualized risk-adjusted allocation method and correction mechanism are introduced to address economic-centric inequities while a hierarchical scheme reduces computational complexity from diverse DERs. The results demonstrate that the optimized scheme moderately reduces high-risk participants’ shares increasing operator revenue by 0.69% demand-side gains by 3.56% and reducing generation-side losses by 1.32%. Environmental factors show measurable yet statistically insignificant impacts. The framework meets stakeholders’ satisfaction and minimizes deviation from reference allocations.
OH* Chemiluminescence in Non-premixed Industrial Natural Gas/hydrogen Flames under Air-fuel and Oxy-fuel Conditions: Kinetic Modeling and Experimental Validation
Oct 2025
Publication
The application of OH* chemiluminescence diagnostics is becoming increasingly prevalent in the combustion characterization of hydrogen. As the current literature is lacking a systematic study of OH* chemiluminescence in non-premixed turbulent natural gas (NG) and hydrogen (H2 ) flames the present work was designed to address this research gap. Therefore extensive experiments were performed on a semi-industrial burner operating at 50–100 kW in NG/H2–Air/O2 combustion modes which were complemented by comprehensive numerical simulations including 1D laminar counterflow diffusion flamelet calculations and full 3D CFD simulations of the semi-industrial furnace setup. In this way an OH* chemistry model is presented that accurately predicts the global reaction zone characteristics and their difference between CH4 and H2 in air-fired and oxygen-fired flames. The comprehensive numerical approach in conjunction with the subsequent study of different operating conditions yielded novel insights into both combustion modeling and the underlying thermochemical phenomena providing an essential contribution to the transition of the thermal energy sector towards hydrogen as an alternative carbon-free fuel.
Towards the Decarbonization of the Maritime Industry: Design of a Novel Methodology for the Sustainable Strategy Assessment
Oct 2025
Publication
The growing concern about the increase in European Union (EU)’s total CO2 emissions due to maritime activities and the ambitious goal of net zero emissions they are asked to fulfil by 2050 are leading the way to the adoption of new sustainable strategies. In this article a novel methodology for the classification of the sustainable actions is proposed. Moreover new indicators have been designed to compare the level of sustainable development of each port. Among them a new coefficient for the assessment of the Ports’ Potential Sustainability (PPS) have been designed. Main results showed that 56% of the actions were in the improvement and environmentally sustainable group while 19% were shift-economic actions related to the installation of technologies. As a matter of the fact all European ports under analysis have adopted cold ironing system which can reduce up to 4% of the global shipping emissions. Similarly 50% of them have already integrated renewables energies and prioritize equipment electrification in their processes. Finally the most relevant projects to optimize the energy consumption of daily operations and the main challenges that still need to be addressed have been analyzed showing the current trends maritime sector is undertaking to advance towards the sustainable development.
Life Cycle and Economic Viability Assessment of Clean Hydrogen as a Fuel in Corn Drying
Oct 2025
Publication
This study presents a comparative life cycle and economic assessment of using clean hydrogen as a sustainable alternative to natural gas and propane for corn grain drying. The study compares the environmental performance limited to GWP100 and cost-effectiveness of hydrogen from various renewable sources (hydro wind solar) and plasma pyrolysis of natural gas against conventional fossil fuels under two delivery scenarios: pipeline and trucking. A life cycle assessment is conducted using Open LCA to quantify the carbon intensity of each fuel from cradle to combustion at multiple energy requirements based on four burner efficiencies across each scenario. In parallel economic analysis is conducted by calculating the fuel cost required per ton of dried corn grains at each efficiency across both scenarios. The results indicate that green hydrogen consistently outperforms current fuels in terms of emissions but it is generally more expensive at lower burner efficiencies and in trucking scenarios. However the cost competitiveness of green hydrogen improves significantly at higher efficiency and with pipeline infrastructure development it can become more economical when compared to propane. Hydrogen produced via plasma pyrolysis offers high environmental and economic costs due to its electricity and natural gas requirements. Sensitivity analysis further explores the impact of a 50% reduction in hydrogen production and transportation costs revealing that hydrogen could become a viable option for grain drying in both pipeline and trucking scenarios. This study highlights the long-term potential of hydrogen in reducing carbon emissions and offers insights into the economic feasibility of hydrogen adoption in agricultural drying processes. The findings suggest that strategic investments in hydrogen infrastructure could significantly enhance the sustainability of agricultural practices paving the way for a greener future in food production.
Hydrogen Strategies Under Uncertainty: Risk-Averse Choices for Green Hydrogen Pathways
Oct 2025
Publication
The last decade has been characterized by a growing environmental awareness and the rise of climate change concerns. Continuous advancement of renewable energy technologies in this context has taken a central stage on the global agenda leading to a diverse array of innovations ranging from cutting-edge green energy production technologies to advanced energy storage solutions. In this evolving context ensuring the sustainability of energy systems—through the reduction of carbon emissions enhancement of energy resilience and responsible resource integration—has become a primary objective of modern energy planning. The integration of hydrogen technologies for power-to-gas (P2G) and power-topower (P2P) and energy storage systems is one of the areas where the most remarkable progress is being made. However real case implementations are lagging behind expectations due to large-scale investments needed which under high energy price uncertainty act as a barrier to widespread adoption. This study proposes a risk-averse approach for sizing an Integrated Hybrid Energy System considering the uncertainty of electricity and gas prices. The problem is formulated as a mixed-integer program and tested on a real-world case study. The analysis sheds light on the value of synergies and innovative solutions that hold the promise of a cleaner more sustainable future for generations to come.
Modeling Hydrogen-Assisted Combustion of Liquid Fuels in Compression-Ignition Engines Using a Double-Wiebe Function
Oct 2025
Publication
This article discusses the potential of using the double-Wiebe function to model combustion in a compression-ignition engine fueled by diesel fuel or its substitutes such as hydrotreated vegetable oil (HVO) and rapeseed methyl ester (RME) and hydrogen injected into the engine intake manifold. The hydrogen amount ranged from 0 to 35% of the total energy content of the fuels burned. It was found that co-combustion of liquid fuel with hydrogen is characterized by two distinct combustion phases: premixed and diffusion combustion. The premixed phase occurring just after ignition is characterized by a rapid combustion rate which increases with an increase in hydrogen injected. The novelty in this work is the modified formula for a double-Wiebe function and the proposed parameters of this function depending on the amount of hydrogen added for co-combustion with liquid fuel. To model this combustion process the modified double-Wiebe function was proposed which can model two phases with different combustion rates. For this purpose a normalized HRR was calculated and based on this curve coefficients for the double-Wiebe function were proposed. Satisfactory consistency with the experiment was achieved at a level determined by the coefficient of determination (R-squared) of above 0.98. It was concluded that the presented double-Wiebe function can be used to model combustion in 0-D and 1-D models for fuels: RME and HVO with hydrogen addition.
Insights from Swirl Number and Ambient Pressure Variations with a Hydrogen/Ammonia Swirl Stabilized Diffusion Flame
Oct 2025
Publication
Contemporary research into decarbonized fuels such as H2/NH3 has highlighted complex challenges with applied combustion with marked changes in thermochemical properties leading to significant issues such as limited operational range flashback and instability particularly when attempts are made to optimize emissions production in conventional lean-premixed systems. Non-premixed configurations may address some of these issues but often lead to elevated NOx production particularly when ammonia is retained in the fuel mixture. Optimized fuel injection and blending strategies are essential to mitigate these challenges. This study investigates the application of a 75 %/25 %mol H2/NH3 blend in a swirl-stabilized combustor operated at elevated conditions of inlet temperature (500 K) and ambient pressure (0.11–0.6 MPa). A complex nonmonotonic relationship between swirl number and increasing ambient combustor pressure is demonstrated highlighting the intricate interplay between swirling flow structures and reaction kinetics which remains poorly understood. At medium swirl (SN = 0.8) an increase in pressure initially reduces NO emissions diminishing past ~0.3 MPa with an opposing trend evident for high swirl (SN = 2.0) as NO emissions fall rapidly when combustor pressure approaches 0.6 MPa. High-fidelity numerical modeling is presented to elucidate these interactions in detail. Numerical data generated using Detached Eddy Simulations (DES) were validated against experimental results to demonstrate a change in flame anchoring on the axial shear layer and marked change in recirculated flow structure successfully capturing the features of higher swirl number flows. Favorable comparisons are made with optical data and a reduction in NO emissions with increasing pressure is demonstrated to replicate changes to the swirling flame chemical kinetics. Findings provide valuable insights into the combustion behavior of hydrogen-rich ammonia flames contributing to the development of cleaner combustion technologies.
Hybrid Renewable Energy Systems for Off-Grid Electrification: A Comprehensive Review of Storage Technologies, Metaheuristic Optimization Approaches and Key Challenges
Nov 2025
Publication
Hybrid Renewable Energy Systems (HRESs) are a practical solution for providing reliable low-carbon electricity to off-grid and remote communities. This review examines the role of energy storage within HRESs by systematically comparing electrochemical mechanical thermal and hydrogen-based technologies in terms of technical performance lifecycle cost operational constraints and environmental impact. We synthesize findings from implemented off-grid projects across multiple countries to evaluate real-world performance metrics including renewable fraction expected energy not supplied (EENS) lifecycle cost and operation & maintenance burdens. Special attention is given to the emerging role of hydrogen as a long-term and cross-sector energy carrier addressing its technical regulatory and financial barriers to widespread deployment. In addition the paper reviews real-world implementations of off-grid HRES in various countries summarizing practical outcomes and lessons for system design and policy. The discussion also includes recent advances in metaheuristic optimization algorithms which have improved planning efficiency system reliability and cost-effectiveness. By combining technological operational and policy perspectives this review identifies current challenges and future directions for developing sustainable resilient and economically viable HRES that can accelerate equitable electrification in remote areas. Finally the review outlines key limitations and future directions calling for more systematic quantitative studies long-term field validation of emerging technologies and the development of intelligent Artificial Intelligence (AI)-driven energy management systems within broader socio-techno-economic frameworks. Overall this work offers concise insights to guide researchers and policymakers in advancing the practical deployment of sustainable and resilient HRES.
Hydrogen Blending as a Transitional Solution for Decarbonizing the Jordanian Electricity Generation Sector
Nov 2025
Publication
While renewable energy deployment has accelerated in recent years fossil fuels continue to play a dominant role in electricity generation worldwide. This necessitates the development of transitional strategies to mitigate greenhouse gas emissions from this sector while gradually reducing reliance on fossil fuels. This study investigates the potential of blending green hydrogen with natural gas as a transitional solution to decarbonize Jordan’s electricity sector. The research presents a comprehensive techno-economic and environmental assessment evaluating the compatibility of the Arab Gas Pipeline and major power plants with hydrogen–natural gas mixtures considering blending limits energy needs environmental impacts and economic feasibility under Jordan’s 2030 energy scenario. The findings reveal that hydrogen blending between 5 and 20 percent can be technically achieved without major infrastructure modifications. The total hydrogen demand is estimated at 24.75 million kilograms per year with a reduction of 152.7 thousand tons of carbon dioxide per annum. This requires 296980 cubic meters of water per year equivalent to only 0.1 percent of the National Water Carrier’s capacity indicating a negligible impact on national water resources. Although technically and environmentally feasible the project remains economically constrained requiring a carbon price of $1835.8 per ton of carbon dioxide for economic neutrality.
Green Hydrogen as a Decarbonization Pathway for Steel Industry in Pakistan
Nov 2025
Publication
The global steel industry emits 1.92 tons of CO2 per ton of output and faces urgent pressure to decarbonize. In Pakistan the sector accounts for 0.29 tons of CO2 per ton of output with limited mitigation frameworks in place. Green hydrogen (GH2)-based steelmaking offers a strategic pathway toward decarbonization. However realizing its potential depends on access to renewable energy. Despite Pakistan’s substantial technical wind potential of 340 GW grid limitations currently restrict wind power to only 4% of national electricity generation. This study explores GH2 production through sector coupling and power wheeling repurposing curtailed wind energy from Sindh to supply Karachi’s steel industry and proposing a phased roadmap for GH enabling fossil fuel substitution industrial resilience and alignment with global carbon-border regulations.
Techno-economic Assessment of Retrofitted Combined-cycles for Power-to-hydrogen-to-power Systems in European Electricity Markets
Oct 2025
Publication
This paper investigates the performance and economic viability of Combined Cycle Gas Turbines (CCGT) operating on natural gas (NG) and hydrogen within the context of evolving electricity markets. The study is structured into several sections beginning with a benchmark analysis to establish baseline performance metrics including break-even prices and price margins for CCGTs running on NG. The research then explores various base cases and sensitivity analyses focusing on different CCGT capacity factors and the uncertainties surrounding key parameters. The study also compares the performance of CCGTs across different European countries highlighting the impact of increased price fluctuations in forecasted electricity markets. Additionally the paper examines Power-to-X-to-Power (P2X2P) configurations assessing the economic feasibility of hydrogen production and its integration into CCGT operations. The analysis considers scenarios where hydrogen is sourced externally or produced on-site using renewable energy or grid electricity during off-peak hours. The results provide insights into the competitiveness and adaptability of CCGTs in a transitioning energy landscape emphasizing the potential role of hydrogen as a flexible and sustainable energy carrier.
Applied Simulation Study of a Metal Hydride Refrigeration System for Fuel Cell Trucks
Oct 2025
Publication
Refrigeration units in semi-trucks or rigged-body trucks have an energy demand of 8.2–12.4 MWh/y and emit 524.26 kt CO2e/y in Germany. Electrification with fuel cell systems reduces the CO2 emission but an increase of efficiency is necessary because of rapidly increasing hydrogen costs. A metal hydride refrigeration system can increase the efficiency. Even though it was already demonstrated in lab scale with 900 W this power is not sufficient to support a truck refrigeration system and the power output of the lab system was not controllable. Here we show the design and validation of a MATLAB© Simulink model of this metal hydride refrigeration system and its suitability for high power applications with a scaled-up reactor. It was scaled up to rated power of 5 kW and efficiency improvements with an advanced valve switching as well as a controlled cooling pump were implemented. Two application-relevant use cases with hydrogen mass flows from hydrogen fuel cell truck systems were analyzed. The simulation results of these use cases provide an average cooling power of 4.2 and 6.1 kW. Additionally the control of the coolant mass flow at different temperature levels a controlled hydrogen mass flow with a bypass system and an advanced valve switching mechanism increased the system efficiency of the total refrigeration system by 30 % overall.
Energy Management of Hybrid Energy System Considering a Demand-Side Management Strategy and Hydrogen Storage System
Oct 2025
Publication
A hybrid energy system (HES) integrates various energy resources to attain synchronized energy output. However HES faces significant challenges due to rising energy consumption the expenses of using multiple sources increased emissions due to non-renewable energy resources etc. This study aims to develop an energy management strategy for distribution grids (DGs) by incorporating a hydrogen storage system (HSS) and demand-side management strategy (DSM) through the design of a multi-objective optimization technique. The primary focus is on optimizing operational costs and reducing pollution. These are approached as minimization problems while also addressing the challenge of achieving a high penetration of renewable energy resources framed as a maximization problem. The third objective function is introduced through the implementation of the demand-side management strategy aiming to minimize the energy gap between initial demand and consumption. This DSM strategy is designed around consumers with three types of loads: sheddable loads non-sheddable loads and shiftable loads. To establish a bidirectional communication link between the grid and consumers by utilizing a distribution grid operator (DGO). Additionally the uncertain behavior of wind solar and demand is modeled using probability distribution functions: Weibull for wind PDF beta for solar and Gaussian PDF for demand. To tackle this tri-objective optimization problem this work proposes a hybrid approach that combines well-known techniques namely the non-dominated sorting genetic algorithm II and multi-objective particle swarm optimization (Hybrid-NSGA-II-MOPSO). Simulation results demonstrate the effectiveness of the proposed model in optimizing the tri-objective problem while considering various constraints.
Decarbonising Sustainable Aviation Fuel (SAF) Pathways: Emerging Perspectives on Hydrogen Integration
Oct 2025
Publication
The growing demand for air connectivity coupled with the forecasted increase in passengers by 2040 implies an exigency in the aviation sector to adopt sustainable approaches for net zero emission by 2050. Sustainable Aviation Fuel (SAF) is currently the most promising short-term solution; however ensuring its overall sustainability depends on reducing the life cycle carbon footprints. A key challenge prevails in hydrogen usage as a reactant for the approved ASTM routes of SAF. The processing conversion and refinement of feed entailing hydrodeoxygenation (HDO) decarboxylation hydrogenation isomerisation and hydrocracking requires substantial hydrogen input. This hydrogen is sourced either in situ or ex situ with the supply chain encompassing renewables or non-renewables origins. Addressing this hydrogen usage and recognising the emission implications thereof has therefore become a novel research priority. Aside from the preferred adoption of renewable water electrolysis to generate hydrogen other promising pathways encompass hydrothermal gasification biomass gasification (with or without carbon capture) and biomethane with steam methane reforming (with or without carbon capture) owing to the lower greenhouse emissions the convincing status of the technology readiness level and the lower acidification potential. Equally imperative are measures for reducing hydrogen demand in SAF pathways. Strategies involve identifying the appropriate catalyst (monometallic and bimetallic sulphide catalyst) increasing the catalyst life in the deoxygenation process deploying low-cost iso-propanol (hydrogen donor) developing the aerobic fermentation of sugar to 14 dimethyl cyclooctane with the intermediate formation of isoprene and advancing aqueous phase reforming or single-stage hydro processing. Other supportive alternatives include implementing the catalytic and co-pyrolysis of waste oil with solid feedstocks and selecting highly saturated feedstock. Thus future progress demands coordinated innovation and research endeavours to bolster the seamless integration of the cutting-edge hydrogen production processes with the SAF infrastructure. Rigorous technoeconomic and life cycle assessments alongside technological breakthroughs and biomass characterisation are indispensable for ensuring scalability and sustainability
Coordinated Control Strategy for Island Power Generation System with Photovoltaic, Hydrogen-Fueled Gas Turbine and Hybrid Energy Storage
Oct 2025
Publication
Marine and island power systems usually incorporate various forms of energy supply which poses challenges to the coordinated control of the system under diverse irregular and complex load operation modes. To improve the stability and self-sufficiency of island-isolated microgrids with high penetration of renewable energy this study proposes a coordinated control strategy for an island microgrid with PV HGT and HESS combining primary power allocation via low-pass filtering with a fuzzy logic-based secondary correction. The fuzzy controller dynamically adjusts power distribution based on the states of charge of the battery and supercapacitor following a set of predefined rules. A comprehensive system model is developed in Matlab R2023b integrating PV generation an electrolyzer HGT and a battery–supercapacitor HESS. Simulation results across four operational cases demonstrate that the proposed strategy reduces DC bus voltage fluctuations to a maximum of 4.71% (compared to 5.63% without correction) with stability improvements between 0.96% and 1.55%. The HESS avoids overcharging and over-discharging by initiating priority charging at low SOC levels thereby extending service life. This work provides a scalable control framework for enhancing the resilience of marine and island microgrids with high renewable energy penetration.
Analysis of Fuel Cell Electric Vehicle Performance Under Standard Electric Vehicle Driving Protocol
Nov 2025
Publication
The paper studies and analyzes electric vehicle engines powered by hydrogen under the WLTP standard driving protocol. The driving range extension is estimated using a specific protocol developed for FCEV compared with the standard value for battery electric vehicles. The driving range is extended by 10 km averaging over the four protocols with a maximum of 11.6 km for the FTP-75 and a minimum of 7.7 km for the WLTP. This driving range extension represents a 1.8% driving range improvement on average. Applying the FCEV current weight the driving range is extended to 18.9 km and 20.4 km on average when using power source energy capacity standards for BEVs and FCEVs.
Enhancing Power-to-Hydrogen Flexibility Through Optimal Bidding in Nordic Energy Activation Market with Wind Integration
Oct 2025
Publication
The recent updates to the Single Day-Ahead Coupling (SDAC) framework in the European energy market along with new rules for providing manual frequency restoration reserve (mFRR) products in the Nordic Energy Activation Market (EAM) have introduced a finer Market Time Unit (MTU) resolution. These developments underscore the growing importance of flexible assets such as power-to-hydrogen (PtH) facilities in delivering system flexibility. However to successfully participate in such markets well-designed and accurate bidding strategies are essential. To fulfill this aim this paper proposes a Mixed Integer Linear Programming (MILP) model to determine the optimal bidding strategies for a typical PtH facility accounting for both the technical characteristics of the involved technologies and the specific participation requirements of the mFRR EAM. The study also explores the economic viability of sourcing electricity from nearby wind turbines (WTs) under a Power Purchase Agreement (PPA). The simulation is conducted using a case study of a planned PtH facility at the Port of Hirtshals Denmark. Results demonstrate that participation in the mFRR EAM particularly through the provision of downward regulation can yield significant economic benefits. Moreover involvement in the mFRR market reduces power intake from the nearby WTs as capacity must be reserved for downward services. Finally the findings highlight the necessity of clearly defined business models for such facilities considering both technical and economic aspects.
No more items...