Applications & Pathways
Between Hope And Hype: A Hydrogen Vision For The UK
Mar 2021
Publication
There is a growing conversation around the role that hydrogen can play in the future of the UK and how to best harness its potential to secure jobs show climate leadership promote industrial competitiveness and drive innovation. The Government’s ‘Ten Point Plan for a Green Industrial Revolution’ included hydrogen as one of its ten actions targeting 5GW of ‘low carbon’ hydrogen production by 2030. Britain is thus joining the EU US Japan Germany and a host of other countries seeking to be part of the hydrogen economy of the future.<br/><br/>A focus on clean green hydrogen within targeted sectors and hubs can support multiple Government goals – including demonstrating climate leadership reducing regional inequalities through the ‘levelling up’ agenda and ensuring a green and cost-effective recovery from the coronavirus pandemic which prioritises jobs and skills. A strategic hydrogen vision must be honest and recognise where green hydrogen does not present the optimal pathway for decarbonisation – for instance where alternative solutions are already readily available for roll-out are more efficient and cost-effective. A clear example is hydrogen use for heating where it is estimated to require around 30 times more offshore wind farm capacity than currently available to produce enough green hydrogen to replace all gas boilers as well as adding costs for consumers.<br/><br/>This paper considers the offer of hydrogen for key Government priorities – including an inclusive and resilient economic recovery from the pandemic demonstrating climate leadership and delivering for all of society across the UK. It assesses existing evidence and considers the risks and opportunities and how they might inform a strategic vision for the UK. Ahead of the forthcoming Hydrogen Strategy it sets expectations for Government and outlines key recommendations.
Replacing Fossil Fuels with Bioenergy in District Heating – Comparison of Technology Options
May 2021
Publication
We combine previously separate models of Northern European power markets local district heating and cooling (DHC2) systems and biomass supply in a single modelling framework to study local and system level impacts of bioenergy technologies in phasing out fossil fuels from a DHC system of the Finnish capital. We model multiple future scenarios and assess the impacts on energy security flexibility provision economic performance and emissions. In the case of Helsinki heat only boiler is a robust solution from economic and climate perspective but reduces local electricity self-sufficiency. Combined heat and power solution is more valuable investment for the system than for the city indicating a conflict of interest and biased results in system level models. Bringing a biorefinery near the city to utilize excess heat would reduce emissions and increase investment's profitability but biomass availability might be a bigger limiting factor. Our results show that the availability of domestic biomass resources constrains bio-based technologies in Southern Finland and further highlights the importance of considering both local and system level impacts. Novel option to boost biorefinery's production with hydrogen from excess electricity is beneficial with increasing shares of wind power.
The NederDrone: A Hybrid Lift, Hybrid Energy Hydrogen UAV
Mar 2021
Publication
Many Unmanned Air Vehicle (UAV) applications require vertical take-off and landing and very long-range capabilities. Fixed-wing aircraft need long runways to land and electric energy is still a bottleneck for helicopters which are not range efficient. In this paper we introduce the NederDrone a hybrid lift hybrid energy hydrogen-powered UAV that can perform vertical take-off and landings using its 12 propellers while flying efficiently in forward flight thanks to its fixed wings. The energy is supplied from a combination of hydrogen-driven Polymer Electrolyte Membrane fuel-cells for endurance and lithium batteries for high-power situations. The hydrogen is stored in a pressurized cylinder around which the UAV is optimized. This work analyses the selection of the concept the implemented safety elements the electronics and flight control and shows flight data including a 3h38 flight at sea while starting and landing from a small moving ship.
Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy
Jan 2020
Publication
The diffusion of electric vehicles in Italy has started but some complications weight its spread. At present hybrid technology is the most followed by users due particularly to socioeconomic factors such as cost of investment and range anxiety. After a deep discussion of the Italian scenario the aim of the paper is to recognize whether fuel cell technology may be an enabling solution to overcome pollution problems and respect for the environment. The opportunity to use fuel cells to store electric energy is quite fascinating—the charging times will be shortened and heavy passenger transport should be effortless challenged. On the basis of the present history and by investigating the available information this work reports the current e-mobility state in Italy and forecasts the cities in which a fuel cell charging infrastructure should be more profitable with the intention of granting a measured outlook on the plausible development of this actual niche market.
Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications
Dec 2019
Publication
The climate changes that are becoming visible today are a challenge for the global research community. The stationary applications sector is one of the most important energy consumers. Harnessing the potential of renewable energy worldwide is currently being considered to find alternatives for obtaining energy by using technologies that offer maximum efficiency and minimum pollution. In this context new energy generation technologies are needed to both generate low carbon emissions as well as identifying planning and implementing the directions for harnessing the potential of renewable energy sources. Hydrogen fuel cell technology represents one of the alternative solutions for future clean energy systems. This article reviews the specific characteristics of hydrogen energy which recommends it as a clean energy to power stationary applications. The aim of review was to provide an overview of the sustainability elements and the potential of using hydrogen as an alternative energy source for stationary applications and for identifying the possibilities of increasing the share of hydrogen energy in stationary applications respectively. As a study method was applied a SWOT analysis following which a series of strategies that could be adopted in order to increase the degree of use of hydrogen energy as an alternative to the classical energy for stationary applications were recommended. The SWOT analysis conducted in the present study highlights that the implementation of the hydrogen economy depends decisively on the following main factors: legislative framework energy decision makers information and interest from the end beneficiaries potential investors and existence of specialists in this field.
Novel Fuzzy Control Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Considering State of Health
Oct 2021
Publication
Due to the low efficiency and high pollution of conventional internal combustion engine vehicles the fuel cell hybrid electric vehicles are expected to play a key role in the future of clean energy transportation attributed to the long driving range short hydrogen refueling time and environmental advantages. The development of energy management strategies has an important impact on the economy and durability but most strategies ignore the aging of fuel cells and the corresponding impact on hydrogen consumption. In this paper a rule-based fuzzy control strategy is proposed based on the constructed data-driven online estimation model of fuel cell health. Then a genetic algorithm is used to optimize this fuzzy controller where the objective function is designed to consider both the economy and durability by combining the hydrogen consumption cost and the degradation cost characterized by the fuel cell health status. Considering that the rule-based strategy is more sensitive to operating conditions this paper uses an artificial neural network for predictive control. The results are compared with those obtained from the genetic algorithm optimized fuzzy controller and are found to be very similar where the prediction accuracy is assessed using MAPE RMSE and 10-fold cross-validation. Experiments show that the developed strategy has a good generalization capability for variable driving cycles.
Hydrogen Addition Influence for the Efficient and Ecological Parameters of Heavy-Duty Natural Gas Si Engine
May 2017
Publication
The paper presents the experimental research results of heavy-duty vehicle (public transport bus) fuelled with natural gas and hydrogen fuel mixtures. Spark ignition six cylinder engine tested with different hydrogen additions (from 5% up to 20% according to volume) in the natural gas fuel. The tests were performed on heavy-duty vehicle’s dyno test stand in company “SG dujos Auto” research laboratory. The tests were carried out at three load points and one engine speed. Engine had originally a port fuel injection and exhaust gas recirculation system. Experiments showed that engine fuelled with hydrogen addition was able to achieve lower fuel consumption and brake specific fuel consumption. It was also possible to achieve small increase of engine efficiency. The exhaust gas measurements showed that hydrogen addition in natural gas reduced the CO CO2 and HC emissions because of the H/C atom ratio change in fuel mixture and improved combustion process. The NOx emission level was decreasing although bigger amounts of hydrogen were used in natural gas fuel.
Process Integration of Green Hydrogen: Decarbonization of Chemical Industries
Sep 2020
Publication
Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind solar etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically new process designs uniquely exploit intermittent renewable energy for CO2 conversion enabling thermal integration H2 and O2 utilization and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction municipal waste incineration biomass gasification fermentation pulp production biogas upgrading and calcination and are an essential step forward in reducing anthropogenic CO2 emissions.
Drivers and Barriers to the Adoption of Fuel Cell Passenger Vehicles and Buses in Germany
Feb 2021
Publication
As policymakers and automotive stakeholders around the world seek to accelerate the electrification of road transport with hydrogen this study focuses on the experiences of Germany a world leader in fuel cell technology. Specifically it identifies and compares the drivers and barriers influencing the production and market penetration of privately-owned fuel cell electric passenger vehicles (FCEVs) and fuel cell electric buses (FCEBs) in public transit fleets. Using original data collected via a survey and 17 interviews we elicited the opinions of experts to examine opportunities and obstacles in Germany from four perspectives: (i) the supply of vehicles (ii) refuelling infrastructure (iii) demand for vehicles and (iv) cross-cutting institutional issues. Findings indicate that despite multiple drivers there are significant challenges hampering the growth of the hydrogen mobility market. Several are more pronounced in the passenger FCEV market. These include the supply and cost of production the lack of German automakers producing FCEVs the profitability and availability of refuelling stations and low demand for vehicles. In light of these findings we extract implications for international policymakers and future studies. This study provides a timely update on efforts to spur the deployment of hydrogen mobility in Germany and addresses the underrepresentation of studies examining both buses and passenger vehicles in tandem.
Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives
Nov 2020
Publication
Driven by a small number of niche markets and several decades of application research fuel cell systems (FCS) are gradually reaching maturity to the point where many players are questioning the interest and intensity of its deployment in the transport sector in general. This article aims to shed light on this debate from the road transport perspective. It focuses on the description of the fuel cell vehicle (FCV) in order to understand its assets limitations and current paths of progress. These vehicles are basically hybrid systems combining a fuel cell and a lithium-ion battery and different architectures are emerging among manufacturers who adopt very different levels of hybridization. The main opportunity of Fuel Cell Vehicles is clearly their design versatility based on the decoupling of the choice of the number of Fuel Cell modules and hydrogen tanks. This enables manufacturers to meet various specifications using standard products. Upcoming developments will be in line with the crucial advantage of Fuel Cell Vehicles: intensive use in terms of driving range and load capacity. Over the next few decades long-distance heavy-duty vehicles and fleets of taxis or delivery vehicles will develop based on range extender or mild hybrid architectures and enable the hydrogen sector to mature the technology from niche markets to a large-scale market.
Hydrogen-based Integrated Energy and Mobility System for a Real-life Office Environment
Mar 2020
Publication
The current focus on the massive CO2 reduction highlights the need for the rapid development of technology for the production storage transportation and distribution of renewable energy. In addition to electricity we need other forms of energy carriers that are more suitable for energy storage and transportation. Hydrogen is one of the main candidates for this purpose since it can be produced from solar or wind energy and then stored; once needed it can be converted back to electricity using fuel cells. Another important aspect of future energy systems is sector coupling where different sectors e.g. mobility and energy work together to provide better services. In such an integrated system electric vehicles – both battery and hydrogen-based fuel cell – can provide when parked electricity services such as backup power and balancing; when driving they produce no emissions. In this paper we present the concept design and energy management of such an integrated energy and mobility system in a real-life environment at the Shell Technology Centre in Amsterdam. Our results show that storage using hydrogen and salt caverns is much cheaper than using large battery storage systems. We also show that the integration of electric vehicles into the electricity network is technically and economically feasible and that they can provide a flexible energy buffer. Ultimately the results of this study show that using both electricity and hydrogen as energy carriers can create a more flexible reliable and cheaper energy system at an office building.
High Energy Density Storage of Gaseous Marine Fuels: An Innovative Concept and its Application to a Hydrogen Powered Ferry
Apr 2020
Publication
The upcoming stricter limitations on both pollutant and greenhouse gases emissions represent a challenge for the shipping sector. The entire ship design process requires an approach to innovation with a particular focus on both the fuel choice and the power generation system. Among the possible alternatives natural gas and hydrogen based propulsion systems seem to be promising in the medium and long term. Nonetheless natural gas and hydrogen storage still represents a problem in terms of cargo volume reduction. This paper focuses on the storage issue considering compressed gases and presents an innovative solution which has been developed in the European project GASVESSEL® that allows to store gaseous fuels with an energy density higher than conventional intermediate pressure containment systems. After a general overview of natural gas and hydrogen as fuels for shipping a case study of a small Roll-on/Rolloff passenger ferry retrofit is proposed. The study analyses the technical feasibility of the installation of a hybrid power system with batteries and polymer electrolyte membrane fuel cells fuelled by hydrogen. In particular a process simulation model has been implemented to assess the quantity of hydrogen that can be stored on board taking into account boundary conditions such as filling time on shore storage capacity and cylinder wall temperature. The simulation results show that if the fuel cells system is run continuously at steady state to cover the energy need for one day of operation 140 kg of hydrogen are required. Using the innovative pressure cylinder at a storage pressure of 300 bar the volume required by the storage system assessed on the basis of the containment system outer dimensions is resulted to be 15.2 m3 with a weight of 2.5 ton. Even if the innovative type of pressure cylinder allows to reach an energy density higher than conventional intermediate pressure cylinders the volume necessary to store a quantity of energy typical for the shipping sector is many times higher than that required by conventional fuels today used. The analysis points out as expected that the filling process is critical to maximize the stored hydrogen mass and that it is critical to measure the temperature of the cylinder walls in order not to exceed the material limits. Nevertheless for specific application such as the one considered in the paper the introduction of gaseous hydrogen as fuel can be considered for implementing zero local emission propulsion system in the medium term.
Potential for Hydrogen and Power-to-Liquid in a Low-carbon EU Energy System Using Cost Optimization
Oct 2018
Publication
Hydrogen represents a versatile energy carrier with net zero end use emissions. Power-to-Liquid (PtL) includes the combination of hydrogen with CO2 to produce liquid fuels and satisfy mostly transport demand. This study assesses the role of these pathways across scenarios that achieve 80–95% CO2 reduction by 2050 (vs. 1990) using the JRC-EU-TIMES model. The gaps in the literature covered in this study include a broader spatial coverage (EU28+) and hydrogen use in all sectors (beyond transport). The large uncertainty in the possible evolution of the energy system has been tackled with an extensive sensitivity analysis. 15 parameters were varied to produce more than 50 scenarios. Results indicate that parameters with the largest influence are the CO2 target the availability of CO2 underground storage and the biomass potential.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
Strategies to Accelerate the Production and Diffusion of Fuel Cell Electric Vehicles: Experiences from California
Sep 2020
Publication
Fuel cell electric vehicles (FCEVs) can play a key role in accelerating the electrification of road transport. Specifically they offer longer driving ranges and shorter refuelling times relative to Battery Electric Vehicles (BEVs) while reducing needs for space-intensive public charging infrastructure. Although the maturity and market penetration of hydrogen is currently trailing batteries transport planners in several countries are looking to both technologies to reduce carbon emissions and air pollution. Home to the world’s largest on-road fleet of FCEVs California is one such jurisdiction. Experiences in California provide an ideal opportunity to address a gap in literature whereby barriers to FCEV diffusion are well understood but knowledge on actual strategies to overcome these has lacked. This study thus examines governance strategies in California to accelerate the production and diffusion of FCEVs key outcomes lessons learned and unresolved challenges. Evidence is sourced from 19 expert interviews and an examination of diverse documents. Strategies are examined from four perspectives: (i) supply-side (i.e. stimulation of vehicle production) (ii) infrastructure (i.e. construction of refuelling stations and hydrogen production) (iii) demand-side (i.e. stimulation of vehicle adoption) and (iv) institutional (i.e. cross-cutting measures to facilitate collaboration innovation and cost-reduction). Findings reveal a comprehensive mix of stringent regulation market and consumer incentives and public–private collaboration. However significant challenges remain for spurring the development of fuel cell transport in line with initial ambitions. Highlighting these provides important cues for public policy to accelerate the deployment of FCEVs and hydrogen in California and elsewhere.
Experimental Investigation of the Effects of Simultaneous Hydrogen and Nitrogen Addition on the Emissions and Combustion of a Diesel Engine
Jan 2014
Publication
Overcoming diesel engine emissions trade-off effects especially NOx and Bosch smoke number (BSN) requires investigation of novel systems which can potentially serve the automobile industry towards further emissions reduction. Enrichment of the intake charge with H2 þ N2 containing gas mixture obtained from diesel fuel reforming system can lead to new generation low polluting diesel engines. This paper investigates the effect of simultaneous H2 þ N2 intake charge enrichment on the emissions and combustion of a compression ignition engine. Bottled H2 þ N2 was simultaneously admitted into the intake pipe of the engine in 4% steps starting from 4% (2% H2 þ 2% N2) up to 16% (v/v). The results showed that under specific operating conditions H2 þ N2 enrichment can offer simultaneous NOx BSN and CO emissions reduction. Apart from regulated emissions nitrogen exhaust components were measured. Marginal N2O and zero NH3 emissions were obtained. NO/NO2 ratio increases when speed or load increases. Under low speed low load operation the oxidation of NO is enhanced by the addition of H2 þ N2 mixture. Finally admission of H2 þ N2 has a detrimental effect on fuel consumption
Integrating Housing Stock and Energy System Models as a Strategy to Improve Heat Decarbonisation Assessments
Aug 2014
Publication
The UK government heat strategy is partially based on decarbonisation pathways from the UK MARKAL energy system model. We review how heat provision is represented in UK MARKAL identifying a number of shortcomings and areas for improvement. We present a completely revised model with improved estimations of future heat demands and a consistent representation of all heat generation technologies. This model represents all heat delivery infrastructure for the first time and uses dynamic growth constraints to improve the modelling of transitions according to innovation theory. Our revised model incorporates a simplified housing stock model which is used produce highly-refined decarbonisation pathways for residential heat provision. We compare this disaggregated model against an aggregated equivalent which is similar to the existing approach in UK MARKAL. Disaggregating does not greatly change the total residential fuel consumption in two scenarios so the benefits of disaggregation will likely be limited if the focus of a study is elsewhere. Yet for studies of residential heat disaggregation enables us to vary consumer behaviour and government policies on different house types as well as highlighting different technology trends across the stock in comparison with previous aggregated versions of the model.
Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus
Nov 2020
Publication
In this paper the optimal and safe operation of a hybrid power system based on a fuel cell system and renewable energy sources is analyzed. The needed DC power resulting from the power flow balance on the DC bus is ensured by the FC system via the air regulator or the fuel regulator controlled by the power-tracking control reference or both regulators using a switched mode of the above-mentioned reference. The optimal operation of a fuel cell system is ensured by a search for the maximum of multicriteria-based optimization functions focused on fuel economy under perturbation such as variable renewable energy and dynamic load on the DC bus. Two search controllers based on the global extremum seeking scheme are involved in this search via the remaining fueling regulator and the boost DC–DC converter. Thus the fuel economy strategies based on the control of the air regulator and the fuel regulator respectively on the control of both fueling regulators are analyzed in this study. The fuel savings compared to fuel consumed using the static feed-forward control are 6.63% 4.36% and 13.72% respectively under dynamic load but without renewable power. With renewable power the needed fuel cell power on the DC bus is lower so the fuel cell system operates more efficiently. These percentages are increased to 7.28% 4.94% and 14.97%.
Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study
Jul 2016
Publication
A greenhouse containing an integrated system of photovoltaic panels a water electrolyzer fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen feeding a self-sufficient geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems the electrolyzer is a crucial component; the technical challenge is to make it work regularly despite the irregularity of the solar source. The focus of this paper is to study the performance and the real energy efficiency of the electrolyzer analyzing its operational data collected under different operating conditions affected by the changeable solar radiant energy characterizing the site where the experimental plant was located. The analysis of the measured values allowed evaluation of its suitability for the agricultural requirements such as greenhouse heating. On the strength of the obtained result a new layout of the battery bank has been designed and exemplified to improve the performance of the electrolyzer. The evaluations resulting from this case study may have a genuine value therefore assisting in further studies to better understand these devices and their associated technologies.
A Smart Strategy for Sizing of Hybrid Renewable Energy System to Supply Remote Loads in Saudi Arabia
Oct 2021
Publication
The use of hybrid renewable energy systems (HRES) has become the best option for supplying electricity to sites remote from the central power system because of its sustainability environmental friendliness and its low cost of energy compared to many conventional sources such as diesel generators. Due to the intermittent nature of renewable energy resources there is a need however for an energy storage system (ESS) to store the surplus energy and feed the energy deficit. Most renewable sources used battery storage systems (BSS) a green hydrogen storage system (GHSS) and a diesel generator as a backup for these sources. Batteries are very expensive and have a very short lifetime and GHSS have a very expensive initial cost and many security issues. In this paper a system consisting of wind turbines and a photovoltaic (PV) array with a pumped hydro energy storage (PHES) system as the main energy storage to replace the expensive and short lifetime batteries is proposed. The proposed system is built to feed a remote area called Dumah Aljandal in the north of Saudi Arabia. A smart grid is used via a novel demand response strategy (DRS) with a dynamic tariff to reduce the size of the components and it reduces the cost of energy compared to a flat tariff. The use of the PHES with smart DRS reduced the cost of energy by 34.2% and 41.1% compared to the use of BSS and GHSS as an ESS respectively. Moreover the use of 100% green energy sources will avoid the emission of an estimated 2.5 million tons of greenhouse gases every year. The proposed system will use a novel optimization algorithm called the gradually reduced particles of particle swarm optimization (GRP-PSO) algorithm to enhance the exploration and exploitation during the searching iterations. The GRP-PSO reduces the convergence time to 58% compared to the average convergence time of 10 optimization algorithms used for comparison. A sensitivity analysis study is introduced in this paper in which the effect of ±20% change in wind speed and solar irradiance are selected and the system showed a low effect of these resources on the Levelized cost of energy of the HRES. These outstanding results proved the superiority of using a pumped-storage system with a dynamic tariff demand response strategy compared to the other energy storage systems with flat-rate tariffs.
Building an Optimal Hydrogen Transportation System for Mobility, Focus on Minimizing the Cost of Transportation via Truck
Jan 2018
Publication
The approach developed aims to identify the methodology that will be used to deliver the minimum cost for hydrogen infrastructure deployment using a mono-objective linear optimisation. It focuses on minimizing both capital and operation costs of the hydrogen transportation based on transportation via truck which represents the main focus of this paper and a cost-minimal pipeline system in the case of France and Germany. The paper explains the mathematical model describing the link between the hydrogen production via electrolysers and the distribution for mobility needs. The main parameters and the assumed scenario framework are explained. Subsequently the transportation of hydrogen via truck using different states of aggregation is analysed as well as the transformation and storage of hydrogen. This is used finally to build a linear programming aiming to minimize the sum of costs of hydrogen transportation between the different nodes and transformation/storage within the nodes.
No more items...