Applications & Pathways
Overview of the Method and State of Hydrogenization of Road Transport in the World and the Resulting Development Prospects in Poland
Jan 2021
Publication
National Implementation Plans (NIP) in regard hydrogenation motor transport are in place in European Union (EU) countries e.g.Germany France or Belgium Denmark Netherlands. Motor transport hydrogenization plans exist in the Japan and USA. In Poland the methodology deployment Hydrogen Refuelling Stations (HRS) developed in Motor Transport Institute is of multi-stage character are as follows: Stage I: Method allowing to identify regions in which HRS should be located. Stage II: Method allowing to identify urban centres in which should be located the said stations. Stage III: Method for determining the area of the station location. The presentation of the aforesaid NIPS and based on that and the mentioned methodology the conditions for hydrogenization of motor transport in Poland is the purpose of this article which constitutes its novelty. The scope of the article concerns the hydrogenization of motor transport in the abovementioned countries. With the above criteria the order the construction in Poland of a HRS in the order of their creation along the TEN-T corridors is as follows: 1 - Poznan 2 - Warsaw 3 - Bialystok 4 - Szczecin 5 - the Lodz region 6 - the Tri-City region 7 - Wrocław 8 - the Katowice region 9 – Krakow. The concluding discussion sets out the status of deployment HRS and FCEVs in the analysed countries.
Study on the Use of Fuel Cells in Shipping
Jan 2017
Publication
Fuel Cells are a promising technology in the context of clean power sustainability and alternative fuels for shipping. Different specific developments on Fuel Cells are available today with research and pilot projects under evaluation that have revealed strong potential for further scaled up implementation. The EMSA Study on the use of Fuel Cells in Shipping has been the result of this Agency’s initiative under the agreement of the Commission and in support of EU Member States an important instrument developed in close partnership with DNV-GL.
Notwithstanding the close dependency of Fuel Cell technology and the development of hydrogen fuel solutions different solutions are today in place making use of LNG methanol and other low flashpoint fuels. EMSA participates in support of the Commission in the 2nd phase development of the IGF Code where provisions for Fuel Cells are to be included as a new part of the text.
The EMSA Study on the use of Fuel Cells in Shipping includes a technology and regulatory review identifying gaps to be further explored the selection of the most promising Fuel Cell technologies for shipping and finally a generic Safety Assessment where the selected technologies are evaluated according to Risk & Safety aspects in generic ship design applications.
Notwithstanding the close dependency of Fuel Cell technology and the development of hydrogen fuel solutions different solutions are today in place making use of LNG methanol and other low flashpoint fuels. EMSA participates in support of the Commission in the 2nd phase development of the IGF Code where provisions for Fuel Cells are to be included as a new part of the text.
The EMSA Study on the use of Fuel Cells in Shipping includes a technology and regulatory review identifying gaps to be further explored the selection of the most promising Fuel Cell technologies for shipping and finally a generic Safety Assessment where the selected technologies are evaluated according to Risk & Safety aspects in generic ship design applications.
Comparing e-Fuels and Electrification for Decarbonization of Heavy-Duty Transports
Oct 2022
Publication
The freight sector is expected to keep or even increase its fundamental role for the major modern economies and therefore actions to limit the growing pressure on the environment are urgent. The use of electricity is a major option for the decarbonization of transports; in the heavy-duty segment it can be implemented in different ways: besides full electric-battery powertrains electricity can be used to supply catenary roads or can be chemically stored in liquid or gaseous fuels (e-fuels). While the current EU legislation adopts a tailpipe Tank-To-Wheels approach which results in zero emissions for all direct uses of electricity a Well-To-Wheels (WTW) method would allow accounting for the potential benefits of using sustainable fuels such as e-fuels. In this article we have performed a WTW-based comparison and modelling of the options for using electricity to supply heavy-duty vehicles: e-fuels eLNG eDiesel and liquid Hydrogen. Results showed that the direct use of electricity can provide high Greenhouse Gas (GHG) savings and also in the case of the e-fuels when low-carbonintensity electricity is used for their production. While most studies exclusively focus on absolute GHG savings potential considerations of the need for new infrastructures and the technological maturity of some options are fundamental to compare the different technologies. In this paper an assessment of such technological and non-technological barriers has been conducted in order to compare alternative pathways for the heavy-duty sector. Among the available options the flexibility of using drop-in energy-dense liquid fuels represents a clear and substantial immediate advantage for decarbonization. Additionally the novel approach adopted in this paper allows us to quantify the potential benefits of using e-fuels as chemical storage able to accumulate electricity from the production peaks of variable renewable energies which would otherwise be wasted due to grid limitations.
Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines
Mar 2024
Publication
This paper presents a theoretical analysis of the selected properties of HCNG fuel calculations and a literature review of the other fuels that allow the storage of ecologically produced hydrogen. Hydrogen has the most significant CO2 reduction potential of all known fuels. However its transmission in pure form is still problematic and its use as a component of fuels modified by it has now become an issue of interest for researchers. Many types of hydrogen-enriched fuels have been invented. However this article will describe the reasons why HCNG may be the hydrogen-enriched fuel of the future and why internal combustion (IC) piston engines working on two types of fuel could be the future method of using it. CO2 emissions are currently a serious problem in protecting the Earth’s natural climate. However secondarily power grid stabilization with a large share of electricity production from renewable energy sources must be stabilized with very flexible sources—as flexible as multi-fuel IC engines. Their use is becoming an essential element of the electricity power systems of Western countries and there is a chance to use fuels with zero or close to zero CO2 emissions like e-fuels and HCNG. Dual-fuel engines have become an effective way of using these types of fuels efficiently; therefore in this article the parameters of hydrogen-enriched fuel selected in terms of relevance to the use of IC engines are considered. Inaccuracies found in the literature analysis are discussed and the essential properties of HCNG and its advantages over other hydrogen-rich fuels are summarized in terms of its use in dual-fuel (DF) IC engines.
Power Balance Control and Dimensioning of a Hybrid Off-grid Energy system for a Nordic Climate Townhouse
Mar 2023
Publication
This paper investigates conversion of a Nordic oil-heated townhouse into carbon-neutral by different energy efficiency (EE) improvements and an off-grid system including solar photovoltaics (PV) wind power and battery and hydrogen energy storage systems (BESS and HESS). A heat-pump-based heating system including waste heat recovery (WHR) from the HESS and an off-grid electrical system are dimensioned for the building by applying models developed in MATLAB and Microsoft Excel to study the life cycle costs (LCC). The work uses a measured electrical load profile and the heat generation of the new heating system and the power generation are simulated by commercial software. It is shown that the EE improvements and WHR from the HESS have a positive effect on the dimensioning of the off-grid system and the LCC can be reduced by up to €2 million. With the EE improvements and WHR the component dimensioning can be reduced by 22%–41% and 13%–51% on average respectively. WHR can cover up to 57% of the building's annual heat demand and full-power dimensioning of the heat pump is not reasonable when WHR is applied. Wind power was found to be very relevant in the Nordic conditions reducing the LCC by 32%.
On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review
Nov 2022
Publication
This paper presents a comprehensive overview on the current status of solid oxide fuel cell (SOFC) energy systems technology with a deep insight into the techno-energy performance. In recent years SOFCs have received growing attention in the scientific landscape of high efficiency energy technologies. They are fuel flexible highly efficient and environmentally sustainable. The high working temperature makes it possible to work in cogeneration and drive downstream bottomed cycles such as Brayton and Hirn/Rankine ones thus configuring the hybrid system of a SOFC/turbine with very high electric efficiency. Fuel flexibility makes SOFCs independent from pure hydrogen feeding since hydrocarbons can be fed directly to the SOFC and then converted to a hydrogen rich stream by the internal thermochemical processes. SOFC is also able to convert carbon monoxide electrochemically thus contributing to energy production together with hydrogen. SOFCs are much considered for being supplied with biofuels especially biogas and syngas so that biomass gasifiers/SOFC integrated systems contribute to the “waste to energy” chain with a significant reduction in pollution. The paper also deals with the analysis of techno-energy performance by means of ad hoc developed numerical modeling in relation to the main operating parameters. Ample prominence is given to the aspect of fueling emphasizing fuel processing with a deep discussion on the impurities and undesired phenomena that SOFCs suffer. Constituent materials geometry and design methods for the balance of plant were studied. A wide analysis was dedicated to the hybrid system of the SOFC/turbine and to the integrated system of the biomass gasifier/SOFC. Finally an overview of SOFC system manufacturing companies on SOFC research and development worldwide and on the European roadmap was made to reflect the interest in this technology which is an important signal of how communities are sensitive toward clean low carbon and efficient technologies and therefore to provide a decisive and firm impulse to the now outlined energy transition.
Characterization of the Hydrogen Combustion Process in a Scramjet Engine
May 2024
Publication
In this paper by using a large eddy simulation we study the combustion process in the HyShot II scramjet combustor. By conducting a detailed analysis of the mass-fraction distributions of the main species such as H2 H2O and the radicals OH and HO2 of the mass source terms of these main species and of the chemical source term of the energy equation we detect the regions where chemical reactions occur through a diffusion process and the regions where auto-ignition and premixed combustion may develop. The analysis indicates that the combustion process is mainly of diffusive type along a thin shear layer enveloping the hydrogen plume whereas there could be some auto-ignition and/or premixed combustion cores inside the plume.
Research on Energy Management Method of Fuel Cell/Supercapacitor Hybrid Trams Based on Optimal Hydrogen Consumption
Jul 2023
Publication
In this paper based on the operating states and characteristics of fuel cell/supercapacitor hybrid trams an optimal hydrogen energy management method is proposed. This method divides the operating states into two parts: traction state and non-traction state. In the traction state the real-time loss function of the hybrid power system which is used to obtain the fuel cell optimal output power under the different demand powers and supercapacitor voltage is established. In the non-traction state the constant-power charging method which is obtained by solving the power-voltage charging model is used to ensure the supercapacitor voltage of the beginning-state and the end-state in an entire operation cycle are the same. The RT-LAB simulation platform is used to verify that the proposed method has the ability to control the hybrid real-time system. Using the comparative experiment between the proposed method and power-follow method the results show that the proposed method offers a significant improvement in both fuel cell output stability and hydrogen consumption in a full operation cycle.
Precise Dynamic Modelling of Real-World Hybrid Solar-Hydrogen Energy Systems for Grid-Connected Buildings
Jul 2023
Publication
Hybrid renewable hydrogen energy systems could play a key role in delivering sustainable solutions for enabling the Net Zero ambition; however the lack of exact computational modelling tools for sizing the integrated system components and simulating their real-world dynamic behaviour remains a key technical challenge against their widespread adoption. This paper addresses this challenge by developing a precise dynamic model that allows sizing the rated capacity of the hybrid system components and accurately simulating their real-world dynamic behaviour while considering effective energy management between the grid-integrated system components to ensure that the maximum possible proportion of energy demand is supplied from clean sources rather than the grid. The proposed hybrid system components involve a solar PV system electrolyser pressurised hydrogen storage tank and fuel cell. The developed hybrid system model incorporates a set of mathematical models for the individual system components. The developed precise dynamic model allows identifying the electrolyser’s real-world hydrogen production levels in response to the input intermittent solar energy production while also simulating the electrochemical behaviour of the fuel cell and precisely quantifying its real-world output power and hydrogen consumption in response to load demand variations. Using a university campus case study building in Scotland the effectiveness of the developed model has been assessed by benchmarking comparison between its results versus those obtained from a generic model in which the electrochemical characteristics of the electrolyser and fuel cell systems were not taken into consideration. Results from this comparison have demonstrated the potential of the developed model in simulating the real-world dynamic operation of hybrid solar hydrogen energy systems for grid-connected buildings while sizing the exact capacity of system components avoiding oversizing associated with underutilisation costs and inaccurate simulation.
Analyzing the Future Potential of Defossilizing Industrial Specialty Glass Production with Hydrogen by LCA
Mar 2022
Publication
The glass industry is part of the energy-intensive industry with most of the energy needed to melt the raw materials. To produce glass temperatures between 1000 and 1600 °C are necessary. Presently mostly fossil natural gas is the dominant energy source. As direct electrification is not always possible in this paper a Life Cycle Assessment (LCA) for specialty glass production is conducted where the conventional fossil-based reference process is compared to a hydrogen-fired furnace. This hydrogen can be produced on-site in an water electrolyzer using not only the hydrogen for the combustion but also the produced oxygen. Hydrogen can be produced alternatively off-site in a large scale electrolyzer to facilitate economy of scale. For the transport and distribution of this hydrogen different options are available. A rather new option are liquid organic hydrogen carriers (LOHC) which bind the hydrogen in a chemical substance. However temperatures around 300 °C are necessary to separate the hydrogen from the LOHC after transport. At the glass trough waste heat is available at the required temperature level to facilitate the dehydrogenation. The comparison is completed by the production of off-site hydrogen transported to the glass trough as conventional liquefied hydrogen in cooling tanks by truck or in hydrogen pipelines. In this assessment to power the electrolyzers the national grid mix of Germany is used. A time frame from 2020 till 2050 and its changing energy system towards defossilisation is analyzed. Regarding climate change on-site hydrogen production causes the least impact for specialty glass production in 2050. However negative trade-offs for other environmental impact categories e.g. Metal depletion are recorded.
Numerical Investigation of a Fuel Cell-Powered Agricultural Tractor
Nov 2022
Publication
In recent years growing awareness about environmental issues is pushing humankind to explore innovative technologies to reduce the anthropogenic sources of pollutants. Among these sources internal combustion engines in non-road mobile machinery (NRMM) such as agricultural tractors are one of the most important. The aim of this work is to explore the possibility of replacing the conventional diesel engine with an electric powertrain powered by a hybrid storage system consisting of a small battery pack and a fuel-cell system. The battery pack (BP) is necessary to help the fuel cell manage sudden peaks in power demands. Numerical models of the conventional powertrain and a fuel-cell tractor were carried out. To compare the two powertrains work cycles derived from data collected during real operative conditions were exploited and simulated. For the fuel-cell tractor a control strategy to split the electric power between the battery pack and the fuel cell was explored. The powertrains were compared in terms of greenhouse gas emissions (GHG) according to well-to-wheel (WTW) equivalent CO2 emission factors available in the literature. Considering the actual state-of-the-art hydrogen production methods the simulation results showed that the fuel-cell/battery powertrain was able to accomplish the tasks with a reduction of about 50% of the equivalent CO2 emissions compared to traditional diesel-powered vehicles.
The Sector Coupling Concept: A Critical Review
Jun 2020
Publication
Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy-consuming processes. On a large-scale this can mainly be achieved through electricity from wind and sun which are subject to intermittency. To efficiently integrate this variable energy a coupling of the power sector to the residential transport industry and commercial/trade sector is often promoted called sector coupling (SC). Nevertheless our literature review indicates that SC is frequently misinterpreted and its scope varies among available research from exclusively considering the use of excess renewable electricity to a rather holistic view of integrated energy systems including excess heat or even biomass sources. The core objective of this article is to provide a thorough understanding of the SC concept through an analysis of its origin and its main purpose as described in the current literature. We provide a structured categorization of SC derived from our findings and critically discuss its remaining challenges as well as its value for renewable energy systems. We find that SC is rooted in the increasing use of variable renewable energy sources and its main assets are the flexibility it provides for renewable energy systems decarbonization potential for fossil-fuel-based end-consumption sectors and consequently reduced dependency on oil and gas extracting countries. However the enabling technologies face great challenges in their economic feasibility because of the uncertain future development of competing solutions.
Global Green Hydrogen-based Steel Opportunities Surrounding High Quality Renewable Energy and Iron Ore Deposits
May 2023
Publication
The steel sector currently accounts for 7% of global energy-related CO2 emissions and requires deep reform to disconnect from fossil fuels. Here we investigate the market competitiveness of one of the widely considered decarbonisation routes for primary steel production: green hydrogen-based direct reduction of iron ore followed by electric arc furnace steelmaking. Through analysing over 300 locations by combined use of optimisation and machine learning we show that competitive renewables-based steel production is located nearby the tropic of Capricorn and Cancer characterised by superior solar with supplementary onshore wind in addition to high-quality iron ore and low steelworker wages. If coking coal prices remain high fossil-free steel could attain competitiveness in favourable locations from 2030 further improving towards 2050. Large-scale implementation requires attention to the abundance of suitable iron ore and other resources such as land and water technical challenges associated with direct reduction and future supply chain configuration.
The Potential of Zero-carbon Bunker Fuels in Developing Countries
Apr 2015
Publication
To meet the climate targets set forth in the International Maritime Organization’s Initial GHG Strategy the maritime transport sector needs to abandon the use of fossil-based bunker fuels and turn toward zero-carbon alternatives which emit zero or at most very low greenhouse gas (GHG) emissions throughout their lifecycles. This report “The Potential of Zero-Carbon Bunker Fuels in Developing Countries” examines a range of zero-carbon bunker fuel options that are considered to be major contributors to shipping’s decarbonized future: biofuels hydrogen and ammonia and synthetic carbon-based fuels. The comparison shows that green ammonia and green hydrogen strike the most advantageous balance of favorable features due to their lifecycle GHG emissions broader environmental factors scalability economics and technical and safety implications. Furthermore the report finds that many countries including developing countries are very well positioned to become future suppliers of zero-carbon bunker fuels—namely ammonia and hydrogen. By embracing their potential these countries would be able to tap into an estimated $1+ trillion future fuel market while modernizing their own domestic energy and industrial infrastructure. However strategic policy interventions are needed to unlock these potentials.
Carbon-neutral Cement: The Role of Green Hydrogen
Mar 2024
Publication
Business-as-usual (BAU) cement production is associated with a linear model that contributes significantly to global warming and is dependent on volatile energy markets. A novel circular model is proposed by adding three power-to-gas system components to current production systems: a calcium-looping (CaL) CO2 capture unit; water electrolysis for hydrogen and oxygen generation; and a methanation unit for synthetic natural gas (SNG) production. The paper presents the first analysis of the combined industrial-scale operation of these components in a closed loop where the SNG fuels the cement kiln and the CaL unit while the O2 produced feeds it. The circular hybrid and BAU models are compared in three feasibility scenarios. It is concluded that the circular model outperforms the other alternatives environmentally opening a potential pathway for the cement industry to achieve near net-zero CO2 emissions reduce energy dependence and improve economic efficiency.
Delivering a Reliable Decarbonised Power System
Mar 2023
Publication
This report illustrates what a reliable resilient decarbonised electricity supply system could look like in 2035 and the steps required to achieve it. It provides new insights and new advice on how such a system can be achieved by 2035 using real weather data and hourly analysis of Great Britain’s power system (Northern Ireland is part of the all-Ireland system). It also looks at the implications for hydrogen.
How Hydrogen (H2) Can Support Food Security: From Farm to Fork
Mar 2024
Publication
Molecular hydrogen (H2 ) is a low-molecular-weight non-polar and electrochemically neutral substance that acts as an effective antioxidant and cytoprotective agent with research into the effects of H2 incorporation into the food chain at various stages rapidly gaining momentum. H2 can be delivered throughout the food growth production delivery and storage systems in numerous ways including as a gas as hydrogen-rich water (HRW) or with hydrogen-donating food supplements such as calcium (Ca) or magnesium (Mg). In plants H2 can be exploited as a seedpriming agent during seed germination and planting during the latter stages of plant development and reproduction as a post-harvest treatment and as a food additive. Adding H2 during plant growth and developmental stages is noted to improve the yield and quality of plant produce through modulating antioxidant pathways and stimulating tolerance to such environmental stress factors as drought stress enhanced tolerance to herbicides (paraquat) and increased salinity and metal toxicity. The benefits of pre- and post-harvest application of H2 include reductions in natural senescence and microbial spoilage which contribute to extending the shelf-life of animal products fruits grains and vegetables. This review collates empirical findings pertaining to the use of H2 in the agri-food industry and evaluates the potential impact of this emerging technology.
Research on Power Optimization for Energy System of Hydrogen Fuel Cell Wheel-Driven Electric Tractor
Apr 2024
Publication
Hydrogen fuel cell tractors are emerging as a new power source for tractors. Currently there is no mature energy management control method available. Existing methods mostly rely on engineers’ experience to determine the output power of the fuel cell and the power battery resulting in relatively low energy utilization efficiency of the energy system. To address the aforementioned problems a power optimization method for the energy system of hydrogen fuel cell wheel-driven electric tractor was proposed. A dynamic model of tractor ploughing conditions was established based on the system dynamics theory. From this based on the equivalent hydrogen consumption theory the charging and discharging of the power battery were equivalent to the fuel consumption of the hydrogen fuel cell forming an equivalent hydrogen consumption model for the tractor. Using the state of charge (SOC) of the power battery as a constraint and with the minimum equivalent hydrogen consumption as the objective function an instantaneously optimized power allocation method based on load demand in the energy system is proposed by using a traversal algorithm. The optimization method was simulated and tested based on the MATLAB simulation platform and the results showed under ploughing conditions compared with the rule-based control strategy the proposed energy system power optimization method optimized the power output of hydrogen fuel cells and power batteries allowing the energy system to work in a high-efficiency range reducing the equivalent hydrogen consumption of the tractor by 7.79% and solving the energy system power distribution problem.
Efficiency and Optimal Load Capacity of E-Fuel-Based Energy Storage Systems
Apr 2023
Publication
This work evaluates the effectiveness of chemical-based solutions for storing large amounts of renewable electricity. Four “Power-to-X-to-Power” pathways are examined comprising hydrogen methane methanol and ammonia as energy carriers. The pathways are assessed using a model scenario where they are produced with electricity from an onshore wind farm stored in suitable facilities and then reconverted to electricity to meet the energy demand of a chemical site. An energy management and storage capacity estimation tool is used to calculate the annual load coverage resulting from each pathway. All four pathways offer a significant increase in load coverage compared to a scenario without storage solution (56.19%). The hydrogen-based pathway has the highest load coverage (71.88%) and round-trip efficiency (36.93%) followed by the ammonia-based (69.62% 31.37%) methanol-based (67.85% 27.00%) and methane-based (67.64% 26.47% respectively) pathways. The substantially larger storage capacity required for gaseous energy carriers to ensure a steady supply to the consumer could be a decisive factor. The hydrogen pathway requires a storage volume up to 10.93 times larger than ammonia and 16.87 times larger than methanol. Notably ammonia and methanol whose load coverages are only 2.26 and 4.03 percentage points lower than that of hydrogen offer the possibility of implementing site-specific storage solutions avoiding potential bottlenecks due to limited pipeline and cavern capacities.
Coordinated Planning and Operation of Inter Seasonal Heat Storage and P2G Devices Integrated to Urban Multi-energy System
Mar 2023
Publication
With the urbanization construction and the advancement of the carbon peaking and carbon neutrality goals urban energy systems are characterized by coupling multi-energy networks and a high proportion of renewable energy. Urban energy systems need to improve the quality of energy use as well as to achieve energy conservation and emission reduction. Inter-seasonal heat technology has satisfactory engineering application prospects in promoting renewable energy consumption and the energy supply of urban multi-energy systems. Considering inter-seasonal heat storage and electric hydrogen production a joint optimization method of planning and operation is proposed for the urban multi-energy flow system. First the operation framework of inter-seasonal heat storage and electric hydrogen production system is established which clarifies the energy flow of the urban multi-energy system. Secondly aiming at the goals of minimizing the equipment’s annual investment cost and the multi-energy system annual operation cost combined with the time series period division method a planning operation model has been established considering multi-objectives. Through case study it is shown that the proposed model can promote the renewable energy consumption and reduce the operation cost of the whole system.
No more items...