Production & Supply Chain
Effect of Syngas Fuel Compositions on the Occurrence of Instability of Laminar Diffusion Flame
Dec 2020
Publication
The paper presents a numerical investigation of the critical roles played by the chemical compositions of syngas on laminar diffusion flame instabilities. Three different flame phenomena – stable flickering and tip-cutting – are formulated by varying the syngas fuel rate from 0.2 to 1.4 SLPM. Following the satisfactory validation of numerical results with Darabkhani et al. [1] the study explored the consequence of each species (H2 CO CH4 CO2 N2) in the syngas composition. It is found that low H2:CO has a higher level of instability which however does not rise any further when the ratio is less than 1. Interestingly CO encourages the heat generation with less fluctuation while H2 plays another significant role in the increase of flame temperature and its fluctuation. Diluting CH4 into syngas further increases the instability level as well as the fluctuation of heat generation significantly. However an opposite effect is found from the same action with either CO2 or N2. Finally considering the heat generation and flame stability the highest performance is obtained from 25%H2+75%CO (81 W) followed by EQ+20%CO2 and EQ+20%N2 (78 W).
A Novel Exergy-based Assessment on a Multi-production Plant of Power, Heat and Hydrogen: Integration of Solid Oxide Fuel Cell, Solid Oxide Electrolyzer Cell and Rankine Steam Cycle
Feb 2021
Publication
Multi-production plant is an idea highlighting cost- and energy-saving purposes. However just integrating different sub-systems is not desired and the output and performance based on evaluation criteria must be assessed. In this study an integrated energy conversion system composed of solid oxide fuel cell (SOFC) solid oxide electrolyzer cell (SOEC) and Rankine steam cycle is proposed to develop a multi-production system of power heat and hydrogen to alleviate energy dissipation and to preserve the environment by utilizing and extracting the most possible products from the available energy source. With this regard natural gas and water are used to drive the SOEC and the Rankine steam cycle respectively. The required heat and power demand of the electrolyzer are designed to be provided by the fuel cell and the Rankine cycle. The feasibility of the designed integrated system is evaluated through comprehensive exergy-based analysis. The technical performance of the system is evaluated through exergy assessment and it is obtained that the SOFC and the SOEC can achieve to the high exergy efficiency of 84.8% and 63.7% respectively. The designed system provides 1.79 kg/h of hydrogen at 125 kPa. In addition the effective designed variables on the performance of the designed integrated system are monitored to optimize the system’s performance in terms of technical efficiency cost-effectivity and environmental considerations. This assessment shows that 59.4 kW of the available exergy is destructed in the combustion chamber. Besides the techno-economic analysis and exergoenvironmental assessment demonstrate the selected compressors should be re-designed to improve the cost-effectivity and decline the negative environmental impact of the designed integrated energy conversion system. In addition it is calculated that the SOEC has the highest total cost and also the highest negative impact on the environment compared to other designed units in the proposed integrated energy conversion system.
PEM Fuel Cell Performance with Solar Air Preheating
Feb 2020
Publication
Proton Exchange Membrane Fuel Cells (PEMFC) have proven to be a promising energy conversion technology in various power applications and since it was developed it has been a potential alternative over fossil fuel-based engines and power plants all of which produce harmful by-products. The inlet air coolant and reactants have an important effect on the performance degradation of the PEMFC and certain power outputs. In this work a theoretical model of a PEM fuel cell with solar air heating system for the preheating hydrogen of PEM fuel cell to mitigate the performance degradation when the fuel cell operates in cold environment is proposed and evaluated by using energy analysis. Considering these heating and energy losses of heat generation by hydrogen fuel cells the idea of using transpired solar collectors (TSC) for air preheating to increase the inlet air temperature of the low-temperature fuel cell could be a potential development. The aim of the current article is applying solar air preheating for the hydrogen fuel cells system by applying TSC and analyzing system performance. Results aim to attention fellow scholars as well as industrial engineers in the deployment of solar air heating together with hydrogen fuel cell systems that could be useful for coping with fossil fuel-based power supply systems.
Aldehyde Replacement Advances Efficient Hydrogen Production in Electrolyser
Mar 2022
Publication
The high energy consumption and production of undesired oxygen greatly restrict the wide adoption of water electrolysis for hydrogen production. In a paper recently published in Nature Catalysis Wang and coworkers rationally introduce aldehydes for oxidation at anode to replace oxygen evolution reaction which can produce hydrogen and value-added products at low potential realizing efficient bipolar hydrogen production with high-purity. Moreover these aldehydes are biomass-derived and contribute to sustainable hydrogen production
Improving Hydrogen Production Using Co-cultivation of Bacteria with Chlamydomonas Reinhardtii Microalga
Sep 2018
Publication
Hydrogen production by microalgae is a promising technology to achieve sustainable and clean energy. Among various photosynthetic microalgae able to produce hydrogen Chlamydomonas reinhardtii is a model organism widely used to study hydrogen production. Oxygen produced by photosynthesis activity of microalgae has an inhibitory effect on both expression and activity of hydrogenases which are responsible for hydrogen production. Chlamydomonas can reach anoxia and produce hydrogen at low light intensity. Here the effect of bacteria co-cultivation on hydrogen produced by Chlamydomonas at low light intensity was studied. Results indicated that however co-culturing Escherichia coli Pseudomonas stutzeri and Pseudomonas putida reduced the growth of Chlamydomonas it enhanced hydrogen production up to 24% 46% and 32% respectively due to higher respiration rate in the bioreactors at low light intensity. Chlamydomonas could grow properly in presence of an unknown bacterial consortium and hydrogen evolution improved up to 56% in these co-cultures.
Remarkable Visible-light Induced Hydrogen Generation with ZnIn2S4 Microspheres/CuInS2 Quantum Dots Photocatalytic System
Oct 2020
Publication
A new and active material in the form of ZnIn2S4 microspheres decorated by CuInS2 quantum dots have been obtained by hydrothermal method for the first time. The optimum amount of CuInS2 quantum dots (1.13 wt.%) introduced into rection medium during ZnIn2S4 microspheres synthesis increased the photocatalytic H2 generation rate by 2.5 times than that of bare ZnIn2S4 photocatalysis under visible light irradiation. This sample exhibited strong photoactivity in the extended visible range up to 540 nm with 30.6% apparent quantum efficiency (λ = 420 nm).
Treatment of Dark Fermentative H2 Production Effluents by Microbial Fuel Cells: A Tutorial Review on Promising Operational Strategies and Practices
Nov 2020
Publication
Deriving biohydrogen from dark fermentation is a practically suitable pathway for scaling-up and envisaged mass production. However a common issue with these systems is the incomplete conversion of feedstock as a result of which a process effluent with notable organic strength is left behind. The main components of dark fermentation effluents are volatile fatty acids that can be utilized by integrated applications involving bioelectrochemical systems particularly microbial fuel cells (MFCs) to generate electrical energy. In this work MFCs deployed to treat dark fermentative H2 production effluents are assessed to take a look into the current standing of this specific research area and address what MFC design and operating features (reactor configuration mode of operation anode surface and reactor size) seem favorable towards improved working efficiency (e.g. power density Coulombic efficiency COD removal). Furthermore promising technological implementations are outlined and suggestions conclusions for future studies for this field are given.
Ammonia-hydrogen Combustion in a Swirl Burner with Reduction of NOx Emissions
Sep 2019
Publication
Recently ammonia is being considered for fuelling gas turbines as a new sustainable source. It can undergo thermal cracking producing nitrogen hydrogen and unburned ammonia thus enabling the use of these chemicals most efficiently for combustion purposes. Ammonia being carbon-free may allow the transition towards a hydrogen economy. However one of the main constraints of this fuelling technique is that although the combustion of ammonia produces no CO2 there is a large NOx proportion of emissions using this fuel. In this work cracked ammonia obtained from a modified combustion rig designed at Cardiff University was used to simulate a swirl burner under preheating conditions via heat exchangers. The primary objective of this system is to find new ways for the reduction of NOx emissions by injecting various amounts of ammonia/hydrogen at different mixtures downstream of the primary flame zone. The amount of injected ammonia/hydrogen mixture (X) taken from the thermal cracking system was ranged from 0%-4% (vol %) of the total available fuel in the system while the remaining gas (1.00-X) was then employed as primary fuel into the burner. CHEMKIN- PRO calculations were conducted by employing a novel chemical reaction code developed at Cardiff University to achieve the goal of this paper. The predictions were performed under low pressure and rich conditions with an equivalence ratio ϕ =1.2 in a swirl burner previously characterised at output powers of ~10 kW. Ammonia and hydrogen blends were evaluated from 50% NH3 (vol %) with the remaining gas as hydrogen continuing in steps of 10% (vol %) NH3 increments. Results showed that the minimum unburned ammonia and higher flame temperature were achieved at 60%-40% NH3-H2 when compared to other blends but with high NO emissions. These NO levels were reduced by injecting a small amount of NH3/H2 mixture (X=4 %) downstream the primary zone in a generated circulations promoted by the new design of the burner which affecting the residence time hence reducing the NO emission in the exhaust gas.
Future Cost and Performance of Water Electrolysis: An Expert Elicitation Study
Nov 2017
Publication
The need for energy storage to balance intermittent and inflexible electricity supply with demand is driving interest in conversion of renewable electricity via electrolysis into a storable gas. But high capital cost and uncertainty regarding future cost and performance improvements are barriers to investment in water electrolysis. Expert elicitations can support decision-making when data are sparse and their future development uncertain. Therefore this study presents expert views on future capital cost lifetime and efficiency for three electrolysis technologies: alkaline (AEC) proton exchange membrane (PEMEC) and solid oxide electrolysis cell (SOEC). Experts estimate that increased R&D funding can reduce capital costs by 0–24% while production scale-up alone has an impact of 17–30%. System lifetimes may converge at around 60000–90000 h and efficiency improvements will be negligible. In addition to innovations on the cell-level experts highlight improved production methods to automate manufacturing and produce higher quality components. Research into SOECs with lower electrode polarisation resistance or zero-gap AECs could undermine the projected dominance of PEMEC systems. This study thereby reduces barriers to investment in water electrolysis and shows how expert elicitations can help guide near-term investment policy and research efforts to support the development of electrolysis for low-carbon energy systems.
Development of Water Electrolysis in the European Union
Feb 2014
Publication
In view of the recent interest in the transformation of renewable energy into a new energy vector that did not produce by combustion greenhouse gases emissions the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) commissioned this report to a consultancy to get a better understanding of the industrial perspectives of water electrolysis in Europe. and the role that public support has in that evolution.
Methodology for Efficient Parametrisation of Electrochemical PEMFC Model for Virtual Observers: Model Based Optimal Design of Experiments Supported by Parameter Sensitivity Analysis
Nov 2020
Publication
Determination of the optimal design of experiments that enables efficient parametrisation of fuel cell (FC) model with a minimum parametrisation data-set is one of the key prerequisites for minimizing costs and effort of the parametrisation procedure. To efficiently tackle this challenge the paper present an innovative methodology based on the electrochemical FC model parameter sensitivity analysis and application of D-optimal design plan. Relying on this consistent methodological basis the paper answers fundamental questions: a) on a minimum required data-set to optimally parametrise the FC model and b) on the impact of reduced space of operational points on identifiability of individual calibration parameters. Results reveal that application of D-optimal DoE enables enhancement of calibration parameters information resulting in up to order of magnitude lower relative standard errors on smaller data-sets. In addition it was shown that increased information and thus identifiability inherently leads to improved robustness of the FC electrochemical model.
Methodology for the Development of Hybrid Renewable Energy Systems (HRES) with Pumped Storage and Hydrogen Production on Lemnos Island
Apr 2022
Publication
The non-interconnected islands of Greece can benefit from the comprehensive use of RES to avoid water droughts and ensure energy autonomy. The present paper analyzes an HRES with two possible operating scenarios. Both of them include a wind park of 27.5 MW capacity an 1175 m3/day desalination plant and a 490000 m3/day water tank in Lemnos Greece. Regarding the wind power 70% is used in the HRES while the rest is channeled directly to the grid. The main difference comes down to how the wind energy is stored either in the form of hydraulic energy or in the form of hydrogen. The lifespan of the system is 25 years such as the produced stochastic series of rainfall temperature and wind of the area. Through the comparison of the operating scenarios the following results arise: (i) the water needs of the island are fully covered and the irrigation needs have a reliability of 66% in both scenarios. (ii) Considering the energy needs the pumping storage seems to be the most reliable solution. (iii) However depending on the amount of wind energy surplus the use of hydrogen could produce more energy than the hydroelectric plant.
Corrosion of Structural Components of Proton Exchange Membrane Water Electrolyzer Anodes: A Review
Dec 2022
Publication
Proton exchange membrane (PEM) water electrolysis is one of the low temperature processes for producing green hydrogen when coupled with renewable energy sources. Although this technology has already reached a certain level of maturity and is being implemented at industrial scale its high capital expenditures deriving from the utilization of expensive corrosion-resistant materials limit its economic competitiveness compared to the widespread fossil fuel-based hydrogen production such as steam reforming. In particular the structural elements like bipolar plates (BPP) and porous transports layers (PTL) are essentially made of titanium protected by precious metal layers in order to withstand the harsh oxidizing conditions in the anode compartment. This review provides an analysis of literature on structural element degradation on the oxygen side of PEM water electrolyzers from the early investigations to the recent developments involving novel anti-corrosion coatings that protect more cost-effective BPP and PTL materials like stainless steels.
Environmental Sustainability Assessment of Large-scale Hydrogen Production Using Prospective Life Cycle Analysis
Nov 2022
Publication
The need for a rapid transformation to low-carbon economies has rekindled hydrogen as a promising energy carrier. Yet the full range of environmental consequences of large-scale hydrogen production remains unclear. Here prospective life cycle analysis is used to compare different options to produce 500 Mt/yr of hydrogen including scenarios that consider likely changes to future supply chains. The resulting environmental and human health impacts of such production levels are further put into context with the Planetary Boundaries framework known human health burdens the impacts of the world economy and the externality-priced production costs that embody the environmental impact. The results indicate that climate change impacts of projected production levels are 3.3–5.4 times higher than the allocated planetary boundary with only green hydrogen from wind energy staying below the boundary. Human health impacts and other environmental impacts are less severe in comparison but metal depletion and ecotoxicity impacts of green hydrogen deserve further attention. Priced-in environmental damages increase the cost most strongly for blue hydrogen (from ∼2 to ∼5 USD/kg hydrogen) while such true costs drop most strongly for green hydrogen from solar photovoltaic (from ∼7 to ∼3 USD/kg hydrogen) when applying prospective life cycle analysis. This perspective helps to evaluate potentially unintended consequences and contributes to the debate about blue and green hydrogen.
Multilevel Governance, PV Solar Energy, and Entrepreneurship: The Generation of Green Hydrogen as a Fuel of Renewable Origin
Sep 2022
Publication
In Spain the institutional framework for photovoltaic energy production has experienced distinct stages. From 2007 to 2012 the feed-in-tariff system led to high annual growth rates of this renewable energy but after the suppression of the policy of public subsidies the sector stagnated. In recent years green hydrogen an innocuous gas in the atmosphere has become a driving force that stimulates photovoltaic energy production. Since 2020 encouraged by the European energy strategies and corresponding funds Spain has established a regulation to promote green hydrogen as a form of energy resource. Adopting the new institutional economics (NIE) approach this article investigates the process of changing incentives for the energy business sector and its impact on photovoltaic energy production. The results show an increase in the number of both projects approved or on approval and companies involved in green hydrogen that are planning to use photovoltaic energy in Spain thus engendering the creation of a new photovoltaic business environment based on innovation and sustainability.
Exergy and Exergoeconomic Analysis for the Proton Exchange Membrane Water Electrolysis under Various Operating Conditions and Design Parameters
Nov 2022
Publication
Integrating the exergy and economic analyses of water electrolyzers is the pivotal way to comprehend the interplay of system costs and improve system performance. For this a 3D numerical model based on COMSOL Multiphysics Software (version 5.6 COMSOL Stockholm Sweden) is integrated with the exergy and exergoeconomic analysis to evaluate the exergoeconomic performance of the proton exchange membrane water electrolysis (PEMWE) under different operating conditions (operating temperature cathode pressure current density) and design parameter (membrane thickness). Further the gas crossover phenomenon is investigated to estimate the impact of gas leakage on analysis reliability under various conditions and criteria. The results reveal that increasing the operating temperature or decreasing the membrane thickness improves both the efficiency and cost of hydrogen exergy while increasing the gas leakage through the membrane. Likewise raising the current density and the cathode pressure lowers the hydrogen exergy cost and improves the economic performance. The increase in exergy destroyed and hydrogen exergy cost as well as the decline in second law efficiency due to the gas crossover are more noticeable at higher pressures. As the cathode pressure rises from 1 to 30 bar at a current density of 10000 A/m2 the increase in exergy destroyed and hydrogen exergy cost as well as the decline in second law efficiency are increased by 37.6 kJ/mol 4.49 USD/GJ and 7.1% respectively. The cheapest green electricity source which is achieved using onshore wind energy and hydropower reduces hydrogen production costs and enhances economic efficiency. The growth in the hydrogen exergy cost is by about 4.23 USD/GJ for a 0.01 USD/kWh increase in electricity price at the current density of 20000 A/m2. All findings would be expected to be quite useful for researchers engaged in the design development and optimization of PEMWE.
Performance and Stability of a Critical Raw Materials-free Anion Exchange Membrane Electrolysis Cell
Feb 2023
Publication
A water electrolysis cell based on anion exchange membrane (AEM) and critical raw materials-free (CRM-free) electrocatalysts was developed. A NiFe-oxide electrocatalyst was used at the anode whereas a series of metallic electrocatalysts were investigated for the cathode such as Ni NiCu NiMo NiMo/KB. These were compared to a benchmark Pt/C cathode. CRMs-free anode and cathode catalysts were synthetized with a crystallite size of about 10 nm. The effect of recirculation through the cell of a diluted KOH solution was investigated. A concentration of 0.5–1 M KOH appeared necessary to achieve suitable performance at high current density. amongst the CRM-free cathodes the NiMo/KB catalyst showed the best performance in the AEM electrolysis cell achieving a current density of 1 A cm− 2 at about 1.7–1.8 V/cell when it was used in combination with a NiFe-oxide anode and a 50 µm thick Fumatech FAA-3–50® hydrocarbon membrane. Durability tests showed an initial decrease of cell voltage with time during 2000 h operation at 1 A cm− 2 until reaching a steady state performance with an energy efficiency close to 80%. An increase of reversible losses during start-up and shutdown cycles was observed. Appropriate stability was observed during cycled operation between 0.2 and 1 A cm− 2 ; however the voltage efficiency was slightly lower than in steady-state operation due to the occurrence of reversible losses during the cycles. Post operation analysis of electrocatalysts allowed getting a better comprehension of the phenomena occurring during the 2000 h durability test.
Sizing of Hybrid Supercapacitors and Lithium-Ion Batteries for Green Hydrogen Production from PV in the Australian Climate
Feb 2023
Publication
Instead of storing the energy produced by photovoltaic panels in batteries for later use to power electric loads green hydrogen can also be produced and used in transportation heating and as a natural gas alternative. Green hydrogen is produced in a process called electrolysis. Generally the electrolyser can generate hydrogen from a fluctuating power supply such as renewables. However due to the startup time of the electrolyser and electrolyser degradation accelerated by multiple shutdowns an idle mode is required. When in idle mode the electrolyser uses 10% of the rated electrolyser load. An energy management system (EMS) shall be applied where a storage technology such as a lithium-ion capacitor or lithium-ion battery is used. This paper uses a state-machine EMS of PV microgrid for green hydrogen production and energy storage to manage the hydrogen production during the morning from solar power and in the night using the stored energy in the energy storage which is sized for different scenarios using a lithium-ion capacitor and lithium-ion battery. The mission profile and life expectancy of the lithium-ion capacitor and lithium-ion battery are evaluated considering the system’s local irradiance and temperature conditions in the Australian climate. A tradeoff between storage size and cutoffs of hydrogen production as variables of the cost function is evaluated for different scenarios. The lithium-ion capacitor and lithium-ion battery are compared for each tested scenario for an optimum lifetime. It was found that a lithium-ion battery on average is 140% oversized compared to a lithium-ion capacitor but a lithium-ion capacitor has a smaller remaining capacity of 80.2% after ten years of operation due to its higher calendar aging while LiB has 86%. It was also noticed that LiB is more affected by cycling aging while LiC is affected by calendar aging. However the average internal resistance after 10 years for the lithium-ion capacitor is 264% of the initial internal resistance while for lithium-ion battery is 346% making lithium-ion capacitor a better candidate for energy storage if it is used for grid regulation as it requires maintaining a lower internal resistance over the lifetime of the storage.
Study on Enhancing Hydrogen Production Potential from Renewable Energy in Multi-terminal DC System
Aug 2021
Publication
Renewable energy complementary hydrogen production can enhance the full consumption of renewable energy and reduce the abandonment of wind and solar power. The integration of renewable energy and hydrogen production equipment through existing multi-terminal DC systems can reduce new power lines construction and save investment in distribution equipment. For integrated renewable energy/hydrogen energy in an existing multi-terminal DC system this paper investigates its potential of hydrogen production based on renewable energy while ensuring the normal performance of the existing system being not affected. The typical structure and control strategy of the integrated renewable energy/hydrogen energy in multi-terminal DC system are firstly described. Then the state space model of the system is constructed and the key parameters affecting the hydrogen production capacity are studied by using the eigenvalues analysis method. Finally the corresponding system simulation model and test platform are built and the theoretical analysis results are verified and the potential of using multi-terminal DC system to enhance hydrogen production is quantitatively analyzed. The proposed scheme can enhance the hydrogen production potential from renewable energy meanwhile the normal performance of the existing system is not affected.
Ecological and Economic Evaluation of Hydrogen Production by Different Water Electrolysis Technologies
Jul 2020
Publication
The economic and ecological production of green hydrogen by water electrolysis is one of the major challenges within Carbon2Chem and other power-to-X projects. This paper presents an evaluation of the different water electrolysis technologies with respect to their specific energy demand carbon footprint and the forecast production costs in 2030. From a current perspective alkaline water electrolysis is evaluated as the most favorable technology for the cost-effective production of low-carbon hydrogen with fluctuating renewables.
Experimental Study for Thermal Methane Cracking Reaction to Generate Very Pur Hydrogen in Small or Medium Scales by Using Regenrative Reactor
Sep 2022
Publication
Non-catalytic thermal methane cracking (TMC) is an alternative for hydrogen manufacturing and traditional commercial processes in small-scale hydrogen generation. Supplying the high-level temperatures (850–1800°C) inside the reactors and reactor blockages are two fundamental challenges for developing this technology on an industrial scale (Mahdi Yousefi and Donne 2021). A regenerative reactor could be a part of a solution to overcome these obstacles. This study conducted an experimental study in a regenerative reactor environment between 850 and 1170°C to collect the conversion data and investigate the reactor efficiency for TMC processes. The results revealed that the storage medium was a bed for carbon deposition and successfully supplied the reaction’s heat with more than 99.7% hydrogen yield (at more than 1150°C). Results also indicated that the reaction rate at the beginning of the reactor is much higher and the temperature dependence in the early stages of the reaction is considerably higher. However after reaching a particular concentration of Hydrogen at each temperature the influence of temperature on the reaction rate decreases and is almost constant. The type of produced carbon in the storage medium and its auto-catalytic effect on the reactions were also investigated. Results showed that carbon black had been mostly formed but in different sizes from 100 to 2000 nm. Increasing the reactor temperature decreased the size of the generated carbon. Pre-produced carbon in the reactor did not affect the production rate and is almost negligible at more than 850°C.
How to Power the Energy–Water Nexus: Coupling Desalination and Hydrogen Energy Storage in Mini-Grids with Reversible Solid Oxide Cells
Nov 2020
Publication
Sustainable Development Goals establish the main challenges humankind is called to tackle to assure equal comfort of living worldwide. Among these the access to affordable renewable energy and clean water are overriding especially in the context of developing economies. Reversible Solid Oxide Cells (rSOC) are a pivotal technology for their sector-coupling potential. This paper aims at studying the implementation of such a technology in new concept PV-hybrid energy storage mini-grids with close access to seawater. In such assets rSOCs have a double useful effect: charge/discharge of the bulk energy storage combined with seawater desalination. Based on the outcomes of an experimental proof-of-concept on a single cell operated with salty water the operation of the novel mini-grid is simulated throughout a solar year. Simulation results identify the fittest mini-grid configuration in order to achieve energy and environmental optimization hence scoring a renewable penetration of more than 95% marginal CO2 emissions (13 g/kWh) and almost complete coverage of load demand. Sector-coupling co-production rate (desalinated water versus electricity issued from the rSOC) is 0.29 L/kWh.
Feasibility Analysis of Hydrogen Production Potential from Rooftop Solar Power Plant for Industrial Zones in Vietnam
Nov 2022
Publication
Currently global energy transformation and the promotion of renewable energy use are being taken care of to minimize the harm to the environment. However the disadvantage of renewable energy is the random change which leads to the regulation of grid operations which is very difficult when the capacity of renewable energy sources accounts for a large proportion. The hydrogen production technology from wind and solar energy sources is one of the possible methods to minimize adverse impacts on the utility grid and serve the load demand of industrial zones. In this study the photovoltaic (PV) hydrogen production potential for industrial zones in Vietnam is analyzed. The Homer was used to simulate and calculate power output. The results showed that the Hai Duong province has the lowest solar radiation so the solar power output is 3600389 kWh/year and the amount of hydrogen generated is less so it mainly serves the hydrogen load while the fuel cell can only generate very low amounts of electricity of about 4150 kWh/year for direct current (DC) load. The hybrid power systems in the typical industrial plant in Quang Nam province Binh Thuan province Can Tho city can generate about 17386 kg/year to 17422 kg/year to supply the operation of fuel cells based on the value of solar radiation of each province. The better the area with solar potential the lower the net present cost (NPC) cost of energy (COE) and operation cost so the economical and technical efficiency of the PV–Fuel cell hybrid power system will increase.
Feasibility Study of Vacuum Pressure Swing Adsorption for CO2 Capture From an SMR Hydrogen Plant: Comparison Between Synthesis Gas Capture and Tail Gas Capture
Dec 2021
Publication
In this paper a feasibility study was carried out to evaluate cyclic adsorption processes for capturing CO2 from either shifted synthesis gas or H2 PSA tail gas of an industrial-scale SMR-based hydrogen plant. It is expected that hydrogen is to be widely used in place of natural gas in various industrial sectors where electrification would be rather challenging. A SMR-based hydrogen plant is currently dominant in the market as it can produce hydrogen at scale in the most economical way. Its CO2 emission must be curtailed significantly by its integration with CCUS. Two Vacuum Pressure Swing Adsorption (VPSA) systems including a rinse step were designed to capture CO2 from an industrial-scale SMR-based hydrogen plant: one for the shifted synthesis gas and the other for the H2 PSA tail gas. Given the shapes of adsorption isotherms zeolite 13X and activated carbon were selected for tail gas and syngas capture options respectively. A simple Equilibrium Theory model developed for the limiting case of complete regeneration was taken to analyse the VPSA systems in this feasibility study. The process performances were compared to each other with respect to product recovery bed productivity and power consumption. It was found that CO2 could be captured more cost-effectively from the syngas than the tail gas unless the desorption pressure was too low. The energy consumption of the VPSA was comparable to those of the conventional MDEA processes.
Advances in Methanol Production and Utilization, with Particular Emphasis toward Hydrogen Generation via Membrane Reactor Technology
Oct 2018
Publication
Methanol is currently considered one of the most useful chemical products and is a promising building block for obtaining more complex chemical compounds such as acetic acid methyl tertiary butyl ether dimethyl ether methylamine etc. Methanol is the simplest alcohol appearing as a colorless liquid and with a distinctive smell and can be produced by converting CO2 and H2 with the further benefit of significantly reducing CO2 emissions in the atmosphere. Indeed methanol synthesis currently represents the second largest source of hydrogen consumption after ammonia production. Furthermore a wide range of literature is focused on methanol utilization as a convenient energy carrier for hydrogen production via steam and autothermal reforming partial oxidation methanol decomposition or methanol–water electrolysis reactions. Last but not least methanol supply for direct methanol fuel cells is a well-established technology for power production. The aim of this work is to propose an overview on the commonly used feedstocks (natural gas CO2 or char/biomass) and methanol production processes (from BASF—Badische Anilin und Soda Fabrik to ICI—Imperial Chemical Industries process) as well as on membrane reactor technology utilization for generating high grade hydrogen from the catalytic conversion of methanol reviewing the most updated state of the art in this field.
Putting Bioenergy With Carbon Capture and Storage in a Spatial Context: What Should Go Where?
Mar 2022
Publication
This paper explores the implications of siting a bioenergy with carbon capture and storage (BECCS) facility to carbon emission performances for three case-study supply chains using the Carbon Navigation System (CNS) model. The three case-study supply chains are a wheat straw derived BECCS-power a municipal solid waste derived BECCS-waste-to-energy and a sawmill residue derived BECCS-hydrogen. A BECCS facility needs to be carefully sited taking into consideration its local low carbon infrastructure available biomass and geography for successful deployment and achieving a favorable net-negative carbon balance. On average across the three supply chains a 10 km shift in the siting of the BECCS facility results in an 8.6–13.1% increase in spatially explicit supply chain emissions. BECCS facilities producing low purity CO2 at high yields have lower spatial emissions when located within the industrial clusters while those producing high purity CO2 at low yields perform better outside the clusters. A map is also generated identifying which of the three modeled supply chains delivers the lowest spatially explicit supply chain emission options for any given area of the UK at a 1 MtCO2/yr capture scale.
System-friendly Process Design: Optimizing Blue Hydrogen Production for Future Energy Systems
Aug 2022
Publication
While the effects of ongoing cost reductions in renewables batteries and electrolyzers on future energy systems have been extensively investigated the effects of significant advances in CO2 capture and storage (CCS) technologies have received much less attention. This research gap is addressed via a long-term (2050) energy system model loosely based on Germany yielding four main findings. First CCS-enabled pathways offer the greatest benefits in the hydrogen sector where hydrogen prices can be reduced by two-thirds relative to a scenario without CCS. Second advanced blue hydrogen technologies can reduce total system costs by 12% and enable negative CO2 emissions due to higher efficiencies and CO2 capture ratios. Third co-gasification of coal and biomass emerged as an important enabler of these promising results allowing efficient exploitation of limited biomass resources to achieve negative emissions and limit the dependence on imported natural gas. Finally CCS decarbonization pathways can practically and economically incorporate substantial shares of renewable energy to reduce fossil fuel dependence. Such diversification of primary energy inputs increases system resilience to the broad range of socio-techno-economic challenges facing the energy transition. In conclusion balanced blue-green pathways offer many benefits and deserve serious consideration in the global decarbonization effort.
Design Strategies for Large Current Density Hydrogen Evolution Reaction
Apr 2022
Publication
Hydrogen energy is considered one of the cleanest and most promising alternatives to fossil fuel because the only combustion product is water. The development of water splitting electrocatalysts with Earth abundance cost-efficiency and high performance for large current density industrial applications is vital for H2 production. However most of the reported catalysts are usually tested within relatively small current densities (< 100 mA cm−2 ) which is far from satisfactory for industrial applications. In this minireview we summarize the latest progress of effective non-noble electrocatalysts for large current density hydrogen evolution reaction (HER) whose performance is comparable to that of noble metal-based catalysts. Then the design strategy of intrinsic activities and architecture design are discussed including self-supporting electrodes to avoid the detachment of active materials the superaerophobicity and superhydrophilicity to release H2 bubble in time and the mechanical properties to resist destructive stress. Finally some views on the further development of high current density HER electrocatalysts are proposed such as scale up of the synthesis process in situ characterization to reveal the micro mechanism and the implementation of catalysts into practical electrolyzers for the commercial application of as-developed catalysts. This review aimed to guide HER catalyst design and make large-scale hydrogen production one step further.
Techno-economic Viability of Islanded Green Ammonia as a Carbon-free Energy Vector and as a Substitute for Conventional Production
Jul 2020
Publication
Decarbonising ammonia production is an environmental imperative given that it independently accounts for 1.8% of global carbon dioxide emissions and supports the feeding of over 48% of the global population. The recent decline of production costs and its potential as an energy vector warrant investigation of whether green ammonia production is commercially competitive. Considering 534 locations in 70 countries and designing and operating the islanded production process to minimise the levelised cost of ammonia (LCOA) at each we show the range of achievable LCOA the cost of process flexibility the components of LCOA and therein the scope of LCOA reduction achievable at present and in 2030. These results are benchmarked against ammonia spot prices cost per GJ of refined fuels and the LCOE of alternative energy storage methods. Currently a LCOA of $473 t1 is achievable at the best locations the required process flexibility increases the achievable LCOA by 56%; the electrolyser CAPEX and operation are the most significant costs. By 2030 $310 t1 is predicted to be achievable with multiple locations below $350 t1 . At $25.4 GJ11 ) that do not have the benefit of being carbon-free.
A Systematic Review of the Techno-economic Assessment of Various Hydrogen Production Methods of Power Generation
Oct 2022
Publication
Hydrogen is a low or zero-carbon energy source that is considered the most promising and potential energy carrier of the future. In this study the energy sources feedstocks and various methods of hydrogen production from power generation are comparatively investigated in detail. In addition this study presents an economic assessment to evaluate cost-effectiveness based on different economic indicators including sensitivity analysis and uncertainty analysis. Proton exchange membrane fuel cell (PEMFCs) technology has the most potential to be developed compared to several other technologies. PEMFCs have been widely used in various fields and have advantages (i.e. start-up zero-emissions high power density). Among the various sources of uncertainty in the sensitivity analysis the cost estimation method shows inflationary deviations from the proposed cost of capital. This is due to the selection process and untested technology. In addition the cost of electricity and raw materials as the main factors that are unpredictable.
Electrochemical Ammonia: Power to Ammonia Ratio and Balance of Plant Requirements for Two Different Electrolysis Approaches
Nov 2021
Publication
Electrochemical ammonia generation allows direct low pressure synthesis of ammonia as an alternative to the established Haber-Bosch process. The increasing need to drive industry with renewable electricity central to decarbonisation and electrochemical ammonia synthesis offers a possible efficient and low emission route for this increasingly important chemical. It also provides a potential route for more distributed and small-scale ammonia synthesis with a reduced production footprint. Electrochemical ammonia synthesis is still early stage but has seen recent acceleration in fundamental understanding. In this work two different ammonia electrolysis systems are considered. Balance of plant (BOP) requirements are presented and modelled to compare performance and determine trade-offs. The first option (water fed cell) uses direct ammonia synthesis from water and air. The second (hydrogen-fed cell) involves a two-step electrolysis approach firstly producing hydrogen followed by electrochemical ammonia generation. Results indicate that the water fed approach shows the most promise in achieving low energy demand for direct electrochemical ammonia generation. Breaking the reaction into two steps for the hydrogen fed approach introduces a source of inefficiency which is not overcome by reduced BOP energy demands and will only be an attractive pathway for reactors which promise both high efficiency and increased ammonia formation rate compared to water fed cells. The most optimised scenario investigated here with 90% faradaic efficiency (FE) and 1.5 V cell potential (75% nitrogen utilisation) gives a power to ammonia value of 15 kWh/kg NH3 for a water fed cell. For the best hydrogen fed arrangement the requirement is 19 kWh/kg NH3. This is achieved with 0.5 V cell potential and 75% utilisation of both hydrogen and nitrogen (90% FE). Modelling demonstrated that balance of plant requirements for electrochemical ammonia are significant. Electrochemical energy inputs dominate energy requirements at low FE however in cases of high FE the BOP accounts for approximately 50% of the total energy demand mostly from ammonia separation requirements. In the hydrogen fed cell arrangement it was also demonstrated that recycle of unconverted hydrogen is essential for efficient operation even in the case where this increases BOP energy inputs
Flexible Power and Biomass-To-Methanol Plants With Different Gasification Technologies
Jan 2022
Publication
The competitiveness of biofuels may be increased by integrating biomass gasification plants with electrolysis units which generate hydrogen to be combined with carbon-rich syngas. This option allows increasing the yield of the final product by retaining a higher amount of biogenic carbon and improving the resilience of the energy sector by favoring electric grid services and sector coupling. This article illustrates a techno-economic comparative analysis of three flexible power and biomass to methanol plants based on different gasification technologies: direct gasification indirect gasification and sorptionenhanced gasification. The design and operational criteria of each plant are conceived to operate both without green hydrogen addition (baseline mode) and with hydrogen addition (enhanced mode) following an intermittent use of the electrolysis system which is turned on when the electricity price allows an economically viable hydrogen production. The methanol production plants include a gasification section syngas cleaning conditioning and compression section methanol synthesis and purification and heat recovery steam cycle to be flexibly operated. Due to the high oxygen demand in the gasifier the direct gasification-based plant obtains a great advantage to be operated between a minimum load to satisfy the oxygen demand at high electricity prices and a maximum load to maximize methanol production at low electricity prices. This allows avoiding large oxygen storages with significant benefits for Capex and safety issues. The analysis reports specific fixed-capital investments between 1823 and 2048 €/kW of methanol output in the enhanced operation and LCOFs between 29.7 and 31.7 €/GJLHV. Economic advantages may be derived from a decrease in the electrolysis capital investment especially for the direct gasification-based plants which employ the greatest sized electrolyzer. Methanol breakeven selling prices range between 545 and 582 €/t with the 2019 reference Denmark electricity price curve and between 484 and 535 €/t with an assumed modified electricity price curve of a future energy mix with increased penetration of intermittent renewables.
Optimal Renewable Energy Distribution Between Gasifier and Electrolyzer for Syngas Generation in a Power and Biomass-to-Liquid Fuel Process
Jan 2022
Publication
By adding energy as hydrogen to the biomass-to-liquid (BtL) process several published studies have shown that carbon efficiency can be increased substantially. Hydrogen can be produced from renewable electrical energy through the electrolysis of water or steam. Adding high-temperature thermal energy to the gasifier will also increase the overall carbon efficiency. Here an economic criterion is applied to find the optimal distribution of adding electrical energy directly to the gasifier as opposed to the electrolysis unit. Three different technologies for electrolysis are applied: solid oxide steam electrolysis (SOEC) alkaline water electrolysis (AEL) and proton exchange membrane (PEM). It is shown that the addition of part of the renewable energy to the gasifier using electric heaters is always beneficial and that the electrolysis unit operating costs are a significant portion of the costs. With renewable electricity supplied at a cost of 50 USD/MWh and a capital cost of 1500 USD/kW installed SOEC the operating costs of electric heaters and SOEC account for more than 70% of the total costs. The energy efficiency of the electrolyzer is found to be more important than the capital cost. The optimal amount of energy added to the gasifier is about 37–39% of the energy in the biomass feed. A BtL process using renewable hydrogen imports at 2.5 USD/kg H2 or SOEC for hydrogen production at reduced electricity prices gives the best values for the economic objective.
Earth-Abundant Electrocatalysts in Proton Exchange Membrane Electrolyzers
Dec 2018
Publication
In order to adopt water electrolyzers as a main hydrogen production system it is critical to develop inexpensive and earth-abundant catalysts. Currently both half-reactions in water splitting depend heavily on noble metal catalysts. This review discusses the proton exchange membrane (PEM) water electrolysis (WE) and the progress in replacing the noble-metal catalysts with earth-abundant ones. The efforts within this field for the discovery of efficient and stable earth-abundant catalysts (EACs) have increased exponentially the last few years. The development of EACs for the oxygen evolution reaction (OER) in acidic media is particularly important as the only stable and efficient catalysts until now are noble-metal oxides such as IrOx and RuOx. On the hydrogen evolution reaction (HER) side there is significant progress on EACs under acidic conditions but there are very few reports of these EACs employed in full PEM WE cells. These two main issues are reviewed and we conclude with prospects for innovation in EACs for the OER in acidic environments as well as with a critical assessment of the few full PEM WE cells assembled with EACs.
Modeling of Hydrogen Production System for Photovoltaic Power Generation and Capacity Optimization of Energy Storage System
Sep 2022
Publication
Hydrogen production using solar energy is an important way to obtain hydrogen energy. However the inherent intermittent and random characteristics of solar energy reduce the efficiency of hydrogen production. Therefore it is necessary to add an energy storage system to the photovoltaic power hydrogen production system. This paper establishes a model of a photovoltaic power generation hydrogen system and optimizes the capacity configuration. Firstly the mathematical model is modeled and analyzed and the system is modeled using Matlab/Simulink; secondly the principle of optimal configuration of energy storage capacity is analyzed to determine the optimization strategy we propose the storage capacity configuration algorithm based on the low-pass filtering principle and optimal time constant selection; finally a case study is conducted whose photovoltaic installed capacity of 30 MW verifying the effectiveness of the proposed algorithm analyzing the relationship between energy storage capacity and smoothing effect. The results show that as the cut-off frequency decreases the energy storage capacity increases and the smoothing effect is more obvious. The proposed algorithm can effectively reduce the 1 h maximum power variation of PV power generation. In which the maximum power variation of PV generation 1 h before smoothing is 4.31 MW. We set four different sets of time constants the maximum power variation of PV generation 1 h after smoothing is reduced to 0.751 0.389 0.078 and 0.04 MW respectively.
Assessing the Prospective Environmental Performance of Hydrogen from High Temperature Electrolysis Coupled with Concentrated Solar Power
Jul 2022
Publication
Hydrogen is currently being promoted because of its advantages as an energy vector its potential 12 to decarbonise the economy and strategical implications in terms of energy security. Hydrogen 13 from high-temperature electrolysis coupled with concentrated solar power (CSP) is especially 14 interesting since it enhances the last two aspects and could benefit from significant technological 15 progress in the coming years. However there is a lack of studies assessing its future 16 environmental performance. This work fills this gap by carrying out a prospective life cycle 17 assessment based on the expected values of key performance parameters in 2030. The results 18 show that parabolic trough CSP coupled with a solid oxide electrolyser is a promising solution 19 under environmental aspects. It leads to a prospective hydrogen carbon footprint (1.85 kg CO2 20 eq/kg H2) which could be classified as low-carbon according to current standards. The 21 benchmarking study for the year 2030 shows that the assessed system significantly decreases the 22 hydrogen carbon footprint compared to future hydrogen from steam methane reforming (81% 23 reduction) and grid electrolysis (51%) even under a considerable penetration of renewable energy 24 sources.
Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review
Feb 2023
Publication
Hydrogen is one of the prospective clean energies that could potentially address two pressing areas of global concern namely energy crises and environmental issues. Nowadays fossil‐ based technologies are widely used to produce hydrogen and release higher greenhouse gas emis‐ sions during the process. Decarbonizing the planet has been one of the major goals in the recent decades. To achieve this goal it is necessary to find clean sustainable and reliable hydrogen pro‐ duction technologies with low costs and zero emissions. Therefore this study aims to analyse the hydrogen generation from solar and wind energy sources and observe broad prospects with hybrid renewable energy sources in producing green hydrogen. The study mainly focuses on the critical assessment of solar wind and hybrid‐powered electrolysis technologies in producing hydrogen. Furthermore the key challenges and opportunities associated with commercial‐scale deployment are addressed. Finally the potential applications and their scopes are discussed to analyse the important barriers to the overall commercial development of solar‐wind‐based hydrogen production systems. The study found that the production of hydrogen appears to be the best candidate to be employed for multiple purposes blending the roles of fuel energy carrier and energy storage modality. Further studies are recommended to find technical and sustainable solutions to overcome the current issues that are identified in this study.
Water Electrolysis: From Textbook Knowledge to the Latest Scientific Strategies and Industrial Developments
May 2022
Publication
Replacing fossil fuels with energy sources and carriers that are sustainable environmentally benign and affordable is amongst the most pressing challenges for future socio-economic development. To that goal hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting if driven by green electricity would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first principles calculations and machine learning. In addition a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the ‘junctions’ between the field’s physical chemists materials scientists and engineers as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Hydrogen Production from the Air
Sep 2022
Publication
Green hydrogen produced by water splitting using renewable energy is the most promising energy carrier of the low-carbon economy. However the geographic mismatch between renewables distribution and freshwater availability poses a significant challenge to its production. Here we demonstrate a method of direct hydrogen production from the air namely in situ capture of freshwater from the atmosphere using hygroscopic electrolyte and electrolysis powered by solar or wind with a current density up to 574 mA cm−2 . A prototype of such has been established and operated for 12 consecutive days with a stable performance at a Faradaic efficiency around 95%. This so-called direct air electrolysis (DAE) module can work under a bone-dry environment with a relative humidity of 4% overcoming water supply issues and producing green hydrogen sustainably with minimal impact to the environment. The DAE modules can be easily scaled to provide hydrogen to remote (semi-) arid and scattered areas.
Novel Ways for Hydrogen Production Based on Methane Steam and Dry Reforming Integrated with Carbon Capture
Sep 2022
Publication
The combination of methane steam reforming technology and CCS (Carbon Capture and Storage) technology has great potential to reduce carbon emissions in the process of hydrogen production. Different from the traditional idea of capturing CO2 (Carbon Dioxide) in the exhaust gas with high work consumption this study simultaneously focuses on CO2 separation from fuel gas and recycling. A new hydrogen production system is developed by methane steam reforming coupled with carbon capture. Separated and captured high-purity carbon dioxide could be recycled for methane dry reforming; on this basis a new methane-dry-reforming-driven hydrogen production system with a carbon dioxide reinjection unit is innovatively proposed. In this study the energy flow and irreversible loss in the two newly developed systems are analyzed in detail through energy and exergy balance analysis. The advantages are explored from the perspective of hydrogen production rate natural gas consumption and work consumption. In addition in consideration of the integrated performance an optimal design analysis was conducted. In terms of hydrogen production the new system based on dry reforming is better with an advantage of 2.41%; however it is worth noting that the comprehensive thermal performance of the new steam reforming system is better reaching 10.95%. This study provides new ideas for hydrogen production from a low carbon emission perspective and also offers a new direction for future distributed energy system integration.
Utilization of Excess Water Accumulation for Green Hydrogen Production in a Run-ofTiver Hydropower Plant
Jun 2022
Publication
This paper discusses the potential for green-hydrogen production in a run-of-river 9 hydropower plant. This particular hydropower plant has no significant water accumulation but 10 there is the potential for limited hydrogen production due to a mismatch between the daily 11 predefined electricity production (known as the timetable) and the actual water inflows. The 12 timetable for the hydropower plant is prepared by the operator of the electro-energetic system 13 based on a model of the available production capacities forecasted consumption water 14 accumulation state of the river flows weather forecasts and the system operator’s strategy. The 15 uncertainty in the model’s input parameters is reflected in the output timetable for the 16 hydropower plant and for this reason a small reserve of water for potential exploitation is 17 envisaged. By using real data for the timetable and the water inflow we estimate the excess 18 hydropower that can be used for hydrogen cogeneration. Since the primary task of the 19 hydropower plant is to produce electricity according to the timetable the production of 20 hydrogen is only possible to a limited extent. Therefore we present a control algorithm that 21 regulates the amount of hydrogen production while considering the predefined timetable and 22 the real water accumulation. The second part of the paper deals with the economic viability of 23 hydrogen cogeneration in the case-study run-of-river hydropower plant and discusses the 24 possibility of using it for local public transport.
Carbon-negative Hydrogen from Biomass Using Gas Switching Integrated Gasification: Techno-economic Assessment
Sep 2022
Publication
Ambitious decarbonization pathways to limit the global temperature rise to well below 2 ◦C will require largescale CO2 removal from the atmosphere. One promising avenue for achieving this goal is hydrogen production from biomass with CO2 capture. The present study investigates the techno-economic prospects of a novel biomass-to-hydrogen process configuration based on the gas switching integrated gasification (GSIG) concept. GSIG applies the gas switching combustion principle to indirectly combust off-gas fuel from the pressure swing adsorption unit in tubular reactors integrated into the gasifier to improve efficiency and CO2 capture. In this study these efficiency gains facilitated a 5% reduction in the levelized cost of hydrogen (LCOH) relative to conventional O2-blown fluidized bed gasification with pre-combustion CO2 capture even though the larger and more complex gasifier cancelled out the capital cost savings from avoiding the air separation and CO2 capture units. The economic assessment also demonstrated that advanced gas treatment using a tar cracker instead of a direct water wash can further reduce the LCOH by 12% and that the CO2 prices in excess of 100 €/ton consistent with ambitious decarbonization pathways will make this negative-emission technology economically highly attractive. Based on these results further research into the GSIG concept to facilitate more efficient utilization of limited biomass resources can be recommended.
Production of Hydrogen from Offshore Wind in China and Cost-competitive Supply to Japan
Nov 2021
Publication
The Japanese government has announced a commitment to net-zero greenhouse gas emissions by 2050. It envisages an important role for hydrogen in the nation’s future energy economy. This paper explores the possibility that a significant source for this hydrogen could be produced by electrolysis fueled by power generated from offshore wind in China. Hydrogen could be delivered to Japan either as liquid or bound to a chemical carrier such as toluene or as a component of ammonia. The paper presents an analysis of factors determining the ultimate cost for this hydrogen including expenses for production storage conversion transport and treatment at the destination. It concludes that the Chinese source could be delivered at a volume and cost consistent with Japan’s idealized future projections.
Parametric Study and Electrocatalyst of Polymer Electrolyte Membrane (PEM) Electrolysis Performance
Jan 2023
Publication
An investigation was conducted to determine the effects of operating parameters for various electrode types on hydrogen gas production through electrolysis as well as to evaluate the efficiency of the polymer electrolyte membrane (PEM) electrolyzer. Deionized (DI) water was fed to a single-cell PEM electrolyzer with an active area of 36 cm2 . Parameters such as power supply (50–500 mA/cm2 ) feed water flow rate (0.5–5 mL/min) water temperature (25−80 ◦C) and type of anode electrocatalyst (0.5 mg/cm2 PtC [60%] 1.5 mg/cm2 IrRuOx with 1.5 mg/cm2 PtB 3.0 mg/cm2 IrRuOx and 3.0 mg/cm2 PtB) were varied. The effects of these parameter changes were then analyzed in terms of the polarization curve hydrogen flowrate power consumption voltaic efficiency and energy efficiency. The best electrolysis performance was observed at a DI water feed flowrate of 2 mL/min and a cell temperature of 70 ◦C using a membrane electrode assembly that has a 3.0 mg/cm2 IrRuOx catalyst at the anode side. This improved performance of the PEM electrolyzer is due to the reduction in activation as well as ohmic losses. Furthermore the energy consumption was optimal when the current density was about 200 mA/cm2 with voltaic and energy efficiencies of 85% and 67.5% respectively. This result indicates low electrical energy consumption which can lower the operating cost and increase the performance of PEM electrolyzers. Therefore the optimal operating parameters are crucial to ensure the ideal performance and durability of the PEM electrolyzer as well as lower its operating costs.
Energy Assessment of an Integrated Hydrogen Production System
Dec 2022
Publication
Hydrogen is believed to be the future energy carrier that will reduce environmental pollution and solve the current energy crisis especially when produced from a renewable energy source. Solar energy is a renewable source that has been commonly utilized in the production process of hydrogen for years because it is inexhaustible clean and free. Generally hydrogen is produced by means of a water splitting process mainly electrolysis which requires energy input provided by harvesting solar energy. The proposed model integrates the solar harvesting system into a conventional Rankine cycle producing electrical and thermal power used in domestic applications and hydrogen by high temperature electrolysis (HTE) using a solid oxide steam electrolyzer (SOSE). The model is divided into three subsystems: the solar collector(s) the steam cycle and an electrolysis subsystem where the performance of each subsystem and their effect on the overall efficiency is evaluated thermodynamically using first and second laws. A parametric study investigating the hydrogen production rate upon varying system operating conditions (e.g. solar flux and area of solar collector) is conducted on both parabolic troughs and heliostat fields as potential solar energy harvesters. Results have shown that heliostat-based systems were able to attain optimum performance with an overall thermal efficiency of 27% and a hydrogen production rate of 0.411 kg/s whereas parabolic trough-based systems attained an overall thermal efficiency of 25.35% and produced 0.332 kg/s of hydrogen.
Machine Learning-based Energy Optimization for On-site SMR Hydrogen Production
Jun 2021
Publication
The production and application of hydrogen an environmentally friendly energy source have been attracting increasing interest of late. Although steam methane reforming (SMR) method is used to produce hydrogen it is difficult to build a high-fidelity model because the existing equation-oriented theoretical model cannot be used to clearly understand the heat-transfer phenomenon of a complicated reforming reactor. Herein we developed an artificial neural network (ANN)-based data-driven model using 485710 actual operation datasets for optimizing the SMR process. Data preprocessing including outlier removal and noise filtering was performed to improve the data quality. A model with high accuracy (average R2 = 0.9987) was developed which can predict six variables through hyperparameter tuning of a neural network model as follows: syngas flow rate; CO CO2 CH4 and H2 compositions; and steam temperature. During optimization the search spaces for nine operating variables namely the natural gas flow rate for the feed and fuel hydrogen flow rate for desulfurization water flow rate and temperature air flow rate SMR inlet temperature and pressure and low-temperature shift (LTS) inlet temperature were defined and applied to the developed model for predicting the thermal efficiencies for 387420489 cases. Subsequently five constraints were established to consider the feasibility of the process and the decision variables with the highest process thermal efficiency were determined. The process operating conditions showed a thermal efficiency of 85.6%.
Exploring the Possibility of Using Molten Carbonate Fuel Cell for the Flexible Coproduction of Hydrogen and Power
Sep 2021
Publication
Fuel cells are electrochemical devices that are conventionally used to convert the chemical energy of fuels into electricity while producing heat as a byproduct. High temperature fuel cells such as molten carbonate fuel cells and solid oxide fuel cells produce significant amounts of heat that can be used for internal reforming of fuels such as natural gas to produce gas mixtures which are rich in hydrogen while also producing electricity. This opens up the possibility of using high temperature fuel cells in systems designed for flexible coproduction of hydrogen and power at very high system efficiency. In a previous study the flowsheet software Cycle-Tempo has been used to determine the technical feasibility of a solid oxide fuel cell system for flexible coproduction of hydrogen and power by running the system at different fuel utilization factors (between 60 and 95%). Lower utilization factors correspond to higher hydrogen production while at a higher fuel utilization standard fuel cell operation is achieved. This study uses the same basis to investigate how a system with molten carbonate fuel cells performs in identical conditions also using Cycle-Tempo. A comparison is made with the results from the solid oxide fuel cell study.
Hydrogen Production from Surplus Electricity Generated by an Autonomous Renewable System: Scenario 2040 on Grand Canary Island, Spain
Sep 2022
Publication
The electrification of final energy uses is a key strategy to reach the desired scenario with zero greenhouse gas emissions. Many of them can be electrified with more or less difficulty but there is a part that is difficult to electrify at a competitive cost: heavy road transport maritime and air transport and some industrial processes are some examples. For this reason the possibility of using other energy vectors rather than electricity should be explored. Hydrogen can be considered a real alternative especially considering that this transition should not be carried out immediately because initially the electrification would be carried out in those energy uses that are considered most feasible for this conversion. The Canary Islands’ government is making considerable efforts to promote a carbon-free energy mix starting with renewable energy for electricity generation. Still in the early–mid 2030s it will be necessary to substitute heavy transport fossil fuel. For this purpose HOMER software was used to analyze the feasibility of hydrogen production using surplus electricity produced by the future electricity system. The results of previous research on the optimal generation MIX for Grand Canary Island based exclusively on renewable sources were used. This previous research considers three possible scenarios where electricity surplus is in the range of 2.3–4.9 TWh/year. Several optimized scenarios using demand-side management techniques were also studied. Therefore based on the electricity surpluses of these scenarios the optimization of hydrogen production and storage systems was carried out always covering at least the final hydrogen demand of the island. As a result it is concluded that it would be possible to produce 3.5 × 104 to 7.68 × 104 t of H2/year. In these scenarios 3.15 × 105 to 6.91 × 105 t of water per year would be required and there could be a potential production of 2.8 × 105 to 6.14 × 105 t of O2 per year.
Green Hydrogen Production Potential in West Africa – Case of Niger
Jul 2022
Publication
Niger offers the possibility of producing green hydrogen due to its high solar energy potential. Due to the still growing domestic oil and coal industry the use of green hydrogen in the country currently seems unlikely at the higher costs of hydrogen as an energy vector. However the export of green hydrogen to industrialized countries could be an option. In 2020 a hydrogen partnership has been established between Germany and Niger. The potential import of green hydrogen represents an option for Germany and other European countries to decarbonize domestic energy supply. Currently there are no known projects for the electrolytic production of hydrogen in Niger. In this work potential hydrogen demand across electricity and transport sectors is forecasted until 2040. The electricity demand in 2040 is expected at 2934 GWh and the gasoline and diesel demand at 964 m3 and 2181 m3 respectively. Accordingly the total hydrogen needed to supply electricity and the transport sector (e.g. to replace 1% gasoline and diesel demand in 2040) is calculated at 0.0117 Mt. Only a small fraction of 5% of the land area in Niger would be sufficient to generate the required electricity from solar PV to produce hydrogen.
Super Short Term Combined Power Prediction for Wind Power Hydrogen Production
Sep 2022
Publication
A combined ultra-short-term wind power prediction strategy with high robustness based on least squares support vector machine (LSSVM) has been proposed in order to solve the wind abandonment caused by wind power randomness and realize efficient hydrogen production under wide power fluctuation. Firstly the original wind power data is decomposed into sub-modes with different bandwidth by variational modal decomposition (VMD) which reduces the influence of random noise and mode mixing significantly. Then dragonfly algorithm (DA) is introduced to optimize LSSVM kernel function and the combined ultra-short-term wind power prediction strategy which meets the time resolution and accuracy requirements of electrolytic cell control has been established finally. This model is validated by a wind power hydrogen production demonstration project output in the middle east of China. The superior prediction accuracy for high volatility wind power data is verified and the algorithm provides theoretical basis to improve the control of wind power hydrogen production system
No more items...