Applications & Pathways
PEFC System Reactant Gas Supply Management and Anode Purging Strategy: An Experimental Approach
Jan 2022
Publication
In this report a 5 kW PEFC system running on dry hydrogen with an appropriately sized Balance of Plant (BoP) was used to conduct experimental studies and analyses of gas supply subsystems. The improper rating and use of BoP components has been found to increase parasitic loads which consequently has a direct effect on the polymer electrolyte fuel cell (PEFC) system efficiency. Therefore the minimisation of parasitic loads while maintaining desired performance is crucial. Nevertheless little has been found in the literature regarding experimental work on large stacks and BoP with the majority of papers concentrating on modelling. A particular interest of our study was the anode side of the fuel cell. Additionally the rationale behind the use of hydrogen anode recirculation was scrutinised and a novel anode purging strategy was developed and implemented. Through experimental modelling the use of cathode air blower was minimised since it was found to be the biggest contributor to the parasitic loads.
Combined Ammonia Recovery and Solid Oxide Fuel Cell Use at Wastewater Treatment Plants for Energy and Greenhouse Gas Emission Improvements
Feb 2019
Publication
Current standard practice at wastewater treatment plants (WWTPs) involves the recycling of digestate liquor produced from the anaerobic digestion of sludge back into the treatment process. However a significant amount of energy is required to enable biological breakdown of ammonia present in the liquor. This biological processing also results in the emission of damaging quantities of greenhouse gases making diversion of liquor and recovery of ammonia a noteworthy option for improving the sustainability of wastewater treatment. This study presents a novel process which combines ammonia recovery from diverted digestate liquor for use (alongside biomethane) in a solid oxide fuel cell (SOFC) system for implementation at WWTPs. Aspen Plus V.8.8 and numerical steady state models have been developed using data from a WWTP in West Yorkshire (UK) as a reference facility (750000p.e.). Aspen Plus simulations demonstrate an ability to recover 82% of ammoniacal nitrogen present in digestate liquor produced at the WWTP. The recovery process uses a series of stripping absorption and flash separation units where water is recovered alongside ammonia. This facilitates effective internal steam methane as a case of study has the potential to make significant impacts energetically and environmentally; findings suggest the treatment facility could transform from a net consumer of electricity to a net producer. The SOFC has been demonstrated to run at an electrical efficiency of 48% with NH3 contributing 4.6% of its power output. It has also been demonstrated that 3.5 kg CO2e per person served by the WWTP could be mitigated a year due to a combination of emissions savings by diversion of ammonia from biological processing and lifecycle emissions associated with the lack of reliance on grid electricity.
A Review of Hydrogen as a Fuel in Internal Combustion Engines
Sep 2021
Publication
The demand for fossil fuels is increasing because of globalization and rising energy demands. As a result many nations are exploring alternative energy sources and hydrogen is an efficient and practical alternative fuel. In the transportation industry the development of hydrogen-powered cars aims to maximize fuel efficiency and significantly reduce exhaust gas emission and concentration. The impact of using hydrogen as a supplementary fuel for spark ignition (SI) and compression ignition (CI) engines on engine performance and gas emissions was investigated in this study. By adding hydrogen as a fuel in internal combustion engines the torque power and brake thermal efficiency of the engines decrease while their brake-specific fuel consumption increase. This study suggests that using hydrogen will reduce the emissions of CO UHC CO2 and soot; however NOx emission is expected to increase. Due to the reduction of environmental pollutants for most engines and the related environmental benefits hydrogen fuel is a clean and sustainable energy source and its use should be expanded.
Preference Structure on the Design of Hydrogen Refueling Stations to Activate Energy Transition
Aug 2020
Publication
As a countermeasure to the greenhouse gas problem the world is focusing on alternative fuel vehicles (AFVs). The most prominent alternatives are battery electric vehicles (BEV) and fuel cell electric vehicles (FCEVs). This study examines FCEVs especially considering hydrogen refueling stations to fill the gap in the research. Many studies suggest the important impact that infrastructure has on the diffusion of AFVs but they do not provide quantitative preferences for the design of hydrogen refueling stations. This study analyzes and presents a consumer preference structure for hydrogen refueling stations considering the production method distance probability of failure to refuel number of dispensers and fuel costs as core attributes. For the analysis stated preference data are applied to choice experiments and mixed logit is used for the estimation. Results indicate that the supply stability of hydrogen refueling stations is the second most important attribute following fuel price. Consumers are willing to pay more for green hydrogen compared to gray hydrogen which is hydrogen produced by fossil fuels. Driver fuel type and perception of hydrogen energy influence structure preference. Our results suggest a specific design for hydrogen refueling stations based on the characteristics of user groups.
A Comparison of Steam Reforming Concepts in Solid Oxide Fuel Cell Systems
Mar 2020
Publication
Various concepts have been proposed to use hydrocarbon fuels in solid oxide fuel cell (SOFC) systems. A combination of either allothermal or adiabatic pre-reforming and water recirculation (WR) or anode off-gas recirculation (AOGR) is commonly used to convert the fuel into a hydrogen rich mixture before it is electrochemically oxidised in the SOFC. However it is unclear how these reforming concepts affect the electrochemistry and temperature gradients in the SOFC stack. In this study four reforming concepts based on either allothermal or adiabatic pre-reforming and either WR or AOGR are modelled on both stack and system level. The electrochemistry and temperature gradients in the stack are simulated with a one-dimensional SOFC model and the results are used to calculate the corresponding system efficiencies. The highest system efficiencies are obtained with allothermal pre-reforming and WR. Adiabatic pre-reforming and AOGR result in a higher degree of internal reforming which reduces the cell voltage compared to allothermal pre-reforming and WR. Although this lowers the stack efficiency higher degrees of internal reforming reduce the power consumption by the cathode air blower as well leading to higher system efficiencies in some cases. This illustrates that both stack and system operation need to be considered to design an efficient SOFC system and predict potentially deteriorating temperature gradients in the stack.
An Improved Fuzzy PID Control Method Considering Hydrogen Fuel Cell Voltage-Output Characteristics for a Hydrogen Vehicle Power System
Sep 2021
Publication
The hydrogen fuel cell (HFC) vehicle is an important clean energy vehicle which has prospects for development. The behavior of the hydrogen fuel cell (HFC) vehicle power system and in particular the proton-exchange membrane fuel cell has been extensively studied as of recent. The development of the dynamic system modeling technology is of paramount importance for HFC vehicle studies; however it is hampered by the separation of the electrochemical properties and dynamic properties. In addition the established model matching the follow-up control method lacks applicability. In attempts to counter these obstructions we proposed an improved fuzzy (Proportional Integral Derivative) PID control method considering HFC voltage-output characteristics. By developing both the electrochemical and dynamic model for HFC vehicle we can realize the coordinated control of HFC and power cell. The simulation results are in good agreement with the experimental results in the two models. The proposed control algorithm has a good control effect in all stages of HFC vehicle operation.
Review of IGEM/SR/25 for Use with Hydrogen
Jan 2021
Publication
This report presents the findings of the initial gap analysis and technical review of IGEM/SR/25 undertaken as a collaborative effort between HSE and DNV GL. The review is intended to help understand the steps which would be involved in updating the standard to include data appropriate for installations using H2 or an H2/NG blend. Furthermore the report highlights where additional research and updated data applicable to H2 installations is needed to enable development of an H2-specific supplement to the standard.<br/>A review of alternative approaches for area classification is presented. This review is aimed at determining whether existing standards or guidance provide methodologies which could be used as an alternative to IGEM/SR/25 for area classification of systems using either H2 or H2/NG blends. The review covers IGEM/SR/25 IGE/SR/23 EI15 BCGA guidance BS EN 60079:10:1 (including Quadvent) NFPA 497 API RP 505 and EIGA Doc. 121/14. Some of these are general like the British Standard BS EN 60079-10-1:2015 while others are industry specific like IGEM/SR/25 and EI15.<br/>Consideration is given to the methodology that each area classification approach presents for establishing the zone and zone size with particular focus on how factors such as ventilation and gas buoyancy are accounted for in the methods. The findings of the review indicate that none of the alternative approaches evaluated in the study provide an approach that is suitable for the gas industry for the area classification of gas network installations involving H2 or an H2/NG blend.
Total Cost of Ownership and Its Potential Consequences for the Development of the Hydrogen Fuel Cell Powered Vehicle Market in Poland
Apr 2021
Publication
Electromobility is a growing technology for land transport constituting an important element of the concept of sustainable economic development. The article presents selected research results concerning one of the segments of this market-vehicles powered by hydrogen fuel cells. The subject of the research was to gain extensive knowledge on the economic factors influencing the future purchasing decisions of the demand side in relation to this category of vehicles. The research was based on a numerical experiment. For this purpose a comparative analysis of purchase prices in relation to the TCO of the vehicle after 3–5 years of use was performed. The research included selected models that are powered by both conventional and alternative fuels. The use of this method will allow to assess the real costs associated with the hydrogen vehicle. The authors emphasize the important role of economic factors in the form of the TCO index for the development of this market. The experimental approach may be helpful in understanding the essence of economic relations that affect the development of the electro-mobility market and the market demand for hydrogen fuel cell-powered vehicles in Poland.
Cost-optimal Reliable Power Generation in a Deep Decarbonisation Future
Jul 2019
Publication
Considering the targets of the Paris agreement rapid decarbonisation of the power system is needed. In order to study cost-optimal and reliable zero and negative carbon power systems a power system model of Western Europe for 2050 is developed. Realistic future technology costs demand levels and generator flexibility constraints are considered. The optimised portfolios are tested for both favourable and unfavourable future weather conditions using results from a global climate model accounting for the potential impacts of climate change on Europe’s weather. The cost optimal mix for zero or negative carbon power systems consists of firm low-carbon capacity intermittent renewable energy sources and flexibility capacity. In most scenarios the amount of low-carbon firm capacity is around 75% of peak load providing roughly 65% of the electricity demand. Furthermore it is found that with a high penetration of intermittent renewable energy sources a high dependence on cross border transmission batteries and a shift to new types of ancillary services is required to maintain a reliable power system. Despite relatively small changes in the total generation from intermittent renewable energy sources between favourable and unfavourable weather years of 6% emissions differ up to 70 MtCO2 yr−1 and variable systems costs up to 25%. In a highly interconnected power system with significant flexible capacity in the portfolio and minimal curtailment of intermittent renewables the potential role of green hydrogen as a means of electricity storage appears to be limited.
Stationary Hybrid Renewable Energy Systems for Railway Electrification: A Review
Sep 2021
Publication
This article provides an overview of modern technologies and implemented projects in the field of renewable energy systems for the electrification of railway transport. In the first part the relevance of the use of renewable energy on the railways is discussed. Various types of power-generating systems in railway stations and platforms along the track as well as in separate areas are considered. The focus is on wind and solar energy conversion systems. The second part is devoted to the analysis of various types of energy storage devices used in projects for the electrification of railway transport since the energy storage system is one of the key elements in a hybrid renewable energy system. Systems with kinetic storage electrochemical storage batteries supercapacitors hydrogen energy storage are considered. Particular attention is paid to technologies for accumulating and converting hydrogen into electrical energy as well as hybrid systems that combine several types of storage devices with different ranges of charge/discharge rates. A comparative analysis of various hybrid electric power plant configurations depending on the functions they perform in the electrification systems of railway transport has been carried out.
A Comparison between Fuel Cells and Other Alternatives for Marine Electric Power Generation
Mar 2016
Publication
The world is facing a challenge in meeting its needs for energy. Global energy consumption in the last half-century has increased very rapidly and is expected to continue to grow over the next 50 years. However it is expected to see significant differences between the last 50 years and the next. This paper aims at introducing a good solution to replace or work with conventional marine power plants. This includes the use of fuel cell power plant operated with hydrogen produced through water electrolysis or hydrogen produced from natural gas gasoline or diesel fuels through steam reforming processes to mitigate air pollution from ships.
Up-scalable Emerging Energy Conversion Technologies Enabled by 2D Materials: From Miniature Power Harvesters Towards Grid-connected Energy Systems
May 2021
Publication
Breakthrough discoveries in high-throughput formulation of abundant materials and advanced engineering approaches are both in utter need as prerequisites for developing novel large-scale energy conversion technologies required to address our planet's rising energy demands. Nowadays the rapid deployment of Internet of Things (IoT) associated with a distributed network of power-demanding smart devices concurrently urges for miniaturized systems powered by ambient energy harvesting. Graphene and other related two-dimensional materials (GRM) consist a perfect fit to drive this innovation owing to their extraordinary optoelectronic physical and chemical properties that emerge at the limit of two-dimensions. In this review after a critical analysis of GRM's emerging properties that are beneficial for power generation novel approaches are presented for developing ambient energy conversion devices covering a wide range of scales. Notable examples vary from GRM-enabled large-scale photovoltaic panels and fuel cells smart hydrovoltaics and blue energy conversion routes to miniaturized radio frequency piezoelectric triboelectric and thermoelectric energy harvesters. The insights from this review demonstrate that GRM-enabled energy harvesters apart from enabling the self-powered operation of individual IoT devices have also the potential to revolutionize the way that grid-electricity is provided in the cities of the future. This approach is materialized by two complementary paradigms: cross-coupled integration of GRM into firstly a network consisted of a vast number of miniaturized in-series-connected harvesters and secondly into up-scaled multi-energy hybrid harvesters both approaches having the potential for on-grid energy generation under all-ambient-conditions. At the end of the discussion perspectives on the trends limitations and commercialisation potential of these emerging up-scalable energy conversion technologies are provided. This review aims to highlight the importance of building a network of GRM-based cross-scaled energy conversion systems and their potential to become the guideline for the energy sustainable cities of the future.
Spatially Resolved Model for Studying Decarbonisation Pathways for Heat Supply and Infrastructure Trade-offs
Jun 2017
Publication
Heat decarbonisation is one of the main challenges of energy system decarbonisation. However existing energy planning models struggle to compare heat decarbonisation approaches because they rarely capture trade-offs between heat supply end-use technologies and network infrastructure at sufficient spatial resolution. A new optimisation model is presented that addresses this by including trade-offs between gas electricity and heat infrastructure together with related supply and end-use technologies with high spatial granularity. The model is applied in case studies for the UK. For the case modelled it is shown that electrification of heat is most cost-effective via district level heat pumps that supply heat networks instead of individual building heat pumps. This is because the cost of reinforcing the electricity grid for installing individual heat pumps does not sufficiently offset heat infrastructure costs. This demonstrates the importance of considering infrastructure trade-offs. When modelling the utilisation of a decarbonised gas the penetration of heat networks and location of district level heat supply technologies was shown to be dependent on linear heat density and on zone topology. This shows the importance of spatial aspects. Scenario-specific linear heat density thresholds for heat network penetration were identified. For the base case penetration of high temperature heat networks was over 50% and 60% by 2050 for linear heat densities over 1500 and 2500 kWh/m. For the case when medium heat temperature networks were additionally available a mix of both networks was observed. Medium temperature heat network penetration was over 20% 30% and 40% for linear heat densities of over 1500 2500 and 3000 kWh/m while high temperature heat network penetration was over 20% and 30% for linear heat densities of under 2000 and 1500 kWh/m respectively.
Ammonia–methane Combustion in Tangential Swirl Burners for Gas Turbine Power Generation
Feb 2016
Publication
Ammonia has been proposed as a potential energy storage medium in the transition towards a low-carbon economy. This paper details experimental results and numerical calculations obtained to progress towards optimisation of fuel injection and fluidic stabilisation in swirl burners with ammonia as the primary fuel. A generic tangential swirl burner has been employed to determine flame stability and emissions produced at different equivalence ratios using ammonia–methane blends. Experiments were performed under atmospheric and medium pressurised conditions using gas analysis and chemiluminescence to quantify emission concentrations and OH production zones respectively. Numerical calculations using GASEQ and CHEMKIN-PRO were performed to complement compare with and extend experimental findings hence improving understanding concerning the evolution of species when fuelling on ammonia blends. It is concluded that a fully premixed injection strategy is not appropriate for optimised ammonia combustion and that high flame instabilities can be produced at medium swirl numbers hence necessitating lower swirl and a different injection strategy for optimised power generation utilising ammonia fuel blends.
Demonstration of a kW-scale Solid Oxide Fuel Cell-calciner for Power Generation and Production of Calcined Materials
Aug 2019
Publication
Carbonate looping (CaL) has been shown to be less energy-intensive when compared to mature carbon capture technologies. Further reduction in the efficiency penalties can be achieved by employing a more efficient source of heat for the calcination process instead of oxy-fuel combustion. In this study a kW-scale solid oxide fuel cell (SOFC)-integrated calciner was designed and developed to evaluate the technical feasibility of simultaneously generating power and driving the calcination process using the high-grade heat of the anode off-gas. Such a system can be integrated with CaL systems or employed as a negative-emission technology where the calcines are used to capture CO2 from the atmosphere. The demonstration unit consisted of a planar SOFC stack operating at 750 °C and a combined afterburner/calciner to combust hydrogen slip from the anode off-gas and thermally decompose magnesite dolomite and limestone. The demonstrator generated up to 2 kWelDC power achieved a temperature in the range of 530–550 °C at the inlet of the afterburner and up to 678 °C in the calciner which was sufficient to demonstrate full calcination of magnesite and partial calcination of dolomite. However in order to achieve the temperature required for calcination of limestone further scale-up and heat integration are needed. These results confirmed technical feasibility of the SOFC-calciner concept for production of calcined materials either for the market or for direct air capture (DAC).
Techno-economic Analysis of Freight Railway Electrification by Overhead Line, Hydrogen and Batteries: Case Studies in Norway and USA
Aug 2019
Publication
Two non-electrified railway lines one in Norway and the other in the USA are analysed for their potential to be electrified with overhead line equipment batteries hydrogen or hydrogen-battery hybrid powertrains. The energy requirements are established with single-train simulations including the altitude profiles of the lines air and rolling resistances and locomotive tractive-effort curves. The composition of the freight trains in terms of the number of locomotives battery wagons hydrogen wagons etc. is also calculated by the same model. The different technologies are compared by the criteria of equivalent annual costs benefit–cost ratio payback period and up-front investment based on the estimated techno-economic parameters for years 2020 2030 and 2050. The results indicate the potential of batteries and fuel cells to replace diesel on rail lines with low traffic volumes.
Alternative Energy Technologies as a Cultural Endeavor: A Case Study of Hydrogen and Fuel Cell Development in Germany
Feb 2012
Publication
Background: The wider background to this article is the shift in the energy paradigm from fossil energy sources to renewable sources which should occur in the twenty-first century. This transformation requires the development of alternative energy technologies that enable the deployment of renewable energy sources in transportation heating and electricity. Among others hydrogen and fuel cell technologies have the potential to fulfill this requirement and to contribute to a sustainable and emission-free transport and energy system. However whether they will ever reach broad societal acceptance will not only depend on technical issues alone. The aim of our study is to reveal the importance of nontechnical issues. Therefore the article at hand presents a case study of hydrogen and fuel cells in Germany and aims at highlighting the cultural context that affects their development.<br/>Methods: Our results were obtained from a rich pool of data generated in various research projects through more than 30 in-depth interviews direct observations and document analyses.<br/>Results: We found that individual and collective actors developed five specific supportive practices which they deploy in five diverse arenas of meaning in order to attach certain values to hydrogen and fuel cell technologies.<br/>Conclusions: Based on the results we drew more general conclusions and deducted an overall model for the analysis of culture in technological innovations that is outlined at the end of the article. It constitutes our contribution to the interdisciplinary collaboration required for tackling the shift in this energy paradigm.
Improving Carbon Efficiency and Profitability of the Biomass to Liquid Process with Hydrogen from Renewable Power
Aug 2018
Publication
A process where power and biomass are converted to Fischer-Tropsch liquid fuels (PBtL) is compared to a conventional Biomass-to-Liquid (BtL) process concept. Based on detailed process models it is demonstrated that the carbon efficiency of a conventional Biomass to Liquid process can be increased from 38 to more than 90% by adding hydrogen from renewable energy sources. This means that the amount of fuel can be increased by a factor of 2.4 with the same amount of biomass. Electrical power is applied to split water/steam at high temperature over solid oxide electrolysis cells (SOEC). This technology is selected because part of the required energy can be replaced by available heat. The required electrical power for the extra production is estimated to be 11.6 kWh per liter syncrude (C ) 5+ . By operating the SOEC iso-thermally close to 850 °C the electric energy may be reduced to 9.5 kWh per liter which is close to the energy density of jet fuel. A techno-economic analysis is performed where the total investments and operating costs are compared for the BtL and PBtL. With an electrical power price of 0.05 $/kWh and with SOEC investment cost of the 1000 $/kW(el) the levelized cost of producing advanced biofuel with the PBtL concept is 1.7 $/liter which is approximately 30% lower than for the conventional BtL. Converting excess renewable electric power to advanced biofuel in a PBtL plant is a sensible way of storing energy as a fuel with a relatively high energy density.
Demand Side Management Based Power-to-Heat and Power-to-Gas Optimization Strategies for PV and Wind Self-Consumption in a Residential Building Cluster
Oct 2021
Publication
The volatility of renewable energy sources (RES) poses a growing problem for operation of electricity grids. In contrary the necessary decarbonisation of sectors such as heat supply and transport requires a rapid expansion of RES. Load management in the context of power-to-heat systems can help to simultaneously couple the electricity and heat sectors and stabilise the electricity grid thus enabling a higher share of RES. In addition power-to-hydrogen offers the possibility of long-term energy storage options. Within this work we present a novel optimization approach for heat pump operation with the aim to counteract the volatility and enable a higher usage of RES. For this purpose a detailed simulation model of buildings and their energy supply systems is created calibrated and validated based on a plus energy settlement. Subsequently the potential of optimized operation is determined with regard to PV and small wind turbine self-consumption. In addition the potential of seasonal hydrogen storage is examined. The results show that on a daily basis a 33% reduction of electricity demand from grid is possible. However the average optimization potential is reduced significantly by prediction inaccuracy. The addition of a hydrogen system for seasonal energy storage basically eliminates the carbon dioxide emissions of the cluster. However this comes at high carbon dioxide prevention costs of 1.76 e kg−1 .
Recent Combustion Strategies in Gas Turbines for Propulsion and Power Generation toward a Zero-Emissions Future: Fuels, Burners, and Combustion Techniques
Oct 2021
Publication
The effects of climate change and global warming are arising a new awareness on the impact of our daily life. Power generation for transportation and mobility as well as in industry is the main responsible for the greenhouse gas emissions. Indeed currently 80% of the energy is still produced by combustion of fossil fuels; thus great efforts need to be spent to make combustion greener and safer than in the past. For this reason a review of the most recent gas turbines combustion strategy with a focus on fuels combustion techniques and burners is presented here. A new generation of fuels for gas turbines are currently under investigation by the academic community with a specific concern about production and storage. Among them biofuels represent a trustworthy and valuable solution in the next decades during the transition to zero carbon fuels (e.g. hydrogen and ammonia). Promising combustion techniques explored in the past and then abandoned due to their technological complexity are now receiving renewed attention (e.g. MILD PVC) thanks to their effectiveness in improving the efficiency and reducing emissions of standard gas turbine cycles. Finally many advances are illustrated in terms of new burners developed for both aviation and power generation. This overview points out promising solutions for the next generation combustion and opens the way to a fast transition toward zero emissions power generation.
No more items...