Applications & Pathways
Optimal Synergy between Photovoltaic Panels and Hydrogen Fuel Cells for Green Power Supply of a Green Building—A Case Study
Jun 2021
Publication
Alternative energy resources have a significant function in the performance and decarbonization of power engendering schemes in the building application domain. Additionally “green buildings” play a special role in reducing energy consumption and minimizing CO2 emissions in the building sector. This research article analyzes the performance of alternative primary energy sources (sun and hydrogen) integrated into a hybrid photovoltaic panel/fuel cell system and their optimal synergy to provide green energy for a green building. The study addresses the future hydrogen-based economy which involves the supply of hydrogen as the fuel needed to provide fuel cell energy through a power distribution infrastructure. The objective of this research is to use fuel cells in this field and to investigate their use as a green building energy supply through a hybrid electricity generation system which also uses photovoltaic panels to convert solar energy. The fuel cell hydrogen is supplied through a distribution network in which hydrogen production is outsourced and independent of the power generation system. The case study creates virtual operating conditions for this type of hybrid energy system and simulates its operation over a one-year period. The goal is to demonstrate the role and utility of fuel cells in virtual conditions by analyzing energy and economic performance indicators as well as carbon dioxide emissions. The case study analyzes the optimal synergy between photovoltaic panels and fuel cells for the power supply of a green building. In the simulation an optimally configured hybrid system supplies 100% of the energy to the green building while generating carbon dioxide emissions equal to 11.72% of the average value calculated for a conventional energy system providing similar energy to a standard residential building. Photovoltaic panels account for 32% of the required annual electricity production and the fuel cells generate 68% of the total annual energy output of the system.
Green Hydrogen Powering Sustainable Festivals: Public Perceptions of Generators, Production and Ownership
Nov 2022
Publication
This paper is the first to explore public perceptions about a particular market niche for hydrogen; mobile generators. By utilising a combined research approach including in-situ surveys and online focus groups this paper explores what festival audience members and residents who live near festival sites think about the displacement of incumbent diesel generator technology with hydrogen alternatives. We investigate if hydrogen production methods are important in informing perceptions and subsequent support including the extent to which participants are influenced by the organisation or entity that produces the fuel and stands to profit from its sale. In addition to a primary focus on hydrogen energy we reflect upon how sustainability might be better conceptualised in a festival context. Our findings reveal broad support for hydrogen generators the use of green hydrogen as a fuel to generate electricity and community-led hydrogen production.
Towards Ecological Alternatives in Bearing Lubrication
Jun 2021
Publication
Hydrogen is the cleanest fuel available because its combustion product is water. The internal combustion engine can in principle and without significant modifications run on hydrogen to produce mechanical energy. Regarding the technological solution leading to compact engines a question to ask is the following: Can combustion engine systems be lubricated with hydrogen? In general since many applications such as in turbomachines is it possible to use the surrounding gas as a lubricant? In this paper journal bearings global parameters are calculated and compared for steady state and dynamic conditions for different gas constituents such as air pentafluoropropane helium and hydrogen. Such a bearing may be promising as an ecological alternative to liquid lubrication.
Acoustic and Psychoacoustic Levels from an Internal Combustion Engine Fueled by Hydrogen vs. Gasoline
Feb 2022
Publication
Whereas noise generated by road traffic is an important factor in urban pollution little attention has been paid to this issue in the field of hydrogen-fueled vehicles. The objective of this study is to analyze the influence of the type of fuel (gasoline or hydrogen) on the sound levels produced by a vehicle with an internal combustion engine. A Volkswagen Polo 1.4 vehicle adapted for its bi-fuel hydrogen-gasoline operation has been used. Tests were carried out with the vehicle when stationary to eliminate rolling and aerodynamic noise. Acoustics and psychoacoustics levels were measured both inside and outside the vehicle. A slight increase in the noise level has only been found outside when using hydrogen as fuel compared to gasoline. The increase is statistically significant can be quantified between 1.1 and 1.7 dBA and is mainly due to an intensification of the 500 Hz band. Loudness is also higher outside the vehicle (between 2 and 4 sones) when the fuel is hydrogen. Differences in sharpness and roughness values are lower than the just-noticeable difference (JND) values of the parameters. Higher noise levels produced by hydrogen can be attributed to its higher reactivity compared to gasoline.
Hydrogen Mobility Europe (H2ME): Vehicle and Hydrogen Refuelling Station Deployment Results
May 2018
Publication
Hydrogen Mobility Europe (H2ME 2015–2022) is the largest European Fuel Cells and Hydrogen Joint Undertaking (EU FCH JU)-funded hydrogen light vehicle and infrastructure demonstration. Up until April 2017 the 40 Daimler passenger car fuel cell electric vehicles (FCEVs) and 62 Symbio Fuel Cell-Range Extended Electric Vans (FC-REEV)-vans deployed by the project drove 625300 km and consumed a total of 7900 kg of hydrogen with no safety incidents. During its first year of operation (to April 2017) the NEL Hydrogen Fueling HRS (hydrogen refuelling station) in Kolding Denmark dispensed 900 kg of hydrogen and demonstrated excellent reliability (98.2% availability) with no safety incidents. The average hydrogen refuelling time for passenger cars is comparable to that for conventional vehicles (2–3 min).
Prediction of Hydrogen-Heavy Fuel Combustion Process with Water Addition in an Adapted Low Speed Two Stroke Diesel Engine: Performance Improvement
Jun 2021
Publication
Despite their high thermal efficiency (>50%) large two-stroke (2 T) diesel engines burning very cheap heavy fuel oil (HFO) produce a high level of carbon dioxide (CO2). To achieve the low emission levels of greenhouse gases (GHG) that will be imposed by future legislation the use of hydrogen (H2) as fuel in 2 T diesel engines is a viable option for reducing or almost eliminate CO2 emissions. In this work from experimental data and system modelling an analysis of dual combustion is carried out considering different strategies to supply H2 to the engine and for different H2 fractions in energy basis. Previously a complete thermodynamic model of a 2 T diesel engine with an innovative scavenging model is developed and validated. The most important drawbacks of this type of engines are controlled in this work using dual combustion and water injection reducing nitrogen oxides emissions (NOx) self-ignition and combustion knocking. The results show that the developed model matches engine performance data in diesel mode achieving a higher efficiency and mean effective pressure (MEP) in hydrogen mode of 53% and 14.62 bar respectively.
Achieving Carbon-neutral Iron and Steelmaking in Europe Through the Deployment of Bioenergy with Carbon Capture and Storage
Jan 2019
Publication
The 30 integrated steel plants operating in the European Union (EU) are among the largest single-point CO2 emitters in the region. The deployment of bioenergy with carbon capture and storage (bio-CCS) could significantly reduce their emission intensities. In detail the results demonstrate that CO2 emission reduction targets of up to 20% can be met entirely by biomass deployment. A slow CCS technology introduction on top of biomass deployment is expected as the requirement for emission reduction increases further. Bio-CCS could then be a key technology particularly in terms of meeting targets above 50% with CO2 avoidance costs ranging between €60 and €100 tCO2−1 at full-scale deployment. The future of bio-CCS and its utilisation on a larger scale would therefore only be viable if such CO2 avoidance cost were to become economically appealing. Small and medium plants in particular would economically benefit from sharing CO2 pipeline networks. CO2 transport however makes a relatively small contribution to the total CO2 avoidance cost. In the future the role of bio-CCS in the European iron and steelmaking industry will also be influenced by non-economic conditions such as regulations public acceptance realistic CO2 storage capacity and the progress of other mitigation technologies.
Hydrogen Power Focus Shifts from Cars to Heavy Vehicles
Oct 2020
Publication
Hydrogen has been hailed as a promising energy carrier for decades. But compared to the thriving success of hybrid and plug-in electric cars the prospects for cars powered by hydrogen fuel cells have recently diminished mostly due to challenges in bringing down the costs of fuel cells and developing a broad network of fuelling stations.<br/>Beginning in March 2020 three major auto manufacturers—Daimler AG] Volkswagen and General Motors (GM)]—followed the April 2019 move by Honda to back out of the hydrogen-powered passenger car market. Instead these companies and others are looking to develop the technology as an emission-free solution to power heavy commercial and military vehicles with refuelling taking place at centralized locations.
Renewable Hydrogen for the Chemical Industry
Aug 2020
Publication
Hydrogen is often touted as the fuel of the future but hydrogen is already an important feedstock for the chemical industry. This review highlights current means for hydrogen production and use and the importance of progressing R&D along key technologies and policies to drive a cost reduction in renewable hydrogen production and enable the transition of chemical manufacturing toward green hydrogen as a feedstock and fuel. The chemical industry is at the core of what is considered a modern economy. It provides commodities and important materials e.g. fertilizers synthetic textiles and drug precursors supporting economies and more broadly our needs. The chemical sector is to become the major driver for oil production by 2030 as it entirely relies on sufficient oil supply. In this respect renewable hydrogen has an important role to play beyond its use in the transport sector. Hydrogen not only has three times the energy density of natural gas and using hydrogen as a fuel could help decarbonize the entire chemical manufacturing but also the use of green hydrogen as an essential reactant at the basis of many chemical products could facilitate the convergence toward virtuous circles. Enabling the production of green hydrogen at cost could not only enable new opportunities but also strengthen economies through a localized production and use of hydrogen. Herein existing technologies for the production of renewable hydrogen including biomass and water electrolysis and methods for the effective storage of hydrogen are reviewed with an emphasis on the need for mitigation strategies to enable such a transition.
Advanced Sizing Methodology for a Multi-Mode eVTOL UAV Powered by a Hydrogen Fuel Cell and Battery
Jan 2022
Publication
A critical drawback of battery-powered eVTOL UAVs is their limited range and endurance and this drawback could be solved by using a combination of hydrogen fuel cells and batteries. The objective of this paper is to develop a sizing methodology for the lift+cruise-type eVTOL UAV powered by a hydrogen fuel cell and battery. This paper presents the constraints analysis method for forward flight/VTOL multi-mode UAV the regression model for electric propulsion system sizing a sizing method for an electric propulsion system and hydrogen fuel cell system and a transition analysis method. The total mass of the UAV is iteratively calculated until convergence and the optimization method is used to ensure that the sizing results satisfy the design requirements. The sizing results are the UAV’s geometry mass and power data. To verify the accuracy of the proposed sizing methodology the sizing and the conceptual design phase results of a 25 kg hydrogen fuel-cell-powered UAV are compared. All parameters had an error within 10% and satisfied the design requirements.
Green Hydrogen: A Guide to Policy Making
Nov 2020
Publication
Hydrogen produced with renewable energy sources – or “green” hydrogen – has emerged as a key element to achieve net-zero emissions from heavy industry and transport. Along with net-zero commitments by growing numbers of governments green hydrogen has started gaining momentum based on low-cost renewable electricity ongoing technological improvements and the benefits of greater power-system flexibility.
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
- National hydrogen strategy. Each country needs to define its level of ambition for hydrogen outline the amount of support required and provide a reference on hydrogen development for private investment and finance.
- Setting policy priorities. Green hydrogen can support a wide range of end-uses. Policy makers should identify and focus on applications that provide the highest value.
- Guarantees of origin. Carbon emissions should be reflected over the whole lifecycle of hydrogen. Origin schemes need to include clear labels for hydrogen and hydrogen products to increase consumer awareness and facilitate claims of incentives.
- Governance system and enabling policies. As green hydrogen becomes mainstream policies should cover its integration into the broader energy system. Civil society and industry must be involved to maximise the benefits.
- Subsequent briefs will explore the entire hydrogen value chain providing sector-by-sector guidance on the design and implementation of green hydrogen policies.
Electrification Opportunities in the Medium- and Heavy-Duty Vehicle Segment in Canada
Jun 2021
Publication
The medium- and heavy-duty (MD/HD) vehicle sector is a large emitter of greenhouse gases. It will require drastic emissions reductions to realize a net-zero carbon future. This study conducts fourteen short feasibility investigations in the Canadian context to evaluate the merits of battery electric or hydrogen fuel cell alternatives to conventional city buses inter-city buses school buses courier vehicles (step vans) refuse trucks long-haul trucks and construction vehicles. These “clean transportation alternatives” were evaluated for practicality economics and emission reductions in comparison to their conventional counterparts. Conclusions were drawn on which use cases would be best suited for accelerating the transformation of the MD/HD sector.
The Fuel Cell Industry Review 2020
Jan 2020
Publication
The Fuel Cell Industry Review 2020 offers data analysis and commentary on key events in the industry in 2020. Now in its seventh year the Review has been compiled by a team led by E4tech - a specialist energy strategy consultancy with deep expertise in the hydrogen and fuel cell sector (see www.e4tech.com).
Despite the title of this publication we’ve said before that the fuel cell ‘industry’ is not a single industry at all. As those inside it know it is divided by different materials stages of maturity applications and regions – all contributors to the fact it has taken time to get going. But it does seem to be getting traction. Part of that is down to decades of hard work and investment in R&D technology improvement and demonstrations. Thankfully part of it is also down to changes in external conditions. Improving air quality is increasingly non-negotiable. Reducing greenhouse gas emissions likewise. And all while maintaining economic development and opportunity.
The growth spurt of the battery industry allied with some of the drivers above has catalysed thinking in where and how fuel cells can fit. Countries and regions which did not support batteries early on are scrambling to catch up and wish not to risk a repeat of their errors with fuel cells. So support is being targeted at industrial development and competitiveness as well as solving societal problems. Which in turn is helping industry to decide on and take investment steps: Weichai’s 20000 unit per annum PEM factory in China; Daimler and Volvo setting up their fuel cell truck JV; CHEM Energy building a factory for remote systems in S Africa."
Despite the title of this publication we’ve said before that the fuel cell ‘industry’ is not a single industry at all. As those inside it know it is divided by different materials stages of maturity applications and regions – all contributors to the fact it has taken time to get going. But it does seem to be getting traction. Part of that is down to decades of hard work and investment in R&D technology improvement and demonstrations. Thankfully part of it is also down to changes in external conditions. Improving air quality is increasingly non-negotiable. Reducing greenhouse gas emissions likewise. And all while maintaining economic development and opportunity.
The growth spurt of the battery industry allied with some of the drivers above has catalysed thinking in where and how fuel cells can fit. Countries and regions which did not support batteries early on are scrambling to catch up and wish not to risk a repeat of their errors with fuel cells. So support is being targeted at industrial development and competitiveness as well as solving societal problems. Which in turn is helping industry to decide on and take investment steps: Weichai’s 20000 unit per annum PEM factory in China; Daimler and Volvo setting up their fuel cell truck JV; CHEM Energy building a factory for remote systems in S Africa."
Macroeconomic Implications of Switching to process-emission-free Iron and Steel Production in Europe
Nov 2018
Publication
Climate change is one of the most serious threats to the human habitat. The required structural change to limit anthropogenic forcing is expected to fundamentally change daily social and economic life. The production of iron and steel is a special case of economic activities since it is not only associated with combustion but particularly with process emissions of greenhouse gases which have to be dealt with likewise. Traditional mitigation options of the sector like efficiency measures substitution with less emission-intensive materials or scrap-based production are bounded and thus insufficient for rapid decarbonization necessary for complying with long-term climate policy targets. Iron and steel products are basic materials at the core of modern socio-economic systems additionally being essential also for other mitigation options like hydro and wind power. Therefore a system-wide assessment of recent technological developments enabling almost complete decarbonization of the sector is substantially relevant. Deploying a recursive-dynamic multi-region multi-sector computable general equilibrium approach we investigate switches from coke-to hydrogen-based iron and steel technologies in a scenario framework where industry decisions (technological choice and timing) and climate policies are mis-aligned. Overall we find that the costs of industry transition are moderate but still ones that may represent a barrier for implementation because the generation deciding on low-carbon technologies and bearing (macro)economic costs might not be the generation benefitting from it. Our macroeconomic assessment further indicates that anticipated bottom-up estimates of required additional domestic renewable electricity tend to be overestimated. Relative price changes in the economy induce electricity substitution effects and trigger increased electricity imports. Sectoral carbon leakage is an imminent risk and calls for aligned course of action of private and public actors.
Green Hydrogen in Europe – A Regional Assessment: Substituting Existing Production with Electrolysis Powered by Renewables
Nov 2020
Publication
The increasing ambition of climate targets creates a major role for hydrogen especially in achieving carbon-neutrality in sectors presently difficult to decarbonise. This work examines to what extent the currently carbon-intensive hydrogen production in Europe could be replaced by water electrolysis using electricity from renewable energy resources (RES) such as solar photovoltaic onshore/offshore wind and hydropower (green hydrogen). The study assesses the technical potential of RES at regional and national levels considering environmental constraints land use limitations and various techno-economic parameters. It estimates localised clean hydrogen production and examines the capacity to replace carbon-intensive hydrogen hubs with ones that use RES-based water electrolysis. Findings reveal that -at national level- the available RES electricity potential exceeds the total electricity demand and the part for hydrogen production from electrolysis in all analysed countries. At regional level from the 109 regions associated with hydrogen production (EU27 and UK) 88 regions (81%) show an excess of potential RES generation after covering the annual electricity demand across all sectors and hydrogen production. Notably 84 regions have over 50% excess RES electricity potential after covering the total electricity demand and that for water electrolysis. The study provides evidence on the option to decarbonize hydrogen production at regional level. It shows that such transformation is possible and compatible with the ongoing transition towards carbon–neutral power systems in the EU. Overall this work aims to serve as a tool for designing hydrogen strategies in harmony with renewable energy policies.
Combined Cooling and Power Management Strategy for a Standalone House Using Hydrogen and Solar Energy
May 2021
Publication
Tropical climate is characterized by hot temperatures throughout the year. In areas subject to this climate air conditioning represents an important share of total energy consumption. In some tropical islands there is no electric grid; in these cases electricity is often provided by diesel generators. In this study in order to decarbonize electricity and cooling production and to improve autonomy in a standalone application a microgrid producing combined cooling and electrical power was proposed. The presented system was composed of photovoltaic panels a battery an electrolyzer a hydrogen tank a fuel cell power converters a heat pump electrical loads and an adsorption cooling system. Electricity production and storage were provided by photovoltaic panels and a hydrogen storage system respectively while cooling production and storage were achieved using a heat pump and an adsorption cooling system respectively. The standalone application presented was a single house located in Tahiti French Polynesia. In this paper the system as a whole is presented. Then the interaction between each element is described and a model of the system is presented. Thirdly the energy and power management required in order to meet electrical and thermal needs are presented. Then the results of the control strategy are presented. The results showed that the adsorption cooling system provided 53% of the cooling demand. The use of the adsorption cooling system reduced the needed photovoltaic panel area the use of the electrolyzer and the use of the fuel cell by more than 60% and reduced energy losses by 7% (compared to a classic heat pump) for air conditioning.
Synergistic Hybrid Marine Renewable Energy Harvest System
Mar 2024
Publication
This paper proposes a novel hybrid marine renewable energy-harvesting system to increase energy production reduce levelized costs of energy and promote renewable marine energy. Firstly various marine renewable energy resources and state-of-art technologies for energy exploitation and storage were reviewed. The site selection criteria for each energy-harvesting approach were identified and a scoring matrix for site selection was proposed to screen suitable locations for the hybrid system. The Triton Knoll wind farm was used to demonstrate the effectiveness of the scoring matrix. An integrated energy system was designed and FE modeling was performed to assess the effects of additional energy devices on the structural stability of the main wind turbine structure. It has been proven that the additional energy structures have a negligible influence on foundation/structure deflection.
A Review of Decarbonization Options for the Glass Industry
May 2021
Publication
The glass industry is part of the energy-intensive industry posing a major challenge to fulfill the CO2 reduction targets of the Paris Climate Agreement. The segments of the glass industry e.g. container or flat glass are quite diverse and attribute to different glass products with different requirements to product quality and various process options. To address the challenge of decarbonizing the glass industry firstly an inventory of current glass products processes and applied technologies in terms of energy efficiency and CO2 emissions is conducted. Secondly decarbonization options are identified and structured according to fuel substitution waste heat recovery and process intensification. Due to the high share of energy-related CO2 emissions electrical melting and hydrogen combustion or a combination of both are the most promising options to decarbonize the glass industry but further research design adjustments and process improvements are necessary. Furthermore electricity and hydrogen prices have to decrease or fossil fuels must become more expensive to be cost-competitive relative to fossil fuels and respective infrastructures have to be constructed or adjusted. Various heat recovery options have great potential for CO2 savings but can be technically challenging or have not yet been considered for techno-economic reasons.
The Role of Electrofuels under Uncertainties for the Belgian Energy Transition
Jul 2021
Publication
Wind and solar energies present a time and space disparity that generally leads to a mismatch between the demand and the supply. To harvest their maximum potentials one of the main challenges is the storage and transport of these energies. This challenge can be tackled by electrofuels such as hydrogen methane and methanol. They offer three main advantages: compatibility with existing distribution networks or technologies of conversion economical storage solution for high capacity and ability to couple sectors (i.e. electricity to transport to heat or to industry). However the level of contribution of electric-energy carriers is unknown. To assess their role in the future we used whole-energy system modelling (EnergyScope Typical Days) to study the case of Belgium in 2050. This model is multi-energy and multi-sector. It optimises the design of the overall system to minimise its costs and emissions. Such a model relies on many parameters (e.g. price of natural gas efficiency of heat pump) to represent as closely as possible the future energy system. However these parameters can be highly uncertain especially for long-term planning. Consequently this work uses the polynomial chaos expansion method to integrate a global sensitivity analysis in order to highlight the influence of the parameters on the total cost of the system. The outcome of this analysis points out that compared to the deterministic cost-optimum situation the system cost accounting for uncertainties becomes higher (+17%) and twice more uncertain at carbon neutrality and that electrofuels are a major contribution to the uncertainty (up to 53% in the variation of the costs) due to their importance in the energy system and their high uncertainties their higher price and uncertainty.
EUA- Bringing Hydrogen Alive
Apr 2021
Publication
The UK is on course to become a global leader in hydrogen technology. Over £3bn is ready to be invested into hydrogen today. The pace of activity is rapid and the opportunities are vast.
Join us at our free to attend event where you will gain unique insights into how the Hydrogen industry is progressing together with exclusive access to future plans.
The dynamic and lively session will demonstrate the viability of hydrogen as a key component to achieve Net Zero.
Confirmed contributors include:
Join us at our free to attend event where you will gain unique insights into how the Hydrogen industry is progressing together with exclusive access to future plans.
The dynamic and lively session will demonstrate the viability of hydrogen as a key component to achieve Net Zero.
Confirmed contributors include:
- National Grid Gas Transmission
- Cadent
- Chris Train Previous CEO Cadent
- DNV
- Worcester Bosch
- ITM Power
- Northern Gas Networks
- Decarbonising Heat in Buildings - New Research Findings from the Gas Distribution Networks
No more items...