Applications & Pathways
Modeling and Technical-Economic Analysis of a Hydrogen Transport Network for France
Feb 2025
Publication
This work aims to study the technical and economical feasibility of a new hydrogen transport network by 2035 in France. The goal is to furnish charging stations for fuel cell electrical vehicles with hydrogen produced by electrolysis of water using low-carbon energy. Contrary to previous research works on hydrogen transport for road transport we assume a more realistic assumption of the demand side: we assume that only drivers driving more than 20000 km per year will switch to fuel cell electrical vehicles. This corresponds to a total demand of 100 TWh of electricity for the production of hydrogen by electrolysis. To meet this demand we primarily use surplus electricity production from wind power. This surplus will satisfy approximately 10% of the demand. We assume that the rest of the demand will be produced using surplus from nuclear power plants disseminated in regions. We also assume a decentralized production namely that 100 MW electrolyzers will be placed near electricity production plants. Using an optimization model we define the hydrogen transport network by considering decentralized production. Then we compare it with more centralized production. Our main conclusion is that decentralized production makes it possible to significantly reduce distribution costs particularly due to significantly shorter transport distances.
Electric-thermal Collaborative System and Control for Hydrogen-fuel Cell Passenger Trains in the UK's Winter
Feb 2025
Publication
This paper presents a quantitative study on electric-thermal collaborative system for hydrogen-powered train reutilising the waste heat from fuel cell system for Heating Ventilation and Air Conditioning (HVAC). Firstly a hybrid train simulator is developed to simulate the train’s motion state. Heat generation from fuel cell is estimated using a fuel cell model while a detailed thermodynamic model for railway passenger coach is established to predict the heat demand. Furthermore an electric-thermal collaborative energy management strategy (ETCEMS) is proposed for the system to comprehensively optimise the on-train power distribution considering traction and auxiliary power. Finally comparative analysis is performed among the train with electric heater (EH) heat pump (HP) and heat pump-heat reuse (HP-HR). The results demonstrate that over a round trip the proposed HP-HR with ETC-EMS recovers over 22.88% residual heat and saves 16.17% of hydrogen consumption. For the daily operation it reduces hydrogen and energy consumption by 12.06% and 12.82 % respectively. The findings indicate that collaborative optimisation brings significant improvements on the global energy utilisation. The proposed design with ETC-EMS is potential to further enhance the economic viability of hydrail and contributes to the rail decarbonisation.
Optimizing Hydrogen Production for Sustainable Fuel Cell Electric Vehicles: Grid Impacts in the WECC Region
Jan 2025
Publication
The fuel cell electric vehicle (FCEV) is a promising transportation technology for resolving the air pollution and climate change issues in the United States. However a large-scale penetration of FCEVs would require a sustained supply of hydrogen which does not exist now. Water electrolysis can produce hydrogen reliably and sustainably if the electricity grid is clean but the impacts of FCEVs on the electricity grid are unknown. In this paper we develop a comprehensive framework to model FCEV-driving and -refueling behaviors the water electrolysis process and electricity grid operation. We chose the Western Electricity Coordinating Council (WECC) region for this case study. We modeled the existing WECC electricity grids and accounted for the additional electricity loads from FCEVs using a Production Cost Model (PCM). Additionally the hydrogen need for five million FCEVs leads to a 3% increase in electricity load for WECC. Our results show that an inflexible hydrogen-producing process leads to a 1.55% increase to the average cost of electricity while a flexible scenario leads to only a 0.9% increase. On the other hand oversized electrolyzers could take advantage of cheaper electricity generation opportunities thus lowering total system costs.
Ammonia Marine Engine Design for Enhanced Efficiency and Reduced Greenhouse Gas Emissions
Mar 2024
Publication
Pilot-diesel-ignition ammonia combustion engines have attracted widespread attentions from the maritime sector but there are still bottleneck problems such as high unburned NH3 and N2O emissions as well as low thermal efficiency that need to be solved before further applications. In this study a concept termed as in-cylinder reforming gas recirculation is initiated to simultaneously improve the thermal efficiency and reduce the unburned NH3 NOx N2O and greenhouse gas emissions of pilot-diesel-ignition ammonia combustion engine. For this concept one cylinder of the multi-cylinder engine operates rich of stoichiometric and the excess ammonia in the cylinder is partially decomposed into hydrogen then the exhaust of this dedicated reforming cylinder is recirculated into the other cylinders and therefore the advantages of hydrogen-enriched combustion and exhaust gas recirculation can be combined. The results show that at 3% diesel energetic ratio and 1000 rpm the engine can increase the indicated thermal efficiency by 15.8% and reduce the unburned NH3 by 89.3% N2O by 91.2% compared to the base/traditional ammonia engine without the proposed method. At the same time it is able to reduce carbon footprint by 97.0% and greenhouse gases by 94.0% compared to the traditional pure diesel mode.
Techno-economic Analysis and Dynamic Operation of Green Hydrogen-integrated Microgrid: An Application Study
Aug 2025
Publication
The shift to renewable energy sources requires systems that are not only environmentally sustainable but also cost-effective and reliable. Mitigating the inherent intermittency of renewable energy optimally managing the hybrid energy storage efficiently integrating the microgrid with the power grid and maximizing the lifespan of system components are the significant challenges that need to be addressed. With this aim the paper proposes an economic viability assessment framework with an optimized dynamic operation approach to determine the most stable cost-effective and environmentally sound system for a specific location and demand. The green integrated hybrid microgrid combines photovoltaic (PV) generation battery storage an electrolyzer a hydrogen tank and a fuel cell tailored for deployment in remote areas with limited access to conventional infrastructure. The study’s control strategy focuses on managing energy flows between the renewable energy resources battery and hydrogen storage systems to maximize autonomy considering real-time changes in weather conditions load variations and the state of charge of both the battery and hydrogen storage units. The core system’s components include the interlinking converter which transfers power between AC and DC grids and the decentralized droop control approach which adjusts the converter’s output to ensure balanced and efficient power sharing particularly during overload conditions. A cloud-based Internet of Things (IoT) platform has been employed allowing continuous monitoring and data analysis of the green integrated microgrid to provide insights into the system's health and performance during the dynamic operation. The results presented in this paper confirmed that the proposed framework enabled the strategic use of energy storage particularly hydrogen systems. The optimal operational control of green hydrogen-integrated microgrid can indeed mitigate voltage and frequency fluctuations caused by variable solar input ensuring stable power delivery without reliance on the main grid or fossil fuel backups.
Performance and Emissions Characteristics of Hydrogen-diesel Dual-fuel Combustion for Heavy-duty Engines
Jan 2025
Publication
This study investigates hydrogen-diesel dual-fuelling specifically for a modern 4.4L 4-cylinder heavy-duty diesel engine using extensive one-dimensional combustion modelling in Ricardo WAVE. Parametric analyses from 900 to 2200 rpm speeds and 0 to 17.5% hydrogen fractions introduced via port injection are undertaken to assess the effect of exhaust gas recirculation (EGR) for controlling NOx. Moreover impacts on key indicators like brake power torque thermal efficiency and emissions are also evaluated. Results revealed that the benefits of hydrogen enrichment are highly dependent on operating conditions. At speeds above 1700 rpm and hydrogen mass fraction of 17.5% remarkable gains were attained increasing brake power and torque by up to 17% and 16.5% respectively. Brake-specific diesel consumption (BSDC) improves by 29% at higher speeds due to hy drogen’s larger energy content. NOx emissions display a trade-off decreasing substantially by 96% at lower speeds but increasing by 43% at 2200 rpm with 17.5% hydrogen.
Minimizing the Environmental Impact of Aircraft Engines with the Use of Sustainable Aviation Fuel (SAF) and Hydrogen
Jan 2025
Publication
Adverse climate change has forced a deeper reflection on the scale of pollution related to human activity including in the aviation industry. As a result fundamental questions have arisen about the characteristics of these pollutants the mechanisms of their formation and potential strategies for reducing them. This paper provides a comprehensive overview of key technical solutions to minimize the environmental impact of aircraft engines. The solutions presented range from fuel innovations to advanced design changes and drive concepts. Particular attention was paid to sustainable aviation fuels (SAFs) which are currently an important element of the environmental strategy regulated by the European Union. It also discusses the potential use of hydrogen as a potential alternative fuel to replace traditional aviation fuels in the long term. The analysis in the article made it possible to characterize in detail possible modifications in the functioning of aircraft engines based both on the current state of technical knowledge and on the anticipated directions of its development which has not been a frequent issue in comprehensive research so far. The analysis shows that the type of raw material used to create SAF has a strong impact on its physical and chemical parameters and the degree of greenhouse gas emissions. This necessitates a broader analysis of the legitimacy of using a given type of fuel from the SAF group in the direction of selected air operations and areas with a higher risk of severe atmospheric pollution. These results provide the basis for further research into sustainable solutions in the aviation sector that can contribute to significantly reducing its impact on climate change.
Developing Hydrogen Energy Hubs: The Role of H2 Prices, Wind Power and Infrastructure Investments in Northern Norway
Aug 2024
Publication
Hydrogen is seen as a key energy carrier to reduce CO2 emissions. Two main production options for hydrogen with low CO2 intensity are water electrolysis and natural gas reforming with Carbon Capture and Storage known as green and blue hydrogen. Northern Norway has a surplus of renewable energy and natural gas availability from the Barents Sea which can be used to produce hydrogen. However exports are challenging due to the large distances to markets and lack of energy infrastructure. This study explores the profitability of hydrogen exports from this Arctic region. It considers necessary investments in hydrogen technology and capacity expansions of wind farms and the power grid. Various scenarios are investigated with different assumptions for investment decisions. The critical question is how exogenous factors shape future regional hydrogen production and export. The results show that production for global export may be profitable above 90 €/MWh excluding costs for storage and transport with blue hydrogen being cheaper than green. Depending on the assumptions a combination of liquid hydrogen and ammonia export might be optimal for seaborne transport. Exports to Sweden can be profitable at prices above 60 €/MWh transported by pipelines. Expanding power generation capacity can be crucial and electricity and hydrogen exports are unlikely to co-exist.
Using Hydro-Pneumatic Energy Storage for Improving Offshore Wind-Driven Green Hydrogen Production—A Preliminary Feasibility Study in the Central Mediterranean Sea
Aug 2025
Publication
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant concept without energy storage both under central Mediterranean wind conditions. Numerical simulations were conducted at high temporal resolution capturing 10-min fluctuations of open field measured wind speeds at an equivalent offshore wind turbine (WT) hub height over a full 1-year seasonal cycle. Key findings demonstrate that the HPES system of choice namely the Floating Liquid Piston Accumulator with Sea Water under Compression (FLASC) system significantly reduces Proton Exchange Membrane (PEM) electrolyser (PEMEL) On/Off cycling (with a 66% reduction in On/Off events) while maintaining hydrogen production levels despite the integration of the energy storage system which has a projected round-trip efficiency of 75%. The FLASC-integrated HGE solution also marginally reduces renewable energy curtailment by approximately 0.3% during the 12-month timeframe. Economic analysis reveals that while the FLASC HPES system does introduce an additional capital cost into the energy chain it still yields substantial operational savings exceeding EUR 3 million annually through extended PEM electrolyser lifetime and improved operational efficiency. The Levelized Cost of Hydrogen (LCOH) for the FLASC-integrated HGE system which is estimated to be EUR 18.83/kg proves more economical than a direct wind-to-hydrogen approach with a levelized cost of EUR 21.09/kg of H2 produced. This result was achieved through more efficient utilisation of wind energy interfaced with energy storage as it mitigated the natural intermittency of the wind and increased the lifecycle of the equipment especially that of the PEM electrolysers. Three scenario models were created to project future costs. As electrolyser technologies advance cost reductions would be expected and this was one of the scenarios envisaged for the future. These scenarios reinforce the technical and economic viability of the HGE concept for offshore green hydrogen production particularly in the Mediterranean and in regions having similar moderate wind resources and deeper seas for offshore hybrid sustainable energy systems.
Feasible Route Towards Decarbonising Marine Transport with Flexible, Hydrogen-enriched, Reactivity Controll Compression Ignition Mid-speed Engines
Feb 2025
Publication
Hydrogen (H2) admixing in Reactivity Controlled Compression Ignition (RCCI) technology engines is touted to enhance indicated efficiency (ITE>50%) optimize combustion and reduce greenhouse gas emissions. However many pending issues remain regarding engine durability nitrogen oxide (NOX) emissions and blending limits. These issues are addressed by employing a novel performance-oriented model which simulates under 3 min combustion physics with similar predictivity (>95% accuracy) as computational fluid dynamic results. This socalled multizone model is parameterized to real-world operating cycles from a dual-fuel mid-speed marine engine. By considering port-fuel injected H2 the simulations show that combustion phasing advances at an average rate of 0.3⁰CA/% H2 accompanied by a peak reduction in methane slip of 80% achievable at 25% H2 energy share. Also engine control oriented issues are addressed by demonstrating either intake temperature or diesel fuel share optimization to negate the drawbacks of combustion harshness and NOX emissions while improving ITE 1–1.5pp over baseline operation.
Development of Hydrogen Fuel Cell–Battery Hybrid Multicopter System Thermal Management and Power Management System Based on AMESim
Jan 2025
Publication
Urban Air Mobility (UAM) is gaining attention as a solution to urban population growth and air pollution. Hydrogen fuel cells are applied to overcome the limitations of battery-based UAM utilizing a PEMFC (Polymer Electrolyte Membrane Fuel Cell) with batteries in a hybrid system to enhance responsiveness. Power management improves efficiency through effective power distribution under varying loads while thermal management maintains optimal stack temperatures to prevent degradation. This study developed a hydrogen fuel cell–battery hybrid multicopter system using AMESim consisting of a 138 kW fuel cell stack 60 kW battery DC–DC converters and thrust motors. A rule-based power management system was implemented to define power distribution strategies based on SOC and load demand. The system’s operating range was designed to allocate power according to battery SOC and load variations. For an initial SOC of 45% the power management system distributed power for flight and the results showed that the state machine control system reduced hydrogen consumption by 5.85% and parasitic energy by 1.63% compared to the rule-based system.
Experimental and Numerical Research on Temperature Evolution during the Fast-Filling Process of a Type III Hydrogen Tank
May 2022
Publication
The temperature rises hydrogen tanks during the fast-filling process could threaten the safety of the hydrogen fuel cell vehicle. In this paper a 2D axisymmetric model of a type III hydrogen for the bus was built to investigate the temperature evolution during the fast-filling process. A test rig was carried out to validate the numerical model with air. It was found significant temperature rise occurred during the filling process despite the temperature of the filling air being cooled down due to the throttling effect. After verification the 2D model of the hydrogen tank was employed to study the temperature distribution and evolution of hydrogen during the fast-filling process. Thermal stratification was observed along the axial direction of the tank. Then the effects of filling parameters were examined and a formula was fitted to predict the final temperature based on the simulated results. At last an effort was paid on trying the improve the temperature distribution by increasing the injector length of the hydrogen tank. The results showed the maximal temperature and mass averaged temperature decreased by 2 K and 3.4 K with the length of the injector increased from 50 mm to 250 mm.
Formic Acid as a Hydrogen Energy Carrier
Dec 2016
Publication
The high volumetric capacity (53 g H2/L) and its low toxicity and flammability under ambient conditions make formic acid a promising hydrogen energy carrier. Particularly in the past decade significant advancements have been achieved in catalyst development for selective hydrogen generation from formic acid. This Perspective highlights the advantages of this approach with discussions focused on potential applications in the transportation sector together with analysis of technical requirements limitations and costs.
Hydrogen Admixture Effects on Natural Gas-Oxygen Burner for Glass-melting: Flame Imaging, Temperature Profiles, Exhaust Gas Analysis, and False Air Impact
Jan 2025
Publication
An experimental investigation is carried out to evaluate the effect of introducing hydrogen into natural gas flames on the combustion process (different temperature profiles flame locations and burning velocity) in glass melting furnaces. This work considers the fundamental changes in a non-premixed natural gas-oxygen flame (referred to as oxyfuel flame) with varying levels of hydrogen admixtures ranging from 0 to 100 vol%. To facilitate meaningful data comparisons the burner power output is maintained at a constant thermal power of 20 kW during the entire series of tests. At first the flow field of the oxyfuel burner is measured by using laser doppler anemometry (LDA). Then the burner is tested in a multi-segment combustion chamber with optical accesses. A camera system is employed to visually observe the combustion zone capturing signals in both the visible (VIS) and ultraviolet (UV) wavelengths. The chemiluminescence of the OH* radicals could be determined over the entire flame length. Notably the study reveals variations in flame position especially with higher hydrogen concentrations. Furthermore radial and axial flame temperature profiles are recorded at various po sitions. The analysis extends to major exhaust gas components (CO2 NOx O2) at different fuel compositions and multiple equivalence ratios. In addition a study is being carried out to investigate the influence of false air impacts. The obtained results indicate that the flame temperature increases slightly with pure hydrogen. The NOx values in the overall exhaust gas also show an increase with a higher hydrogen admixture. In particular the influence of false air can lead to a significant rise in NOx levels.
Design and Optimization Strategy of a Net-Zero City Based on a Small Modular Reactor and Renewable Energy
Aug 2025
Publication
This study proposes the SMR Smart Net-Zero City (SSNC) framework—a scalable model for achieving carbon neutrality by integrating Small Modular Reactors (SMRs) renewable energy sources and sector coupling within a microgrid architecture. As deploying renewables alone would require economically and technically impractical energy storage systems SMRs provide a reliable and flexible baseload power source. Sector coupling systems—such as hydrogen production and heat generation—enhance grid stability by absorbing surplus energy and supporting the decarbonization of non-electric sectors. The core contribution of this study lies in its real-time data emulation framework which overcomes a critical limitation in the current energy landscape: the absence of operational data for future technologies such as SMRs and their coupled hydrogen production systems. As these technologies are still in the pre-commercial stage direct physical integration and validation are not yet feasible. To address this the researchers leveraged real-time data from an existing commercial microgrid specifically focusing on the import of grid electricity during energy shortfalls and export during solar surpluses. These patterns were repurposed to simulate the real-time operational behavior of future SMRs (ProxySMR) and sector coupling loads. This physically grounded simulation approach enables highfidelity approximation of unavailable technologies and introduces a novel methodology to characterize their dynamic response within operational contexts. A key element of the SSNC control logic is a day–night strategy: maximum SMR output and minimal hydrogen production at night and minimal SMR output with maximum hydrogen production during the day—balancing supply and demand while maintaining high SMR utilization for economic efficiency. The SSNC testbed was validated through a seven-day continuous operation in Busan demonstrating stable performance and approximately 75% SMR utilization thereby supporting the feasibility of this proxy-based method. Importantly to the best of our knowledge this study represents the first publicly reported attempt to emulate the real-time dynamics of a net-zero city concept based on not-yet-commercial SMRs and sector coupling systems using live operational data. This simulation-based framework offers a forward-looking data-driven pathway to inform the development and control of next-generation carbon-neutral energy systems.
Life Cycle Assessment and Exergoenvironmental Analysis of a Double-Effect Vapor Absorption Chiller Using Green Hydrogen, Natural Gas, and Biomethane
Dec 2024
Publication
This study conducts a life cycle assessment and exergoenvironmental evaluation of a double-effect vapor absorption chiller (DEAC) with a cooling capacity of 352 kW employing three different energy sources: natural gas biomethane and green hydrogen. The main objectives of this paper are as follows: (i) provide an exergoenvironmental model for DEAC technologies (ii) evaluation of a case-study where a DEAC is used to cover the cooling demand of a specific university building in the Northeast of Brazil and (iii) evaluate the scenario where the DEAC is fed by green hydrogen (GH2) and compare it with conventional energy resources (natural gas and biomethane). In order to develop the exergoenvironmental model two methodologies are essential: a thermodynamic analysis and a Life Cycle Assessment (LCA). The thermodynamic analysis was carried out using the Engineering Equation Solver (EES: 10.998) software. The LCA has been developed through the open-source software openLCA version 1.10.3 with the Ecoinvent 3.7.1 life cycle inventory database whereas the chosen life cycle inventory assessment (LCIA) method was the ReCiPe Endpoint LCA method (Humanitarian medium weighting–H A). The main results indicate that green hydrogen provides a 99.84% reduction in environmental impacts compared to natural gas during the operational phase while biomethane reduces these impacts by 54.21% relative to natural gas. In the context of life cycle assessment (LCA) green hydrogen decreases fossil resource depletion by 18% and climate change-related emissions by 33.16% compared to natural gas. This study contributes to enhancing the understanding of the environmental and exergoenvironmental impacts of a double-effect vapor absorption chiller by varying the fuel usage during the operational phase.
Prediction of Efficiency, Performance, and Emissions Based on a Validated Simulation Model in Hydrogen–Gasoline Dual-Fuel Internal Combustion Engines
Nov 2024
Publication
This study explores the performance and emissions characteristics of a dual-fuel internal combustion engine operating on a blend of hydrogen and gasoline. This research began with a baseline simulation of a conventional gasoline engine which was subsequently validated through experimental testing on an AVL testbed. The simulation results closely matched the testbed data confirming the accuracy of the model with deviations within 5%. Building on this validated model a hydrogen–gasoline dual-fuel engine simulation was developed. The predictive simulation revealed an approximately 5% increase in overall engine efficiency at the optimal operating point primarily due to hydrogen’s combustion properties. Additionally the injected gasoline mass and CO2 emissions were reduced by around 30% across the RPM range. However the introduction of hydrogen also resulted in a slight reduction (~10%) in torque attributed to the lower volumetric efficiency caused by hydrogen displacing intake air. While CO emissions were significantly reduced NOx emissions nearly doubled due to the higher combustion temperatures associated with hydrogen. This research demonstrates the potential of hydrogen–gasoline dual-fuel systems in reducing carbon emissions while highlighting the need for further optimization to balance performance with environmental impact.
Hybrid Renewable Multi-generation System Optimization: Attaining Sustainable Development Goals
Jan 2025
Publication
The optimization of hybrid renewable multi-generation systems is crucial for enhancing energy efficiency reducing costs and ensuring sustainable power generation. These factors can be significantly affected by system designs optimization methods climate changes and varying energy demands. The optimization of a stand-alone hybrid renewable energy system (HRES) that integrates various combinations of electricity heating cooling hydrogen and freshwater needs has not been reported in a single comprehensive study. Additionally there has been insufficient attention given to the impact of temporal resolution the recovery of excess energy usage and aligning these efforts with the sustainable development goals (SDGs). This study reviews the recent state-of-theart studies on the stand-alone HRES options for meeting electric heating cooling hydrogen electric vehicles and freshwater demands with various combinations. This study further contributes by examining contemporary literature on sizing optimization reliability analysis sensitivity analysis control techniques detailed modelling and techno-environmental-economic features. It also provides justification for selecting configurations suitable for specific geographical locations along with an analysis of the choice of algorithms and power management systems required to meet the various load demands of a self-sufficient community. By highlighting the im provements and potentials of HRES to achieve various United Nations SDGs this review study aims to bridge existing research gaps.
Feasibility of Retrofitting a Conventional Vessel with Hydrogen Power Systems: A Case Study in Australia
Feb 2025
Publication
As the pursuit of greener energy solutions continues industries worldwide are turning away from fossil fuels and exploring the development of sustainable alternatives to meet their energy requirements. As a signatory to the Paris Agreement Australia has committed to reducing greenhouse gas emission by 43% by 2030 and reaching net-zero emissions by 2050. Australia’s domestic maritime sector should align with these targets. This paper aims to contribute to ongoing efforts to achieve these goals by examining the technical and commercial considerations involved in retrofitting conventional vessels with hydrogen power. This includes but is not limited to an analysis of cost risk and performance and compliance with classification society rules international codes and Australian regulations. This study was conducted using a small domestic commercial vessel as a reference to explore the feasibility of implementation of hydrogen-fuelled vessels (HFVs) across Australia. The findings indicate that Australia’s existing hydrogen infrastructure requires significant development for HFVs to meet the cost risk and performance benchmarks of conventional vessels. The case study identifies key determining factors for feasible hydrogen retrofitting and provides recommendations for the success criteria.
Hydrogen as a Renewable Fuel of Non-Biological Origins in the European Union—The Emerging Market and Regulatory Framework
Jan 2025
Publication
The European Union continues to lead global efforts toward climate neutrality by developing a cohesive regulatory and market framework for alternative fuels including renewable hydrogen. This review article critically examines the recent evolution of the EU’s policy landscape specifically for hydrogen as a renewable fuel of non-biological origin (RFNBO) highlighting its growing importance in hard-to-abate sectors such as industry and transportation. We assess the interplay of market-based mechanisms (e.g. EU ETS II) direct mandates (e.g. FuelEU Maritime RED III) and support auction-based measures (e.g. the European Hydrogen Bank) that collectively shape both the demand and the supply of hydrogen as RFNBO fuel. The article also addresses emerging cost capacity and technical barriers—ranging from constrained electrolyzer deployment to complex certification requirements—that hinder large-scale adoption and market rollout. The article aims to discuss advancing and changing regulatory and market environment for the development of infrastructure and market for hydrogen as RFNBO fuel in the EU in 2019–2024. Synthesizing current research and policy developments we propose targeted recommendations including enhanced cross-border coordination and capacity-based incentives to accelerate investment and infrastructure development. This review informs policymakers industry stakeholders and researchers on critical success factors for integrating hydrogen as a cornerstone of the EU’s climate neutrality efforts.
No more items...