Applications & Pathways
THyGA - Test Report on Mitigation Solutions for Residential Natural Gas Appliances Not Designed for Hydrogen Admixture
Apr 2023
Publication
This report from the WP5 “Mitigation” provides information and test results regarding perturbations that hydrogen could cause to gas appliances when blended to natural gas especially on anatural draught for exhaust fumes or acidity for the condensates. The important topic of on-site adjustment is also studied with test results on alternative technologies and proposals of mitigation approaches.
Optimal Pathways for the Decarbonisation of the Transport Sector: Trade-offs Between Battery and Hydrogen Technologies Using a Whole Energy System Perspective
Jun 2023
Publication
Several countries have revised their targets in recent years to reach net-zero CO2 emissions across all sectors by 2050 and the transport sector is responsible for a significant share of these emissions. This study compares possible pathways to decarbonise the transport sector through electrification including passenger cars light commercial vehicles and heavy commercial vehicles. To do so we explore 125 scenarios by varying the share of battery and hydrogen-based fuel cell electric vehicles in each of the three categories above independently. We further model the decarbonisation of the industrial hydrogen demand using electrolysers with hydrogen storage. To explore the potential role of electric and hydrogen transport as well as their trade-offs we use GRIMSEL an open-source sector coupling energy system model of Switzerland which includes the residential commercial industrial and transport sectors with four energy carriers namely electricity heat hot water and hydrogen. The total costs are minimised from a social planner perspective. We find that the full electrification of the transport sector could lead on average to a 12% increase in costs by 2050 and 1.3 MtCO2/year which represents a 90% CO2 emissions reduction for the whole sector. Second the transport energy self-sufficiency (i.e. the share of domestic electricity generation in final transport demand) may reach up to 50% for the scenarios with the largest share of battery electric vehicles mainly due to a smaller energy demand than with hydrogen vehicles. Third more than three quarters of the industrial hydrogen production is met by local photovoltaic electricity coupled with battery at minimum costs i.e. green hydrogen. Finally the use of hydrogen as an energy carrier to store electricity over a long period is not cost-optimal.
Energy and Environmental Costs in Transitioning to Zero and Low Emission Trucks for the Australian Truck Fleet: An Industry Perspective
May 2024
Publication
Modernising Australia’s old truck fleet and adopting a more stringent standard to reduce emissions and air pollutants is a primary objective for the Australian truck sector. Various strategies worldwide have been introduced to cut emissions and pollutants in the truck sector such as a low-emission strategy supported by strict diesel standards and a zero-emission strategy to shift to battery-electric or hydrogen trucks. The paper focuses on emissions and local air pollutants of trucks under various transition scenarios at both the tailpipe and the wider supply chain including domestic power generation and hydrogen production. In contrast for diesel we focus on tailpipe outputs following fuel standards in Australia given diesel is imported other than in some limited refineries. We compare and recommend actions that government and truck operators may take in the near to longer term in transitioning to cleaner energy. We tested a number of scenarios using a decision support system incorporating all the latest information on costs and emissions for all truck classes using diesel electric or hydrogen. A key finding from our scenario tests is that the current electricity mix has high carbon emissions and air pollutants due to fossil fuel-fired sources for power generation. Without improvement in using renewable energy sources in the future transitioning to electric trucks implies more carbon emissions and air pollutants in the atmosphere from power plants even though electric trucks generate zero tailpipe emissions. The main motivation for switching to zero-emission trucks is energy cost savings. We urge the government to decide on a clear roadmap for the truck sector before the sector is in a position to take action to shift to low or zero-emission trucks without totally relying on the likely reduction of emission intensity in electricity and renewable energy production.
Wind Farm Control for Improved Battery Lifetime in Green Hydrogen Systems without a Grid Connection
Jul 2023
Publication
Green hydrogen is likely to play an important role in meeting the net-zero targets of countries around the globe. One potential option for green hydrogen production is to run electrolysers directly from offshore wind turbines with no grid connection and hence no expensive cabling to shore. In this work an innovative proof of concept of a wind farm control methodology designed to reduce variability in wind farm active power output is presented. Smoothing the power supplied by the wind farm to the battery reduces the size and number of battery charge cycles and helps to increase battery lifetime. This work quantifies the impact of the wind farm control method on battery lifetime for wind farms of 1 4 9 and 16 wind turbines using suitable wind farm battery and electrolyser models. The work presented shows that wind farm control for smoothing wind farm power output could play a critical role in reducing the levelised cost of green hydrogen produced from wind farms with no grid connection by reducing the damaging load cycles on batteries in the system. Hence this work paves the way for the design and testing of a full implementation of the wind farm controller.
Simulation and Control Strategy Study of the Hydrogen Supply System of a Fuel Cell Engine
Jun 2023
Publication
The hydrogen supply system is one of the important components of a hydrogen fuel cell engine and its performance has an important impact on the economy and power of the engine system. In this paper a hydrogen supply system based on cyclic mode is designed for a hydrogen fuel cell stack with a full load power of 150 kW and the corresponding hydrogen fuel cell engine simulation model is built and validated. The control strategy of the fuel cell hydrogen supply system is developed and its effect is verified through bench tests. The results show that the developed control strategy can keep the volume fraction of nitrogen below 6% the hydrogen excess ratio does not exceed 1.5 under medium and high operating conditions the anode pressure is relatively stable and the stack can operate efficiently and reliably.
Options for Methane Fuel Processing in PEMFC System with Potential Maritime Applications
Nov 2022
Publication
Proton-exchange membrane fuel cells (PEMFCs) are low-temperature fuel cells that have excellent starting performance due to their low operating temperature can respond quickly to frequent load fluctuations and can be manufactured in small packages. Unlike existing studies that mainly used hydrogen as fuel for PEMFCs in this study methane is used as fuel for PEMFCs to investigate its performance and economy. Methane is a major component of natural gas which is more economically competitive than hydrogen. In this study methane gas is reformed by the steam reforming method and is applied to the following five gas post-treatment systems: (a) Case 1—water– gas shift only (WGS) (b) Case 2—partial oxidation reforming only (PROX) (c) Case 3—methanation only (d) Case 4—WGS + methanation (e) Case 5—WGS + PROX. In the evaluation the carbon monoxide concentration in the gas did not exceed 10 ppm and the methane component which has a very large greenhouse effect was not regenerated in the post-treated exhaust gas. As a result Case 5 (WGS and PROX) is the only case that satisfied both criteria. Therefore we propose Case 5 as an optimized post-treatment system for methane reforming gas in ship PEMFCs.
Thermodynamic and Emission Analysis of a Hydrogen/Methane Fueled Gas Turbine
May 2023
Publication
The importance of hydrogen in the effort to decarbonize the power sector has grown immensely in recent years. Previous studies have investigated the effects of mixing hydrogen into natural gas for gas turbine combustors but limited studies have examined the resulting effects hydrogen addition has on the entire system. In this work a thermodynamic model of a gas turbine with combustion chemical kinetics integrated is created and the effects hydrogen addition (0-100 volume percent addition) has on the system performance emissions and combustion kinetics are analyzed. The maximum system performance is achieved when the maximum turbine inlet temperature is reached and the resulting optimal fuel/air equivalence ratio is determined. As hydrogen is added to the fuel mixture the optimal equivalence ratio shifts leaner causing non-linearity in emissions and system performance at optimal conditions. An analysis of variance is conducted and it is shown that isentropic efficiencies of the turbine and compressor influences the system performance the most out of any system parameter. While isentropic efficiencies of the turbine and compressor increase towards 100% an operating regime where the optimal system efficiency cannot be achieved is discovered due to the lower flammability limit of the fuel being reached. This can be overcome by mixing hydrogen into the fuel.
Technology Portfolio Assessment for Near-zero Emission Iron and Steel Industry in China
May 2023
Publication
China aims to peak CO2 emissions before 2030 and to achieve carbon neutrality before 2060; hence industrial sectors in China are keen to figure out appropriate pathways to support the national target of carbon neutrality. The objective of this study is to explore near-zero emission pathways for the steel industry of China through a detailed technology assessment. The innovative technology development has been simulated using the AIM-China/steel model developed by including material-based technologies and optimal cost analysis. Six scenarios have been given in terms of different levels of production output emission reduction and carbon tax. Near-zero emission and carbon tax scenarios have shown that China’s steel industry can achieve near-zero emission using electric furnaces and hydrogen-based direct reduction iron technologies with policy support. Based on these technologies minimised production costs have been calculated revealing that the steel produced by these technologies is cost-effective. Moreover the feedstock cost can play a key role in these technology portfolios especially the cost of scrap iron ore and hydrogen. In addition the feedstock supply can have strong regional effects and can subsequently impact the allocation of steelmaking in the future. Therefore China can achieve near-zero emissions in the steel industry and electric furnace and hydrogen-based direct reduction iron technologies are crucial to achieving them.
Techno-economic Assessment on Hybrid Energy Storage Systems Comprising Hydrogen and Batteries: A Case Study in Belgium
Jun 2023
Publication
This paper introduces a Techno-Economic Assessment (TEA) on present and future scenarios of different energy storage technologies comprising hydrogen and batteries: Battery Energy Storage System (BESS) Hydrogen Energy Storage System (H2ESS) and Hybrid Energy Storage System (HESS). These three configurations were assessed for different time horizons: 2019 2022 and 2030 under both on-grid and off-grid conditions. For 2030 a sensitivity analysis under different energy scenarios was performed covering other trends in on-grid electric consumption and prices CO2 taxation and the evolution of hydrogen technology prices from 2019 until 2030. The selected case study is the Research Park Zellik (RPZ) a CO2- neutral sustainable Local Energy Community (LEC) in Zellik Belgium. The software HOMER (Hybrid Optimisation Model for Electric Renewable) has been selected to design model and optimise the defined case study. The results showed that BESS was the most competitive when the electric grid was available among the three possible storage options. Additionally HESS was overall more competitive than H2ESS-only regardless of the grid connection mode. Finally as per HESS hydrogen was proved to play a complementary role when combined with batteries enhancing the flexibility of the microgrid and enabling deeper decarbonisation by reducing the electricity bought from the grid increasing renewable energy production and balancing toward an island operating mode.
A Theoretical Study on the Hydrogen Filling Process of the On-board Storage Cylinder in Hydrogen Refueling Station
May 2023
Publication
With the development of the hydrogen fuel automobile industry higher requirements are put forward for the construction of hydrogen energy infrastructure the matching of parameters and the control strategy of hydrogen filling rate in the hydrogen charging process of hydrogen refueling stations. At present the technological difficulty of hydrogen fueling is mainly reflected in the balanced treatment of reducing the temperature rise of hydrogen and shortening the filling time during the fast filling process. Vehicle hydrogen storage cylinder (VHSC) is one of the important components of hydrogen fuel cell vehicles. This study proposed a theoretical model for calculating the temperature rise in the VHSC during the high pressure refueling process and revealed the hydrogen temperature rise during refueling. A hydrogen temperature rise prediction model was constructed to elucidate the relationship between filling parameters and temperature rise. The filling process of VHSC was analyzed from the theoretical method. The theoretical analysis results were consistent with the simulation and experimental analysis results which provided a theoretical basis for the current hydrogen temperature control algorithm of the gas source in the hydrogen refueling station and then reduced the energy consumption required for hydrogen cooling in the hydrogen refueling station.
Investment Timing Analysis of Hydrogen-Refueling Stations and the Case of China: Independent or Co-Operative Investment?
Jun 2023
Publication
The investment in hydrogen-refueling stations (HRS) is key to the development of a hydrogen economy. This paper focuses on the decision-making for potential investors faced with the thought-provoking question of when the optimal timing to invest in HRS is. To fill the gap that exists due to the fact that few studies explain why HRS investment timing is critical we expound that earlier investment in HRS could induce the first mover advantages of the technology diffusion theory. Additionally differently from the previous research that only considered that HRS investment is just made by one individual firm we innovatively examine the HRS co-investment made by two different firms. Accordingly we compare these two optional investment modes and determine which is better considering either independent investment or co-operative investment. We then explore how the optimal HRS investment timing could be figured out under conditions of uncertainty with the real options approach. Given the Chinese HRS case under the condition of demand uncertainty the hydrogen demand required for triggering investment is viewed as the proxy for investment timing. Based on analytical and numerical results we conclude that one-firm independent investment is better than two-firm cooperative investment to develop HRS not only in terms of the earlier investment timing but also in terms of the attribute for dealing with the uncertainty. Finally we offer recommendations including stabilizing the hydrogen demand for decreasing uncertainty and accelerating firms’ innovation from both technological and strategic perspectives in order to ensure firms can make HRS investments on their own.
Energy Management of Hydrogen Hybrid Electric Vehicles—Online-Capable Control
May 2024
Publication
The results shown in this paper extend our research group’s previous work which presents the theoretically achievable hydrogen engine-out NOeo x (H2-NOeo x ) Pareto front of a hydrogen hybrid electric vehicle (H2-HEV). While the Pareto front is calculated offline which requires significant computing power and time this work presents an online-capable algorithm to tackle the energy management of a H2-HEV with explicit consideration of the H2-NOeo x trade-off. Through the inclusion of realistic predictive data on the upcoming driving mission a model predictive control algorithm (MPC) is utilized to effectively tackle the conflicting goal of achieving low hydrogen consumption while simultaneously minimizing NOeo x . In a case study it is shown that MPC is able to satisfy user-defined NOeo x limits over the course of various driving missions. Moreover a comparison with the optimal Pareto front highlights MPC’s ability to achieve close-to-optimal fuel performance for any desired cumulated NOeo x target on four realistic routes for passenger cars.
Forecasting Hydrogen Vehicle Refuelling for Sustainable Transportation: A Light Gradient-Boosting Machine Model
May 2024
Publication
Efficiently predicting and understanding refuelling patterns in the context of HFVs is paramount for optimising fuelling processes infrastructure planning and facilitating vehicle operation. This study evaluates several supervised machine learning methodologies for predicting the refuelling behaviour of HFVs. The LightGBM model emerged as the most effective predictive model due to its ability to handle time series and seasonal data. The selected model integrates various input variables encompassing refuelling metrics day of the week and weather conditions (e.g. temperature precipitation) to capture intricate patterns and relationships within the data set. Empirical testing and validation against real-world refuelling data underscore the efficacy of the LightGBM model demonstrating a minimal deviation from actual data given limited data and thereby showcasing its potential to offer valuable insights to fuelling station operators vehicle manufacturers and policymakers. Overall this study highlights the potential of sustainable predictive modelling for optimising fuelling processes infrastructure planning and facilitating vehicle operation in the context of HFVs.
Techno-Economic Evaluation of Hydrogen-Based Cooking Solutions in Remote African Communities—The Case of Kenya
Apr 2023
Publication
Hydrogen has recently been proposed as a versatile energy carrier to contribute to archiving universal access to clean cooking. In hard-to-reach rural settings decentralized produced hydrogen may be utilized (i) as a clean fuel via direct combustion in pure gaseous form or blended with Liquid Petroleum Gas (LPG) or (ii) via power-to-hydrogen-to-power (P2H2P) to serve electric cooking (e-cooking) appliances. Here we present the first techno-economic evaluation of hydrogen-based cooking solutions. We apply mathematical optimization via energy system modeling to assess the minimal cost configuration of each respective energy system on technical and economic measures under present and future parameters. We further compare the potential costs of cooking for the end user with the costs of cooking with traditional fuels. Today P2H2P-based e-cooking and production of hydrogen for utilization via combustion integrated into the electricity supply system have almost equal energy system costs to simultaneously satisfy the cooking and electricity needs of the isolated rural Kenyan village studied. P2H2P-based e-cooking might become advantageous in the near future when improving the energy efficiency of e-cooking appliances. The economic efficiency of producing hydrogen for utilization by end users via combustion benefits from integrating the water electrolysis into the electricity supply system. More efficient and cheaper hydrogen technologies expected by 2050 may improve the economic performance of integrated hydrogen production and utilization via combustion to be competitive with P2H2P-based e-cooking. The monthly costs of cooking per household may be lower than the traditional use of firewood and charcoal even today when applying the current life-line tariff for the electricity consumed or utilizing hydrogen via combustion. Driven by likely future technological improvements and the expected increase in traditional and fossil fuel prices any hydrogen-based cooking pathway may be cheaper for end users than using charcoal and firewood by 2030 and LPG by 2040. The results suggest that providing clean cooking in rural villages could economically and environmentally benefit from utilizing hydrogen. However facing the complexity of clean cooking projects we emphasize the importance of embedding the results of our techno-economic analysis in holistic energy delivery models. We propose useful starting points for future aspects to be investigated in the discussion section including business and financing models.
Renewable Marine Fuel Production for Decarbonised Maritime Shipping: Pathways, Policy Measures and Transition Dynamics
Jun 2023
Publication
This article investigates the potential of renewable and low-carbon fuel production for the maritime shipping sector using Sweden as a case in focus. Techno-economic modelling and socio-technical transition studies are combined to explore the conditions opportunities and barriers to decarbonising the maritime shipping industry. A set of scenarios have been developed considering demand assumptions and potential instruments such as carbon price energy tax and blending mandate. The study finds that there are opportunities for decarbonising the maritime shipping industry by using renewable marine fuels such as advanced biofuels (e.g. biomethanol) electrofuels (e.g. e-methanol) and hydrogen. Sweden has tremendous resource potential for bio-based and hydrogen-based renewable liquid fuel production. In the evaluated system boundary biomethanol presents the cheapest technology option while e-ammonia is the most expensive one. Green electricity plays an important role in the decarbonisation of the maritime sector. The results of the supply chain optimisation identify the location sites and technology in Sweden as well as the trade flows to bring the fuels to where the bunker facilities are potentially located. Biomethanol and hydrogen-based marine fuels are cost-effective at a carbon price beyond 100 €/tCO2 and 200 €/tCO2 respectively. Linking back to the socio-technical transition pathways the study finds that some shipping companies are in the process of transitioning towards using renewable marine fuels thereby enabling niche innovations to break through the carbon lock-in and eventually alter the socio-technical regime while other shipping companies are more resistant. Overall there is increasing pressure from (inter)national energy and climate policy-making to decarbonise the maritime shipping industry.
Hydrogen as Short-Term Flexibility and Seasonal Storage in a Sector-Coupled Electricity Market
Jul 2023
Publication
The rapid expansion of renewable energies has the potential to decarbonize the electricity supply. This is more challenging in difficult-to-electrify sectors. The use of hydrogen provides a massive potential for this issue. However expanding hydrogen production increases electricity demand while providing additional flexibility to the electricity market. This paper mainly aims to analyze the economic effects of this sector coupling between the European electricity and national hydrogen markets. The developed energy market model jointly considers both markets to reach an overall welfare optimum. A novel modeling approach allows the interaction of these markets without the need for several iterative optimization runs. This allows for a detailed analysis of various market participants’ changes in consumer and producer surpluses. The optimization is conducted in 13 connected Central European countries to account for various power plant fleets generation mixes and electricity prices. Results show an overall welfare increase of EUR 4 to 28 billion in 2030 and an EUR 5 to 158 billion increase in 2040. However there is a surplus shift from consumers to producers. The consumer surplus is reduced by up to EUR 44 billion in 2030 and EUR 60 billion while producers benefit to achieve the overall welfare benefits. The reduction of consumer surplus changes if significant price peaks occur. Fuel cell applications can avoid these price peaks resulting in a surplus shift from thermal power plants to consumers. Hence consumer surplus can increase by up to EUR 146 billion in the respective 2040 scenarios. Pink hydrogen accounts for a sizable portion of total hydrogen production up to 58 percent in 2030 and up to 30 percent in 2040. As a result nuclear power plants that are nearly entirely allocated in France stand to benefit greatly from this sector coupling. Additional efforts could be made to address the link between hydrogen and natural gas prices. Furthermore the potential for cross-border hydrogen trade and the implementation of national legal and regulatory frameworks could be assessed.
Investigation of Different Load Characteristics, Component Dimensioning, and System Scaling for the Optimized Design of a Hybrid Hydrogen-Based PV Energy System
Jul 2023
Publication
The realization of a carbon-neutral civilization which has been set as a goal for the coming decades goes directly hand-in-hand with the need for an energy system based on renewable energies (REs). Due to the strong weather-related daily and seasonal fluctuations in supply of REs suitable energy storage devices must be included for such energy systems. For this purpose an energy system model featuring hybrid energy storage consisting of a hydrogen unit (for long-term storage) and a lithium-ion storage device (for short-term storage) was developed. With a proper design such a system can ensure a year-round energy supply by using electricity generated by photovoltaics (PVs). In the energy system that was investigated hydrogen (H2) was produced by using an electrolyser (ELY) with a PV surplus during the summer months and then stored in an H2 tank. During the winter due to the lack of PV power the H2 is converted back into electricity and heat by a fuel cell (FC). While the components of such a system are expensive a resource- and cost-efficient layout is important. For this purpose a Matlab/Simulink model that enabled an energy balance analysis and a component lifetime forecast was developed. With this model the results of extensive parameter studies allowed an optimized system layout to be created for specific applications. The parameter studies covered different focal points. Several ELY and FC layouts different load characteristics different system scales different weather conditions and different load levels—especially in winter with variations in heating demand—were investigated.
Optimization of Integrated Energy System Considering Electricity and Hydrogen Coordination in the Context of Carbon Trading
Apr 2024
Publication
In order to improve the consumption of renewable energy and reduce the carbon emissions of integrated energy systems (IESs) this paper proposes an optimal operation strategy for an integrated energy system considering the coordination of electricity and hydrogen in the context of carbon trading. The strategy makes full use of the traditional power-to-gas hydrogen production process and establishes a coupling model comprising cogeneration and carbon capture equipment an electrolytic cell a methane reactor and a hydrogen fuel cell. Taking a minimum daily operating cost and minimal carbon emissions from the system as objective functions a mixed-integer nonlinear optimal scheduling model is established. This paper designs examples based on MATLAB R2021b and uses the GUROBI solver to solve them. The results show that compared with the traditional two-stage operation process the optimization method can reduce the daily operation cost of an IES by 26.01% and its carbon emissions by 90.32%. The results show that the operation mode of electro-hydrogen synergy can significantly reduce the carbon emissions of the system and realize a two-way flow of electro-hydrogen energy. At the same time the addition of carbon capture equipment and the realization of carbon recycling prove the scheduling strategy’s ability to achieve a lowcarbon economy of the scheduling strategy.
THyGA - Long Term Effect of H2 on Appliances Tested
May 2023
Publication
The goals of the long-term tests were to see the impact of blends of hydrogen and natural gas on the technical condition of the appliances and their performance after several hours of operation. To do so they were run through an accelerated test program amounting to more than 3000 testing hours for the boilers and more than 2500 testing hours for the cookers. The percentage of hydrogen in the test gas was 30% by volume. Three boilers and two cookers were tested by DGC and two boilers by GWI. This report describes the test protocol the results and analysis on the seven appliances tested.
Hydrogen as a Renewable Energy Carrier in a Hybrid Configuration of Distributed Energy Systems: Bibliometric Mapping of Current Knowledge and Strategies
Jul 2023
Publication
Storing energy in hydrogen deposits balances the operation of energy systems and is an effective tool in the process of energy transformation towards achieving Sustainable Development Goals. To assess the validity of its use as an alternative renewable energy carrier in dispersed energy systems of hybrid configuration a comprehensive review of scientific literature was conducted in this study based on bibliometric analysis. The bibliographic database used in the study was the international Web of Science database. This review contributes to a better understanding of the characteristics of the selected research area. The evolution of research trends implemented in the design of energy systems associated with hydrogen technologies is revealed clearly indicating that it is a developing field. In recent years there has been an increase in the number of publications although the territorial range of research (mainly simulation) conducted in the domain does not include areas with the most favourable infrastructural conditions. The analysis reveals weak cooperation between South American African East Asian and Oceanic countries. In the light of earlier thematically similar literature reviews several research gaps are also identified and proposals for future research are presented. They concern in particular the parallel implementation and optimization of the operation of hydrogen (HRES—Hybrid Renewable Energy System and HESS—Hybrid Energy Storage System) solutions in terms of economics ecology lifespan and work efficiency as well as their feasibility analysis. With the support of other researchers and those involved in the subject matter this review may contribute to the further development of hybrid hydrogen systems in terms of increasing competitiveness and promoting the implementation of these technologies.
No more items...