Hydrogen Blending
Impact of Hydrogen on Natural Gas Compositions to Meet Engine Gas Quality Requirements
Oct 2022
Publication
To meet the target of reducing greenhouse gas emissions hydrogen as a carbon-free fuel is expected to play a major role in future energy supplies. A challenge with hydrogen is its low density and volumetric energy value meaning that large tanks are needed to store and transport it. By injecting hydrogen into the natural gas network the transportation issue could be solved if the hydrogen–natural gas mixture satisfies the grid gas quality requirements set by legislation and standards. The end consumers usually have stricter limitations on the gas quality than the grid where Euromot the European association of internal combustion engine manufacturers has specific requirements on the parameters: the methane number and Wobbe index. This paper analyses how much hydrogen can be added into the natural gas grid to fulfil Euromot’s requirements. An average gas composition was calculated based on the most common ones in Europe in 2021 and the results show that 13.4% hydrogen can be mixed with a gas consisting of 95.1% methane 3.2% ethane 0.7% propane 0.3% butane 0.3% carbon dioxide and 0.5% nitrogen. The suggested gas composition indicates for engine manufacturers how much hydrogen can be added into the gas to be suitable for their engines.
Innovative Combustion Analysis of a Micro-gas Turbine Burner Supplied with Hydrogen-natural Gas Mixtures
Sep 2017
Publication
The author discusses in this paper the potential of a micro gas turbine (MGT) combustor when operated under unconventional fuel supplied. The combustor of C30 gas turbine is a reverse flow annular combustor. The CFD analysis of the reacting flow is performed with the 3D ANSYS-FLUENT solver. Specific computational experiments refer to the use of hydrogen – natural gas mixtures in order to define the optimal conditions for pilot and main injections in terms of combustion stability and NOx production. The author's methodology relies on an advanced CFD approach that compares different schemes like eddy dissipation concept together with the flamelet- PDF based approach coupled with an accurate study of the turbulent chemistry interaction. Extended kinetic mechanisms are also included in the combustion model. Some test cases are examined to make a comparison of combustion stability and efficiency and pollutant production with high hydrogen / natural gas ratios.
A Compilation of Operability and Emissions Performance of Residential Water Heaters Operated on Blends of Natural Gas and Hydrogen Including Consideration for Reporting Bases
Feb 2023
Publication
The impact of hydrogen added to natural gas on the performance of commercial domestic water heating devices has been discussed in several recent papers in the literature. Much of the work focuses on performance at specific hydrogen levels (by volume) up to 20–30% as a near term blend target. In the current work new data on several commercial devices have been obtained to help quantify upper limits based on flashback limits. In addition results from 39 individual devices are compiled to help generalize observations regarding performance. The emphasis of this work is on emissions performance and especially NOx emissions. It is important to consider the reporting bases of the emissions numbers to avoid any unitended bias. For water heaters the trends associated with both mass per fuel energy input and concentration-based representation are similar For carbon free fuels bases such as 12% CO2 should be avoided. In general the compiled data shows that NOx NO UHC and CO levels decrease with increasing hydrogen percentage. The % decrease in NOx and NO is greater for low NOx devices (meaning certified to NOx <10 ng/J using premixing with excess air) compared to conventional devices (“pancake burners” partial premixing). Further low NOx devices appear to be able to accept greater amounts of hydrogen above 70% hydrogen in some cases without modification while conventional water heaters appear limited to 40–50% hydrogen. Reporting emissions on a mass basis per unit fuel energy input is preferred to the typical dry concentration basis as the greater amount of water produced by hydrogen results in a perceived increase in NOx when hydrogen is used. While this effort summarizes emissions performance with added hydrogen additional work is needed on transient operation higher levels of hydrogen system durability/reliability and heating efficiency.
Evaluation of Hydrogen Blend Stability in Low-Pressure Gas Distribution
Apr 2023
Publication
Natural gas distribution companies are developing ambitious plans to decarbonize the services that they provide in an affordable manner and are accelerating plans for the strategic integration of renewable natural gas and the blending of green hydrogen produced by electrolysis powered with renewable electricity being developed from large new commitments by states such as New York and Massachusetts. The demonstration and deployment of hydrogen blending have been proposed broadly at 20% of hydrogen by volume. The safe distribution of hydrogen blends in existing networks requires hydrogen blends to exhibit similar behavior as current supplies which are also mixtures of several hydrocarbons and inert gases. There has been limited research on the properties of blended hydrogen in low-pressure natural gas distribution systems. Current natural gas mixtures are known to be sufficiently stable in terms of a lack of chemical reaction between constituents and to remain homogeneous through compression and distribution. Homogeneous mixtures are required both to ensure safe operation of customer-owned equipment and for safety operations such as leak detection. To evaluate the stability of mixtures of hydrogen and natural gas National Grid experimentally tested a simulated distribution natural gas pipeline with blends containing hydrogen at up to 50% by volume. The pipeline was outfitted with ports to extract samples from the top and bottom of the pipe at intervals of 20 feet. Samples were analyzed for composition and the effectiveness of odorant was also evaluated. The new results conclusively demonstrate that hydrogen gas mixtures do not significantly separate or react under typical distribution pipeline conditions and gas velocity profiles. In addition the odorant retained its integrity in the blended gas during the experiments and demonstrated that it remains an effective method of leak detection.
The Direct Effect of Enriching the Gaseous Combustible with 23% Hydrogen in Condensing Boilers’ Operation
Dec 2022
Publication
Following the international trend of using hydrogen as combustible in many industry branches this paper investigates the impact of mixing methane gas with 23% hydrogen (G222) on condensing boilers’ operation. After modeling and testing several boilers with heat exchange surface different designs the authors gathered enough information to introduce a new concept namely High-Performance Condensing Boiler (HPCB). All the boilers that fit into this approach have the same operational parameters at nominal heat load including the CO2 concentrations in flue gases. After testing a flattened pipes condensing boiler a CO2 emission reduction coefficient of 1.1 was determined when converting from methane gas to G222 as combustible. Thus by inserting into the national grid a G222 mixture an important reduction in greenhouse gases can be achieved. For a 28 kW condensing boiler the annual reduction in CO2 emissions averages 1.26 tons value which was experimentally obtained and is consistent with the theoretical evaluation.
Power-to-gas and the Consequences: Impact of Higher Hydrogen Concentrations in Natural Gas on Industrial Combustion Processes
Sep 2017
Publication
Operators of public electricity grids today are faced with the challenge of integrating increasing numbers of renewable and decentralized energy sources such as wind turbines and photovoltaic power plants into their grids. These sources produce electricity in a very inconstant manner due to the volatility of wind and solar power which further complicates power grid control and management. One key component that is required for modern energy infrastructures is the capacity to store large amounts of energy in an economically feasible way.<br/>One solution that is being discussed in this context is “power-to-gas” i.e. the use of surplus electricity to produce hydrogen (or even methane with an additional methanation process) which is then injected into the public natural gas grid. The huge storage capacity of the gas grid would serve as a buffer offering benefits with regards to sustainability and climate protection while also being cost-effective since the required infrastructure is already in place.<br/>One consequence would be however that the distributed natural gas could contain larger and fluctuating amounts of hydrogen. There is some uncertainty how different gas-fired applications and processes react to these changes. While there have already been several investigations for domestic appliances (generally finding that moderate amounts of H2 do not pose any safety risks which is the primary focus of domestic gas utilization) there are still open questions concerning large-scale industrial gas utilization. Here in addition to operational safety factors like efficiency pollutant emissions (NOX) process stability and of course product quality have to be taken into account.<br/>In a German research project Gas- und Wärme-Institut Essen e. V. (GWI) investigated the impact of higher and fluctuating hydrogen contents (up to 50 vol.-% much higher than what is currently envisioned) on a variety of industrial combustion systems using both numerical and experimental methods. The effects on operational aspects such as combustion behavior flame monitoring and pollutant emissions were analyzed.<br/>Some results of these investigations will be presented in this contribution.
Testing Programme for Hydrogen Tolerance Tests of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The THyGA project (‘Testing Hydrogen admixture for Gas Applications’) focusses on technical aspects and the regulatory framework concerning the potential operation of domestic and commercial end-user appliances with hydrogen / natural gas blends.<br/>The core of the project is a broad experimental campaign with the aim to conduct up to 100 hydrogen tolerance tests. In addition the technical status quo and present knowledge about hydrogen impact on domestic and commercial appliances are assessed and potential future developments of rules and standards are discussed. Also mitigation strategies for coping with high levels of hydrogen admixture will be developed. By this broad approach the project aims at investigating which levels of hydrogen blending impact the various appliance technologies and to which extent in order to identify the regime in which a safe efficient and low-polluting operation is possible.<br/>The series of public reports by the THyGA project starts with several publications from work package 2 which sets the basis for the upcoming results and discussion of the experimental campaign as well as mitigation and standardisation topics.<br/>This report D2.5 completes the series of public reports from work package 2. It explains the steps of development of the test programme for gas-fired appliance tests with hydrogen admixture and especially describes the exchange between the THyGA partners and the external stakeholders.<br/>The report also explains the process of acquisition of appliances to test and method of selecting appliances.
Possible Pathways toward Carbon Neutrality in Thailand’s Electricity Sector by 2050 through the Introduction of H2 Blending in Natural Gas and Solar PV with BESS
May 2022
Publication
To avoid the potential adverse impacts of climate change from global warming it is suggested that the target of net zero emissions should be reached by this mid-century. Thailand is aiming to achieve carbon neutrality by 2050. Since electricity generation is one of the largest producers of carbon dioxide emission the associated emissions must be greatly reduced to achieve the targets mentioned above. Thus new generation expansion plans must be well developed. This paper discusses the development of generation expansion plans considering Thailand’s latest policies along with enhancement of the existing multi-period linear programming model allowing new electricity generation technologies having low emissions e.g. solar PV with battery and hydrogen blending in natural gas to be integrated into generation expansion planning. Then four generation expansion plans with different levels of hydrogen blending in natural gas are proposed and discussed. It is found that Thailand can achieve carbon neutrality by 2050 by promoting more use of renewable energy altogether with trade-off between land for solar PV installation and amount of hydrogen blended in natural gas. The lesson learned from this study provides crucial information about possible pathways to achieve carbon neutrality in the electricity sector for policy makers in other countries.
Indicative Analysis of Blending Hydrogen in Gas Networks
May 2020
Publication
Frontier Economics has been engaged by the Commonwealth Department of the Environment and Energy (now Industry Science Energy and Resources) (the Department) to undertake an indicative analysis of the economics of blending hydrogen in Australian natural gas distribution networks. Our analysis is limited to a specific gas distribution network servicing urban areas of Melbourne.
We have investigated the economics of blending hydrogen in a natural gas distribution network by examining a number of energy supply options including options that involve blending hydrogen. While we consider that these cases we have examined are useful for understanding the economics of hydrogen blending at low rates in Victoria and for understanding the factors that are likely to drive the economics of blending at higher rates or in other regions it cannot be assumed that the results we find for the cases we investigate will necessarily apply in other regions or for blending at other rates. This report should be read as an assessment of the specific cases we have investigated and our findings cannot necessarily be extended to other cases (such as other locations or other rates of blending)"
The full report can be found via the website of the Australian government at this link
We have investigated the economics of blending hydrogen in a natural gas distribution network by examining a number of energy supply options including options that involve blending hydrogen. While we consider that these cases we have examined are useful for understanding the economics of hydrogen blending at low rates in Victoria and for understanding the factors that are likely to drive the economics of blending at higher rates or in other regions it cannot be assumed that the results we find for the cases we investigate will necessarily apply in other regions or for blending at other rates. This report should be read as an assessment of the specific cases we have investigated and our findings cannot necessarily be extended to other cases (such as other locations or other rates of blending)"
The full report can be found via the website of the Australian government at this link
Investigation of Hydrogen-Blended Natural Gas Pipelines in Utility Tunnel Leakage and Development of an Accident Ventilation Strategy for the Worst Leakage Conditions
Mar 2024
Publication
The development of hydrogen-blended natural gas (HBNG) increases the risk of gas transportation and presents challenges for pipeline security in utility tunnels. The objective of this study is to investigate the diffusion properties of HBNG in utility tunnels and evaluate the effectiveness of various ventilation mechanisms. The numerical simulation software Fluent 2023 R1 is applied to simulate and analyze the leakage of small holes in a HBNG pipeline in the natural gas compartment. By examining the leaking behavior of HBNG through small holes in different circumstances we aimed to identify the most unfavorable operational situation for leakage. Subsequently we analyzed the ventilation strategy for sub-high-pressure pipes at various pressure levels in this unfavorable condition. This study’s findings demonstrate that blending hydrogen improves the gas diffusion capacity and increases the likelihood of explosion. The primary factors that influence the pattern of leakage are the size of the leaking holes and the pressure of the pipeline. The gas compartment experiences the most unfavorable working conditions for natural gas pipeline leaks when there are higher pressures wider leak openings higher hydrogen blending ratios (HBRs) and leaks in close proximity to an air inlet. When the HBR is 20% the minimum accident ventilation rates for pressures of 0.4 MPa and 0.8 MPa are 15 air changes per hour and 21 air changes per hour respectively. The maximum allowable wind speed for accident ventilation is 5 m/s as regulated by China’s national standard GB 50838-2015. This regulation makes it difficult to minimize the risk of leakage in a 1.6 MPa gas pipeline. It is recommended to install a safety interlock device to quickly shut off the pipeline in the event of a leak in order to facilitate the dispersion of the substance.
Modelling the Impacts of Hydrogen–Methane Blend Fuels on a Stationary Power Generation Engine
Mar 2023
Publication
To reduce greenhouse gas emissions from natural gas use utilities are investigating the potential of adding hydrogen to their distribution grids. This will reduce the carbon dioxide emissions from grid-connected engines used for stationary power generation and it may also impact their power output and efficiency. Promisingly hydrogen and natural gas mixtures have shown encouraging results regarding engine power output pollutant emissions and thermal efficiency in well-controlled on-road vehicle applications. This work investigates the effects of adding hydrogen to the natural gas fuel for a lean-burn spark-ignited four-stroke 8.9 liter eight-cylinder naturally aspirated engine used in a commercial stationary power generation application via an engine model developed in the GT-SUITETM modelling environment. The model was validated for fuel consumption air flow and exhaust temperature at two operating modes. The focus of the work was to assess the sensitivity of the engine’s power output brake thermal efficiency and pollutant emissions to blends of methane with 0–30% (by volume) hydrogen. Without adjusting for the change in fuel energy the engine power output dropped by approximately 23% when methane was mixed with 30% by volume hydrogen. It was found that increasing the fueling rate to maintain a constant equivalence ratio prevented this drop in power and reduced carbon dioxide emissions by almost 4.5%. In addition optimizing the spark timing could partially offset the increases in in-cylinder burned and unburned gas temperatures and in-cylinder pressures that resulted from the faster combustion rates when hydrogen was added to the natural gas. Understanding the effect of fuel change in existing systems can provide insight on utilizing hydrogen and natural gas mixtures as the primary fuel without the need for major changes in the engine.
Investigation of Mixing Behavior of Hydrogen Blended to Natural Gas in Gas Network
Apr 2021
Publication
Hydrogen is of great significance for replacing fossil fuels and reducing carbon dioxide emissions. The application of hydrogen mixing with natural gas in gas network transportation not only improves the utilization rate of hydrogen energy but also reduces the cost of large-scale updating household or commercial appliance. This paper investigates the necessity of a gas mixing device for adding hydrogen to existing natural gas pipelines in the industrial gas network. A three-dimensional helical static mixer model is developed to simulate the mixing behavior of the gas mixture. In addition the model is validated with experimental results. Parametric studies are performed to investigate the effect of mixer on the mixing performance including the coefficient of variation (COV) and pressure loss. The research results show that based on the the optimum number of mixing units is three. The arrangement of the torsion angle of the mixing unit has a greater impact on the COV. When the torsion angle θ = 120◦ the COV has a minimum value of 0.66% and when the torsion angle θ = 60◦ the COV has a maximum value of 8.54%. The distance of the mixing unit has little effect on the pressure loss of the mixed gas but has a greater impact on the COV. Consecutive arrangement of the mixing units (Case A) is the best solution. Increasing the distance of the mixing unit is not effective for the gas mixing effect. Last but not least the gas mixer is optimized to improve the mixing performance.
Accurate Predictions of the Effect of Hydrogen Composition on the Thermodynamics and Transport Properties of Natural Gas
Mar 2024
Publication
This work demonstrates the need for accurate thermodynamic models to reliably quantify changes in the thermophysical properties of natural gas when blended with hydrogen. For this purpose a systematic evaluation was carried out on the predictive accuracy of three well-known models the Peng−Robinson equation of state (EoS) the multiparameter empirical GERG-2008 model and the molecular-based polar softSAFT EoS in describing the thermodynamic behavior of mixtures of hydrogen with commonly found components in natural gas. Deviations between the calculated properties and experimental data for phase equilibria critical loci second-order derivative properties and viscosities are used to determine the accuracy of the models with polar soft-SAFT performing either equally or better than the other two examined models. The evaluation for the effect of H2 content on the properties of methane simulated as natural gas at conditions for transportation reveals higher changes in blend density and speed of sound with increasing H2 content within 5% change per 5 mol % H2 added while viscosity is the least affected property changing by 0.4% for every 5 mol % H2.
Thermodynamic and Technical Issues of Hydrogen and Methane-Hydrogen Mixtures Pipeline Transmission
Feb 2019
Publication
The use of hydrogen as a non-emission energy carrier is important for the innovative development of the power-generation industry. Transmission pipelines are the most efficient and economic method of transporting large quantities of hydrogen in a number of variants. A comprehensive hydraulic analysis of hydrogen transmission at a mass flow rate of 0.3 to 3.0 kg/s (volume flow rates from 12000 Nm3/h to 120000 Nm3/h) was performed. The methodology was based on flow simulation in a pipeline for assumed boundary conditions as well as modeling of fluid thermodynamic parameters for pure hydrogen and its mixtures with methane. The assumed outlet pressure was 24 bar (g). The pipeline diameter and required inlet pressure were calculated for these parameters. The change in temperature was analyzed as a function of the pipeline length for a given real heat transfer model; the assumed temperatures were 5 and 25 ◦C. The impact of hydrogen on natural gas transmission is another important issue. The performed analysis revealed that the maximum participation of hydrogen in natural gas should not exceed 15%–20% or it has a negative impact on natural gas quality. In the case of a mixture of 85% methane and 15% hydrogen the required outlet pressure is 10% lower than for pure methane. The obtained results present various possibilities of pipeline transmission of hydrogen at large distances. Moreover the changes in basic thermodynamic parameters have been presented as a function of pipeline length for the adopted assumptions.
Hydrogen Blending in Gas Pipeline Networks—A Review
May 2022
Publication
Replacing fossil fuels with non-carbon fuels is an important step towards reaching the ultimate goal of carbon neutrality. Instead of moving directly from the current natural gas energy systems to pure hydrogen an incremental blending of hydrogen with natural gas could provide a seamless transition and minimize disruptions in power and heating source distribution to the public. Academic institutions industry and governments globally are supporting research development and deployment of hydrogen blending projects such as HyDeploy GRHYD THyGA HyBlend and others which are all seeking to develop efficient pathways to meet the carbon reduction goal in coming decades. There is an understanding that successful commercialization of hydrogen blending requires both scientific advances and favorable techno-economic analysis. Ongoing studies are focused on understanding how the properties of methane-hydrogen mixtures such as density viscosity phase interactions and energy densities impact large-scale transportation via pipeline networks and enduse applications such as in modified engines oven burners boilers stoves and fuel cells. The advantages of hydrogen as a non-carbon energy carrier need to be balanced with safety concerns of blended gas during transport such as overpressure and leakage in pipelines. While studies on the short-term hydrogen embrittlement effect have shown essentially no degradation in the metal tensile strength of pipelines the long-term hydrogen embrittlement effect on pipelines is still the focus of research in other studies. Furthermore pressure reduction is one of the drawbacks that hydrogen blending brings to the cost dynamics of blended gas transport. Hence techno-economic models are also being developed to understand the energy transportation efficiency and to estimate the true cost of delivery of hydrogen blended natural gas as we move to decarbonize our energy systems. This review captures key large-scale efforts around the world that are designed to increase the confidence for a global transition to methane-hydrogen gas blends as a precursor to the adoption of a hydrogen economy by 2050.
Differentiating Gas Leaks from Normal Appliance Use
Jun 2021
Publication
DNV has carried out an investigation into potential uses for smart gas meter data as part of Phase 1 of the Modernising Energy Data Applications competition as funded by UK Research & Innovation. In particular a series of calculations have been carried out to investigate the possibility of differentiating accidental gas leaks from normal appliance use in domestic properties. This is primarily with the aim of preventing explosions but the detection of leaks also has environmental and financial benefits.
Three gases have been considered in this study:
An examination of detailed historical incident information suggests that the explosions that lead to fatalities or significant damage to houses are typically of the type that would be more likely to be detected and prevented. It is estimated that between 25% and 75% of the more severe explosions could be prevented depending on which potential improvements are implemented.
Based on the conservative estimates of explosion prevention a cost benefit analysis suggests that it is justifiable to spend between around £1 and £10 per meter installed to implement the proposed technology. This is based purely on lives saved and does not take account of other benefits.
Three gases have been considered in this study:
- A representative UK natural gas composition.
- A blend of 80% natural gas and 20% hydrogen.
- Pure hydrogen.
- Small holes of up to 1 mm rarely reach flammable gas/air concentrations for any gas except under the most unfavourable conditions such as small volumes combined with low ventilation rates. These releases would likely be detected within 6 to 12 hours.
- Medium holes between 1 mm and 6 mm give outflow rates equivalent to a moderate to high level of gas use by appliances. The ability to detect these leaks is highly dependent on the hole size the time at which the leak begins and the normal gas use profile in the building. The larger leaks in this category would be detected within 30 to 60 minutes while the smaller leaks could take several hours to be clearly differentiated from appliance use. This is quick enough to prevent some explosions.
- Large holes of over 6 mm give leak rates greater than any gas use by appliances. These releases rapidly reach a flammable gas/air mixture in most cases but would typically be detected within the first 30-minute meter output period. Again some explosions could be prevented in this timescale.
An examination of detailed historical incident information suggests that the explosions that lead to fatalities or significant damage to houses are typically of the type that would be more likely to be detected and prevented. It is estimated that between 25% and 75% of the more severe explosions could be prevented depending on which potential improvements are implemented.
Based on the conservative estimates of explosion prevention a cost benefit analysis suggests that it is justifiable to spend between around £1 and £10 per meter installed to implement the proposed technology. This is based purely on lives saved and does not take account of other benefits.
Impact of Hydrogen/Natural Gas Blends on Partially Premixed Combustion Equipment: NOx Emission and Operational Performance
Feb 2022
Publication
Several North American utilities are planning to blend hydrogen into gas grids as a short‐ term way of addressing the scalable demand for hydrogen and as a long‐term decarbonization strat‐ egy for ‘difficult‐to‐electrify’ end uses. This study documents the impact of 0–30% hydrogen blends by volume on the performance emissions and safety of unadjusted equipment in a simulated use environment focusing on prevalent partially premixed combustion designs. Following a thorough literature review the authors describe three sets of results: operating standard and “ultra‐low NOx” burners from common heating equipment in “simulators” with hydrogen/methane blends up to 30% by volume in situ testing of the same heating equipment and field sampling of a wider range of equipment with 0–10% hydrogen/natural gas blends at a utility‐owned training facility. The equipment was successfully operated with up to 30% hydrogen‐blended fuels with limited visual changes to flames and key trends emerged: (a) a decrease in the input rate from 0 to 30% H2 up to 11% often in excess of the Wobbe Index‐based predictions; (b) NOx and CO emissions are flat or decline (air‐free or energy‐adjusted basis) with increasing hydrogen blending; and (c) a minor de‐ crease (1.2%) or increase (0.9%) in efficiency from 0 to 30% hydrogen blends for standard versus ultra‐low NOx‐type water heaters respectively.
A Statistical Assessment of Blending Hydrogen into Gas Networks
Aug 2021
Publication
The deployment of low-carbon hydrogen in gas grids comes with strategic benefits in terms of energy system integration and decarbonization. However hydrogen thermophysical properties substantially differ from natural gas and pose concerns of technical and regulatory nature. The present study investigates the blending of hydrogen into distribution gas networks focusing on the steady-state fluid dynamic response of the grids and gas quality compliance issues at increasing hydrogen admixture levels. Two blending strategies are analyzed the first of which involves the supply of NG–H2 blends at the city gate while the latter addresses the injection of pure hydrogen in internal grid locations. In contrast with traditional case-specific analyses results are derived from simulations executed over a large number (i.e. one thousand) of synthetic models of gas networks. The responses of the grids are therefore analyzed in a statistical fashion. The results highlight that lower probabilities of violating fluid dynamic and quality restrictions are obtained when hydrogen injection occurs close to or in correspondence with the system city gate. When pure hydrogen is injected in internal grid locations even very low volumes (1% vol of the total) may determine gas quality violations while fluid dynamic issues arise only in rare cases of significant hydrogen injection volumes (30% vol of the total).
Analyzing the Competitiveness of Low-carbon Drive-technologies in Road-freight: A Total Cost of Ownership Analysis in Europe
Nov 2021
Publication
In light of the Paris Agreement road-freight represents a critically difficult-to-abate sector. In order to meet the ambitious European transport sector emissions reduction targets a rapid transition to zero-carbon road-freight is necessary. However limited policy assessments indicate where and how to appropriately intervene in this sector. To support policy-makers in accelerating the zero-carbon road-freight transition this paper examines the relative cost competitiveness between commercial vehicles of varying alternative drive-technologies through a total cost of ownership (TCO) assessment. We identify key parameters that when targeted enable the uptake of these more sustainable niche technologies. The assessment is based on a newly compiled database of cost parameters which were triangulated through expert interviews. The results show that cost competitiveness for low- or zero-emission niche technologies in certain application segments and European countries is exhibited already today. In particular we find battery electric vehicles to show great promise in the light- and medium-duty segments but also in the heavy-duty long-haul segments in countries that have enacted targeted policy measures. Three TCO parameters drive this competitiveness: tolls fuel costs and CAPEX subsidies. Based on our analysis we propose that policy-makers target OPEX before CAPEX parameters as well utilize a mix of policy interventions to ensure greater reach increased efficiency and increased policy flexibility.
Enabling Hydrogen Blending From Industrial Clusters
Nov 2022
Publication
This study has been commissioned by the gas transporters as part of the Gas Goes Green (GGG)2 work programme to develop and report a ‘gas transporter view’ on how to facilitate hydrogen blending from industrial clusters which are likely to form the initial source for hydrogen blending in the gas network. This view has been developed through engagement carried out with industrial clusters and other stakeholders as well as drawing on learnings from a previous hydrogen blending study.3 The key takeaways of this study are that: l Enabling hydrogen blending from industrial clusters can be done in a pragmatic way with limited need for change to existing gas frameworks. l Where frameworks do need to change the changes are incremental rather than involving overhaul of existing frameworks and are highly workable. l While there remain uncertainties as to the nature of blending at each cluster (e.g. the volume and profile of hydrogen injections) in general the changes required to commercial and regulatory frameworks are the same implying that they are low regret. Below we summarise gas transporters’ preferred approach to facilitating hydrogen blending from industrial clusters including both the policy decisions needed and the changes required to commercial and regulatory frameworks. We note that this work has not involved a legal review and that one will be required as part of the process of implementing the framework changes described below.
No more items...